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Abstract

Three-dimensional registration is the process of aligning scans of different in-
complete views of an object such that their corresponding regions agree in space
and time. It is used to build digital complete models from partial acquisitions of
real-world objects which typically contain noise, outliers, and acquisition holes
due to occlusions and hardware limitations. For non-rigid models, such as hu-
mans, shapes of corresponding regions undergo complex deformations in ad-
dition to misalignments. Thus, finding explicit correspondences between two
dissimilar shapes becomes considerably more challenging. In addition, find-
ing the right deformations is also non-trivial as they depend on the correspon-
dences which are only partially available between consecutive scans.

This report presents an analysis of the 3-D registration problem, a general ap-
proach for the spatio-temporal registration of deformable scans that are ac-
quired with a fast 3-D scanner, and extensive experiments on synthetic and real
acquisition data. The objective is to un-deform the surfaces of all range maps
and to fit them into a particular instance of time.

We address this problem by finding point correspondences based on initial clos-
est point computations between partial scans and performing deformations ac-
cording to these matches. Similar to the iterative closest point (ICP) algorithm,
the correspondence and deformation steps are tightly coupled and optimized
within a loop. Although smooth and small scale deformations between con-
secutive scans are assumed, we envision allowing large deformations, such as
human bodies in completely different poses, during the acquisition. This ap-
proach is the main distinction over previous work on non-rigid ICP variants,
where the accumulation of registration errors has to be globally minimized.
The suggested approach makes extensive use of assumptions on surface and
deformation smoothness.

Our experiments confirm the success of our method for small deformations
where the error accumulation of the correspondences over time is limited.
However, this preliminary investigation shows that without additional assump-
tions about the correspondence flow and object deformation, such as rigidness
and near-isometry, registration of scans with large scale deformations remains
an unsolved problem. Nevertheless, promising intermediate results open up a
new line of sub-problems needed to be solved for the grand challenge of fully
automatic reconstruction of surface, motion, and correspondence from time co-
herent range-scans.
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Chapter 1

Introduction

t

Figure 1.1: Input scan sequence of a grasping hand captured with a high
speed 3-D scanner. The aim of this work is to build a complete 3-D model
at a specific time instance from this sequence.

When acquiring moving and deforming objects (e.g. humans) using a
fast 3-D scanner (c.f. [Weise et al. ’07, Zhang et al. ’06, Koninckx et al. ’05,
Rusinkiewicz et al. ’02]), a dense sequence of varying shapes is produced as
illustrated in Figure 1.1. Each scan does not cover the entire object and can
represent a different region.

The aim of this work is to build a complete high-quality digital 3-D model of the
object by performing registration on the whole scan sequence, which represents
all exposed regions during the acquisition. Because the shapes are deformed, a
particular point in time is chosen where all scans are aligned and un-deformed
such that their corresponding regions coincide. We refer to this as spatio-temporal
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2 CHAPTER 1. INTRODUCTION

registration. Ideally, the registered scans would look as if they were all taken
simultaneously from different perspectives. A typical scenario for the recon-
struction of a full human body would be that a person simply moves in front of
the range scanner and a complete 3-D model is automatically generated.

The main challenge is to compute the right alignment and deformation for each
scan based on the shared region between two scans. As the acquisition is time-
coherent, the existence of such a common region can be assumed between two
consecutive scans. Hence, a global correspondence over all partial shapes can
be deduced by transitivity.

t

Figure 1.2: An accumulation of scans acquired over time t and shown
within the same coordinate system. Corresponding points shown between
individual scans show that spatio-temporal coherence is an important as-
sumption to obtain a reliable estimation of correspondence. In particular,
corresponding points might not be available in all frames.

However, correspondence between a pair of partial and deformed shapes is
known to be a challenging problem. Nevertheless, similar to the iterative clos-
est point (ICP) refinement [Besl & McKay ’92, Chen & Medioni ’92], the problem
can be drastically simplified when correspondences are determined between
two frames that are temporarily close (e.g. two consecutive scans). Figure 1.2
illustrates and example of corresponding points tracked on the finger tips of a
scanned hand. Here, the deformation is small and the corresponding (or over-
lapping) regions can even be assumed to be large. Although pairwise regis-
tration of temporarily close scans seem to be feasible with relative ease, small
registration errors would accumulate when global correspondences are related
and large deformations of the object occur between a longer acquisition period.
In addition to object deformations, 3-D acquisition data is typically affected by
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noise, outliers, and acquisition holes due to occlusions and hardware limita-
tions. This further complicates the task of correspondence.

