

Computer graphics is not...

...only about modeling and image synthesis

How about acquiring geometry automatically?

Image courtesy: Stanford University

Digital Michelangelo Project

Image courtesy: Stanford University

Real-time 3-D acquisition

Image courtesy: Stanford University

Surface Reconstruction

Problem

Given a set of points $\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ with $\mathbf{p}_i \in \mathbb{R}^3$

Problem

Find a manifold surface $\mathcal{S} \subset \mathbb{R}^3$ which approximates \mathcal{P}

Two approaches

Explicit

Local surface connectivity estimation

Point interpolation

Signed distance function estimation

Implicit

Mesh approximation

Two approaches

Explicit

Ball pivoting algorithmDelaunay triangulationAlpha shapes

Distance from tangent
planes
SDF estimation via RBF

Implicit

– Image space triangulation

Implicit surface reconstruction

Given a set of points $\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ with $\mathbf{p}_i \in \mathbb{R}^3$ Find a manifold surface $\mathcal{S} \subset \mathbb{R}^3$ which approximates \mathcal{P}

where $S = \{x | d(x) = 0\}$ with d(x) a signed distance function

Image courtesy: MPI Saarbrücken

Data flow

Point cloud

Signed distance function estimation

 $d(\mathbf{x}) \downarrow$

Evaluation of distances on uniform grid

 $d(\mathbf{i}), \mathbf{i} = [i, j, k] \in \mathbb{Z}^3 \downarrow$

Mesh extraction via marching cubes

Mesh

Implicit surface reconstruction methods

Mainly differ in their signed distance function

You will implement two popular methods

Hoppe's distance from tangent planes

\mathcal{C}^0 surface

Image courtesy: University of Washington

You will implement two popular methods

Signed distance function via triharmonic RBFs

Image courtesy: University of Canterbury

Your new framework

Input data

bunny-500.pts

sphere.pts

ASCII file format
List of point and normal coordinates

Exercise 2.1: Distance from tangent planes

Find Closest point

Distance to tangent plane

Distance function is explicitly defined→ no need to be estimated, evaluation is sufficient

Exercise 2.2: Signed distance function via RBFs

Estimate the signed distance function

$$d(\mathbf{x}) = \sum_{i} w_{i} \phi(\|\mathbf{x} - \mathbf{c}_{i}\|)$$

- Centers are chosen as contraint points
- Values contrained to points where distances are known
- Kernel is a triharmonic RBF: $\phi(x) = x^3$
- Weights have to be determined

On- and off-surface constraints

2*n* point contraints with known distances

Linear system for weights

$$d(\mathbf{x}) = \sum_{i} w_{i} \phi(\|\mathbf{x} - \mathbf{c}_{i}\|)$$

$$d(\mathbf{x}_{i} + \epsilon \mathbf{n}_{i}) = 1$$

$$d(\mathbf{x}_{i}) = 0$$

$$\zeta$$

 $\begin{bmatrix} \phi(\|\mathbf{x}_1 - \mathbf{x}_1\|) & \dots & \phi(\|\mathbf{x}_1 - (\mathbf{x}_n + \epsilon \mathbf{n}_n)\|) \\ \vdots & \ddots & \vdots \\ \phi(\|(\mathbf{x}_n + \epsilon \mathbf{n}_n) - \mathbf{x}_1\|) & \dots & \phi(\|(\mathbf{x}_n + \epsilon \mathbf{n}_n) - (\mathbf{x}_n + \epsilon \mathbf{n}_n)\|) \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_{2n} \end{bmatrix} = \begin{bmatrix} d_1 \\ \vdots \\ d_{2n} \end{bmatrix}$

Solve system using the gmm library

Linear system for weights

$$d(\mathbf{x}) = \sum_{i} w_{i} \phi(\|\mathbf{x} - \mathbf{c}_{i}\|)$$

$$d(\mathbf{x}_{i} + \epsilon \mathbf{n}_{i}) = 1$$

$$d(\mathbf{x}_{i}) = 0$$

$$\zeta$$

 $\begin{bmatrix} \phi(\|\mathbf{x}_1 - \mathbf{x}_1\|) & \dots & \phi(\|\mathbf{x}_1 - (\mathbf{x}_n + \epsilon \mathbf{n}_n)\|) \\ \vdots & \ddots & \vdots \\ \phi(\|(\mathbf{x}_n + \epsilon \mathbf{n}_n) - \mathbf{x}_1\|) & \dots & \phi(\|(\mathbf{x}_n + \epsilon \mathbf{n}_n) - (\mathbf{x}_n + \epsilon \mathbf{n}_n)\|) \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_{2n} \end{bmatrix} = \begin{bmatrix} d_1 \\ \vdots \\ d_{2n} \end{bmatrix}$

distance *d* is fully defined

After a few seconds of computation you should obtain this

One more exercise...

Exercise 2.3 (optional): For the passionate

• Implement the Wendland RBF kernel

• Create more point data sets for implicit surface fitting

Image courtesy: Universität Göttingen

Further readings

• Surface reconstruction from unorganized points. [Hoppe et al. '92]

• A volumetric method for building complex models from range images [Curless and Levoy '96]

• Reconstruction and representation of 3D objects with radial basis functions [Carr et al. '01]

hao@inf.ethz.ch