Introduction to Non-Rigid Registration

Hao Li

What is Registration?

Template Fitting

Collaboration with T. Weise and L. Van Gool

Deformation Transfer

Collaboration with T. Weise and L. Van Gool

Correspondence between Shapes

average shape warping

Collaboration with T.Weise and L.Van Gool

Performance Capture – More next week

Source: [De Aguiar et al. 08]

Source: [Vlasic et al. 08]

Ingredients for Registration

Three Interdependent Challenges

Rigid Alignment

Problem

 $(R_1, \mathbf{t}_1) \dots (R_n, \mathbf{t}_n)$

 $\mathcal{M}_1 \dots \mathcal{M}_n$

Registration Pipeline

Initial Alignment

- Motion invariant shape descriptor (Spin images, harmonic shape context)
- Correspondence search (Brute force, branch and bound, RANSAC)

Iterative Closest Point (ICP)

- Uniform, Normal Importance, etc...
- Closest point via kd tree
- Correspondence compatibility heuristics
- Different optimization techniques

ICP Optimization

Effective Weighting Schemes

• Normal compatible correspondences

• Prune correspondences to boundaries and points that are too far

• Known surface confidence weights

camera orientation

feathering

19

• Closed form solution via quaternions [Horn 87]

[Chen and Medioni '91]

Point-to-plane metric

$$E_{\text{plane}} = \sum_{i} \|\mathbf{n}_{i}^{\mathsf{t}}(R\mathbf{x}_{i} + \mathbf{t} - \mathbf{c}_{i})\|^{2}$$

$$E_{\text{plane}} = \sum_{i} \|\mathbf{n}_{i}^{\mathsf{t}}(R\mathbf{x}_{i} + \mathbf{t} - \mathbf{c}_{i})\|^{2} \quad \sin(\theta) \approx \theta , \ \cos(\theta) \approx 1$$

$$E_{\text{plane}} = \sum_{i} \|\mathbf{n}_{i}^{\mathsf{t}}(\mathbf{x}_{i} - \mathbf{c}_{i}) + \mathbf{r}^{\mathsf{t}}(\mathbf{x}_{i} \times \mathbf{n}_{i}) + \mathbf{n}_{i}^{\mathsf{t}}\mathbf{t})\|^{2}$$

$$\begin{bmatrix} -(\mathbf{x}_{1} \times \mathbf{n}_{1})^{\mathsf{t}} & \mathbf{n}_{1}^{\mathsf{t}} \\ -(\mathbf{x}_{2} \times \mathbf{n}_{2})^{\mathsf{t}} & \mathbf{n}_{2}^{\mathsf{t}} \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} \mathbf{r} \\ \mathbf{t} \end{bmatrix} = \begin{bmatrix} -(\mathbf{x}_{1} - \mathbf{c}_{1})^{\mathsf{t}}\mathbf{n}_{1} \\ -(\mathbf{x}_{2} - \mathbf{c}_{2})^{\mathsf{t}}\mathbf{n}_{2} \\ \vdots \end{bmatrix}$$

overdetermined linear system

In Practice

$$E_{\text{tot}} = E_{\text{plane}} + \lambda E_{\text{point}} \qquad \lambda \approx 0.1$$
$$E_{\text{plane}} = \sum_{i} \|\mathbf{n}_{i}^{\mathsf{t}}(R\mathbf{x}_{i} + \mathbf{t} - \mathbf{c}_{i})\|^{2} \qquad E_{\text{point}} = \sum_{i} \|(R\mathbf{x}_{i} + \mathbf{t} - \mathbf{c}_{i})\|^{2}$$

- Eplane alone can exhibit oscillations
- Favor Eplane when convergence is slow

Non-Rigid Registration

Problem

- Partial overlap unknown
- Correspondences not given
- No prior about deformation
- Interdependence of problems

Decoupled Approach

Non-Linear Optimization

$$E_{\text{tot}} = \alpha_{\text{fit}} E_{\text{fit}} + \alpha_{\text{reg}} E_{\text{reg}} \qquad E_{\text{tot}} = \|\mathbf{f}(\mathbf{x})\|^2$$

Ist order Taylor

$$\|\mathbf{f}(\mathbf{x}^{k+1})\|^{2} \approx \|\mathbf{f}(\mathbf{x}^{k}) + J_{\mathbf{f}}(\mathbf{x}^{k+1} - \mathbf{x}^{k})\|^{2}$$
$$\|\mathbf{f}(\mathbf{x}^{k+1})\|^{2} \approx \|\mathbf{f}(\mathbf{x}^{k}) + J_{\mathbf{f}}\Delta\mathbf{x}^{k}\|^{2}$$

Gauss-Newton

$$\Delta \mathbf{x}_{\min}^k = \arg\min_{\Delta \mathbf{x}^k} E_{\text{tot}}$$

$$J_{\mathbf{f}}^{\mathbf{t}} J_{\mathbf{f}} \Delta \mathbf{x}_{\min}^{k} = -J_{\mathbf{f}}^{\mathbf{t}} \mathbf{f}(\mathbf{x}^{k})$$

- Use direct solver with sparse Cholesky factorization
- Extension to Levenberg-Marquardt
- Other techniques: Quasi-Newton, ...

Scheduled Regularization

- Energy landscape smoothing (prevents local minima)
- Other technique: multi-resolution

Deformation Models

Linear Regularization Methods

• Smooth Displacement

$$E_{\text{displ}} = \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \text{edges}} \|\mathbf{d}_i - \mathbf{d}_j\|^2 / \|\mathbf{x}_i - \mathbf{x}_j\|^2$$

• Smooth Affine Transforms

$$E_{\text{affine}} = \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \text{edges}} \|T_i - T_j\|_F^2 \quad , \quad T \in \mathbb{R}^{4 \times 4}$$

• Linear Variational Techniques [Botsch and Sorkine 07]

$$E_{\text{memb}} = \int_{\Omega} \|\mathbf{x}_u\|^2 + \|\mathbf{x}_v\|^2 \mathrm{d}u \mathrm{d}v$$

$$E_{\text{plate}} = \int_{\Omega} \|\mathbf{x}_{uu}\|^2 + 2\|\mathbf{x}_{vv} + \|\mathbf{x}_{vv}\|^2 \mathrm{d}u \mathrm{d}v$$

- Efficiency
- Generality
- Natural Deformations
- Detail Preservation

[Sumner et al. '07]

source

[Sumner et al. '07]

 $E_{\rm smooth}$ regularizes the deformation locally

 $E_{\rm rigid}$ measures deviation from rigid motion

Correspondence Search

Non-Rigid ICP

Coupled Optimization [Li et al. '08]

Coupled Optimization

[Li et al. '08]

Coupled Optimization

[Li et al. '08]

 $E = \alpha_{\text{rigid}}^{E} \text{rigid}^{+\alpha} \text{smooth}^{E} \text{smooth}^{+\alpha} \text{fit}^{E^{*}}_{\text{fit}}^{+\alpha} + \alpha_{\text{conf}}^{E} \text{conf}^{E}$

• Minimize deformation energy

- Minimize alignment error
- Maximize regions of overlap

219 iterations 2 min 19 s

Energy Term Visualization

In Progress

Limitations of Template-based Methods

- Requires template with all details
- Still sparse motion capture
- No distinction of transient and persistent data

Capturing Deformable Shapes

Data provided with T.Weise and L.Van Gool

Geometry and Motion Reconstruction

data provided by Stanford and MPI Saarbrücken

input data

template fitting

data provided by Stanford and MPI Saarbrücken

hao@inf.ethz.ch