This report has three purposes:

• First, we will discuss related work on scan registration and present a tax-
onomy to describe the specific spatio-temporal registration problem we
are adressing (c.f. Section 1.1). This step will be helpful in formulating
the necesary geometric assumptions about the input scans as will be dis-
cussed in Section 1.2.

• Next, a general approach for the registration of time coherent and deform-
ing scans will be presented in Chapter 2. Here, we will propose a novel it-
erative framework for the registration of partial scans from all acquisition
frames in order to obtain a complete 3-D model at a specific instance in
time. In particular, the suggested method is built on top of known meth-
ods for the registration of rigid objects (c.f. Section 2.2) and uses well-
established deformation algorithms for the pairwise matching of partial
and deformed scans (c.f. Section 2.3).

• Eventually, we will demonstrate our algorithm on synthetic and real in-
put data and synthesize the results in Section 3.1. One of our objectives
is to explore the limits by using simplistic and general algorithms that
make weak assumptions about the input data. Limitations of the pro-
posed methods to specific sub-problems will be discussed in Section 3.2
and the implications for future research will be treated in Chapter 4.

Contributions

The key innovation is that our registration problem envisions allowing large
and complex object deformations without the use of any templates or manually
selected correspondences, as these are difficult to obtain. To our knowledge, this
is the first approach that explicitly addresses the problem of finding global cor-
respondences fully automatically from a large set of deforming shapes that are
densely sampled in space and time using a fast 3-D scanner. Hence, in contrast
to previous work on non-rigid surface reconstruction techniques, we would de-
sign a realistic and practical scanning solution.

The proposed registration framework is an iterative approach that propagates
scans from different frames into a particular time instance where the scans are
deformed accordingly. Each deformation step is solved via a generalized ICP
extended for non-rigid objects. Known techniques to individual sub-problems
(e.g. correspondence, transformation, etc. . . ) can be easily adapted for our pur-
pose. Therefore, our method is a simple and general framework that is flexible
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enough to integrate different algorithms that might use different assumptions
about the input data.

The main objective of this report is not to describe a solution to the unsolved
problem of registration of partial and non-rigid shapes. Instead, our framework
will help to understand the main issues and identify the key assumptions nec-
essary for further improvements. This work comes with a set of experiments
where rather simplistic but well-established algorithms were adapted to their
corresponding sub-problems. Promising preliminary results on real scan data
have been discovered.

Impact

As our ability to build high speed 3-D acquisition systems improves, so does
the need to process the data they deliver. For instance, 3-D scanning devices are
still mainly limited to special purpose applications such as full body scanners in
the motion picture industry, building plaster casts to match a patient’s anatomy
in medicine, and quality control for the manufacturing of car components, to
name a few.

However, during the last decade, a lot of attention have been paid within the
graphics and vision community in pushing the limits of 3-D scanning technol-
ogy, mainly in the context of cultural heritage (c.f. [Levoy et al. ’00]), anthro-
pology (c.f. [Allen et al. ’03]), and other vision systems in robotics. Although
numerous techniques successfully reproduce high quality 3-D models from ob-
jects in the physical world, they are often limited by high computation times
and, most importantly, they are tedious and unintuitive to operate. These lim-
itations are mainly due to the fact that many techniques only solve problems
defined within a restrictive physical world setting. Also, the complexity of the
algorithms is usually rather high.

However, a significant change is likely to occur in the near future as soon as
real world geometry and dynamics can be reproduced fully automatically with
a wide range of graphics applications. Here are two examples:

• For instance, the ability to reproduce a complete model for an arbitrary
time would imply being able to reproduce one for all other acquisition
frames as well. Consequently, this would provide a method for solving
the problem of surface reconstruction and motion capture on-the-go, obviating
motion capturing systems that require impractical and hard to calibrate
markers.

