Structured Light Based Reconstruction **Under Local Spatial Coherence Assumption**

Hao Li, Raphael Straub, and Hartmut Prautzsch

Objectives

- **Speed:** To use very few acstruction.
- Robustness: To ensure ropriate reflection properties.
- Accuracy: To make use of the full projector and camera highest resolution.
- Flexibility: To allow the pendent.

jections) are required for each of the above reconstructions.

Applied Geometry & Computer Graphics Universität Karlsruhe (TH)

Correspondence

• The *k*th acquired stripe boundary in row *j*:

 $\mathbf{r}_{jk} = [\mathbf{a}_{jk}\mathbf{a}_{j,k+1}] \in [0,1]^{6t}$, $j = 1, \dots, r$, $k = 1, \dots, m_j$,

where \mathbf{a}_{jk} and $\mathbf{a}_{j,k+1}$ are the left and right acquired color combinations adjacent to the stripe boundary

• Algorithm

- one \mathbf{r}_{ik} from each row j.

$$\mathcal{S}_i^{\mathbf{l}} = \{\mathbf{s}_1^{(i),\mathbf{l}}, \dots, \mathbf{s}_{q_i}^{(i),\mathbf{l}}\}$$
 a

3. Compute left and right side medians of C_i :

- 4. Assign all $\mathbf{r}_{jk} \in \mathcal{C}_i$ to $\tilde{\mathbf{s}}_i =: \tilde{\mathbf{s}}_{jk}$.
- no more matches are possible.
- **Benefit:** Exploitation of *expressiveness* of colors located at stripe medial axes and *robustness* of those located at the vicinity of stripe boundaries, which are less susceptible to spatial discontinuities, undetected and overdetected stripe boundaries

- Recovery of a topologically consistent manifold surface that is insensitive to noise, outliers, and anisotropic sampling density
- Filling of undesired holes under local spatial coherence assumption

Germany

1. Assign each \mathbf{r}_{ik} to a cluster \mathcal{C}_i so that every \mathcal{C}_i contains at most

2. Determine the set of left and right side medial axis colors of C_i :

and $S_i^{\mathbf{r}} = \{\mathbf{s}_1^{(i),\mathbf{r}}, \dots, \mathbf{s}_{q_i}^{(i),\mathbf{r}}\}$.

 $\tilde{\mathbf{s}}_i := [\text{median } \mathcal{S}_i^{\text{l}} \text{ median } \mathcal{S}_i^{\text{r}}]$.

5. For each row *j*, determine, for all *k*, the closest pairs $(\tilde{\mathbf{s}}_{ik}, \mathbf{q}_i)$ until