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ABSTRACT

We propose a deep learning approach for finding dense correspondences between 3D scans of 
people. Our method requires only partial geometric information in the form of two depth maps 
or partial reconstructed surfaces, works for humans in arbitrary poses and wearing any clothing, 
does not require the two people to be scanned from similar viewpoints, and runs in real time. We 
use a deep convolutional neural network to train a feature descriptor on depth map pixels, but 
crucially, rather than training the network to solve the shape correspondence problem directly, we 
train it to solve a body region classification problem, modified to increase the smoothness of the 
learned descriptors near region boundaries. This approach ensures that nearby points on the 
human body are nearby in feature space, and vice versa, rendering the feature descriptor suitable 
for computing dense correspondences between the scans. We validate our method on real and 
synthetic data for both clothed and unclothed humans, and show that our correspondences are 
more robust than is possible with state-of-the-art unsupervised methods, and more accurate than 
those found using methods that require full watertight 3D geometry. 
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