• Moreover, the inter-frame correspondences would be fully determined
and a consistent surface parametrization throughout all acquired frames
could be defined. Being able to solve the global correspondence would be
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a paramount step for shape matching applications such as object recognition
or even modeling applications where editing could be done on entire scan
sequences without knowing how the 3-D model was built.

1.1 Previous Work

registration integration

surface 
reconstruction

Figure 1.3: Main steps of a standard 3-D reconstruction pipeline demon-
strated on a rigid object. The figurine has been scanned using the Minolta
Vivid 900 laser scanner.

For optical 3-D acquisition systems that generate depth maps, registration
methods play the central role in aligning the scans before obtaining a complete
3-D model via mesh integration. The standard 3-D reconstruction pipeline is
illustrated in Figure 1.3. While a wide range of techniques has been investi-
gated for the registration of rigid objects, less research has been conducted for
deforming ones.

The registration stage is tightly coupled to the acquisition stage. In particu-
lar, depending on geometric and kinetic properties of the object being scanned
and the depth maps being acquired, different approaches for registration will
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be used. In other words, inverse problems with different assumptions about
the input data will be tackled differently since different known and unknown
variables are available.

To distinguish between different registration methods, we propose a taxonomy
based on the assumptions made about the input data as shown in Table 1.1. The
related work presented in this report is far from complete. However, we have
included the most relevant and pioneering works on scan registration. We will
now clarify the relationship between the assumptions made and the registration
problems they imply.

input rigid deformable
scans small scale large scale

sparse

[Gelfand et al. ’05] [Brown & Rusin- [Mitra et al. ’07b]
[Huber & Hebert ’01] kiewicz ’07] [Anguelov et al. ’05]
[Pulli ’99] [Brown & Rusin- [Anguelov et al. ’04]
[Roth ’99] kiewicz ’04] [Allen et al. ’03]
[Chen et al. ’98]
[Stoddart & Hilton ’96]
[Johnson & Hebert ’97]

dense

[Rusinkiewicz et al. ’02] [Mitra et al. ’07a] this work
[Rusinkiewicz & Levoy [Amberg et al. ’07]
’01] [Hähnel et al. ’03]
[Chui & Rangarajan ’00]
[Chen & Medioni ’92]
[Besl & McKay ’92]

Table 1.1: A classification for registration methods

Sparse or Dense Acquisitions

Sparse acquisition methods capture a few views of an object with overlapping
regions while trying to cover the entire object as much as possible. The reg-
istration problem typically consists of finding correspondences based on local
shape features from these overlapping regions and computing the transforma-
tions that align these scans. Most early works on 3-D reconstruction of static ob-
jects follow this registration procedure. Usually a refinement step is performed
once a coarse alignment has been found.

On the other hand, dense acquisition methods use a high speed 3-D scanner to
continuously sample an object from the real world. In particular, sampling is
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dense in time and a huge amount of data is acquired. When the scanning frame
rate is high enough for a moving object, consecutive frames become time coher-
ent. The registration problem usually consists of using correspondences found
in local neighborhoods and refining transformations subject to an optimization
problem. In the rigid case, we also classify registration refinement algorithms
such as ICP into the category of dense acquisitions since initial coarse align-
ments are assumed. We note that the direct aim of the refinement is not to build
a complete 3-D model, but to find a more optimal alignment.

Nevertheless, in our setting, we make use of the time-coherent data to track
correspondences similar to the approach presented in [Rusinkiewicz et al. ’02]
with the only difference that we allow large deformations over a certain acqui-
sition period.

Rigid or Deformable Objects

For rigid objects, the transformations computed by the registration method stay
within the group of Euclidean transformations. Since only 6 parameters have
to be determined (3 for rotation and 3 for translation), the focus is often on
extracting and matching a large number of local shape features in order to solve
for an optimal solution of an over-determined system.

On the other hand, registration becomes much more challenging when we al-
low the scanned object to undergo deformations. Without any prior knowl-
edge, a general deformation would have an infinite number of degrees of free-
dom. More restrictive assumptions about the deformation behavior are there-
fore necessary in order to formulate an appropriate deformation model. How-
ever, finding the right deformations requires knowledge about correspond-
ing regions. Here, the correspondence problem becomes a difficult task since
matching has to be performed between different shapes. For sparse acqui-
sitions, for instance, the focus is usually on extracting near rigid regions, as
in the case of articulated objects (c.f. [Mitra et al. ’07b]), or on finding glob-
ally optimal inter-shape correspondences using a complete template model (c.f.
[Anguelov et al. ’05, Anguelov et al. ’04]).

For dense acquisitions, as in our case, the deformations between consecutive
frames are small and we can make use of this inter-frame coherence to deduce
consistent correspondences.

Small or Large Object Deformations

For deformable objects, we further distinguish between our definition of small-
and large-scale deformations.

We refer to registrations of objects with small scale deformation as those
where deformation of the scanned object is not explicitly intended. And if
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so, it is limited to some extend. For instance, in [Brown & Rusinkiewicz ’07,
Brown & Rusinkiewicz ’04], acquired scans of rigid objects are assumed not
perfectly rigid because of scanning hardware limitations such as calibration
errors. Giving more degrees of freedom in the transformation allows better
preservation of high frequency details. Similarly, when deformations of ac-
quired objects are limited, recent methods based on dense acquisitions have
successfully registered partial and deformable scans, using estimations of mo-
tion as in [Mitra et al. ’07a] or by extending ICP for non-rigid shapes (c.f.
[Amberg et al. ’07, Hähnel et al. ’03]).

We define the registration problem of objects with large-scale deformations as
the case where no restrictions are imposed on the amount of deformations un-
dergone during the whole acquisition process. Note that, while assumptions are
made on the deformation model, we do not limit the distance traversed within
the corresponding deformation space. In [Mitra et al. ’07b], for example, corre-
spondence is computed by extracting rigidness of shapes using the symmetry
detection algorithm from [Mitra et al. ’06]. In this way, corresponding regions
are matched and deformed for the registration of partial scans. However a com-
plete template model which undergoes the deformation is required as is the
case with the approaches presented in [Anguelov et al. ’05, Anguelov et al. ’04,
Allen et al. ’03].

To the best of our knowledge, there is no work so far that explicitly addresses
the registration problem by allowing large scale deformations without the use
of any templates. We therefore suggest an approach that uses dense scan acqui-
sitions for solving the correspondence problem. With this design, we have suc-
cessfully performed the registration of objects with small-scale deformations.
Promising future directions from Section 4.2 provide potential solutions for
larger scale deformations.

1.2 Assumptions Analysis

Making assumptions about the shape of input scans is equivalent to restrict-
ing the scope for real world acquisitions. On the other hand, it is required to
simplify the registration problem and the art is to find the right trade-off.

We impose restrictions on geometric and kinetic properties of the real world
object and the input shapes after the acquisition. The registration algorithm
must be able to handle the underlying assumptions, which obviously are tightly
coupled to the acquisition technique. Therefore, we restrict ourselves to scans
that are produced by 3-D scanners equivalent to those based on structured
lights (c.f. [Weise et al. ’07, Zhang et al. ’06, Li et al. ’06, Koninckx et al. ’05,
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Zhang et al. ’02, Rusinkiewicz et al. ’02]). Similar properties can be found in
other high speed 3-D scanning technologies.

Assumptions About the Scanned Object

The scanned object is assumed be bounded by an oriented smooth manifold
surface. Consequently, local surface parametrizations exist and differentiations
are possible for extracting higher order shape information such as normals and
local curvatures.

Moreover, we allow the surface to undergo global rigid motions provided the
transformation is smooth. For instance, the motion at close time instances must
be similar. In order to perform registration of deformable objects, we permit
non-rigid components in the transformations. We also require these deforma-
tions to behave smoothly. In addition to temporal deformation smoothness, we
make the assumption that the deformation of spatially close points on a surface
are similar as well.

Although not covered by our preliminary work, assumptions about isometry
of the deformation model and as-rigid-as-possible deformations for articulated
objects would be important considerations for future research in order to further
improve registration robustness.

Restrictions Imposed by Acquisition Device

Since our registration method is performed directly on the acquired scans, hard-
ware limitations must be considered when making assumptions about the in-
put data. For instance, the spatial sampling density (depth map resolution) can
be assumed to be high but it is still limited. Thus, high frequency details can
be captured as long as they satisfy the Nyquist limit (c.f. [Li ’05] for more de-
tails). Similarly, the same restriction applies to the temporal sampling density,
which is determined by the acquisition frame rate. In order to cope with the
assumption of smooth motion in the scanned object, the scanning speed must
be sufficiently high.

Other than sampling limitations, input scans typically suffer from high fre-
quency noise and outliers mostly due to measurement inaccuracies, non-
cooperative surface properties, and optical triangulation errors depending on
the range imaging technology (c.f. Figure 1.4). Both sources of errors can usu-
ally be treated effectively with well-established mesh or point processing meth-
ods (c.f. [Li ’05, Weyrich et al. ’04]).
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(a)

(b)

Figure 1.4: (a) Raw scan data affected by noise and outliers. Triangle with
long edges between fingers are due to triangulation in image space during
surface reconstruction. Artifacts around the boundaries of the scans are
due to limitations of the acquisition method when object motion is too fast
(this issue only exists for certain 3-D scanning technologies). (b) The high
resolution scan exhibits a considerable amount of high frequency noise as
shown in the enlarged figure.



Chapter 2

Spatio-temporal Registration

This chapter introduces the methodology of our proposed spatio-temporal reg-
istration approach. The proposed framework finds a deformation for the scans
of each frame in order to compute their shapes at a specific time instance. For
this, a general registration scheme is proposed in Section 2.1 that propagates
pairwise correspondences and deformations from all frames toward the target
time instance. Each propagation step is solved using an ICP-based registra-
tion refinement process. A more detailed description of the pairwise correspon-
dence and transformation stage is given in Section 2.2 and 2.3, respectively. Al-
though correspondence and deformation could have been formulated as the op-
timal solution of a single global minimization problem, we choose to decouple
both stages. This way, the problem becomes significantly simpler and known
techniques can be used for analysing and solving individual sub-problems.

2.1 A General Framework

Inspired by global registration algorithms based on ICP for rigid objects, we
present a simple registration scheme for obtaining a complete 3-D model from
a sequence S = (M1, . . . ,Mn) of n partial and deforming surfaces Mi ⊂ R3

acquired at time ti. The acquisition is uniformly time sampled so that we can
write ti = i ∈ N.

Registration for a Single Time Instance

For non-rigid registrations between a pair of scans, the source scan Mi is de-
formed onto the target scan Mj which remains unchanged. The deformed scan

ofMi is denotedM(j)
i = ϕi(Mi,Mj) with deformation ϕi (c.f. Section 2.3) and

11
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semantically belongs to the target time j. Here, ϕ(Mi,Mj) is a hypothetical
optimal transformation deduced from the pair Mi and Mj. We note that

M(i)
i = Mi and M(k)

i = M(j)
i ∀k > j .

In particular, the registration computes an optimal M(j)
i such that the corre-

sponding regions Ni ⊂ Mi and Nj ⊂ Mj are perfectly aligned for time j, i.e.

N (j)
i = Nj with N (j)

i an optimally deformed surface of Ni.

In order to obtain the complete 3-D model Mtot at a specific time instance, the
scans of all frames i 6= j must be deformed to the instance in time of a particular
target scan j. Without loss of generality, we choose this time instance to be the
last frame n of the acquisition. Our objective is then to find the deformations ϕ
for all scans Mi to eventually obtain

Mtot =
⋃

i

M(n)
i ⊂ R3 .

However, pairwise registration is only possible when all scans have sufficiently
large corresponding regions with this last frame. In general, this situation is
unlikely to occur as our partial input scans are trying to cover the entire object
from different views. Consequently, we use from Section 1.2 the assumption
that scans that are close in time have large corresponding regions. Therefore,
we first restrict ourselves to pairwise registrations between consecutive scans
Mi and Mi+1. Thus, the optimal deformation between consecutive scans can
be denoted ϕi = ϕ(Mi,Mi+1).

By applying the ϕi for i = 1 . . . n− 1, all scans are incremented in time:

ϕi : Mi 7→ M(i+1)
i

where Mn remains unchanged. In particular M(i+1)
i belongs to time i + 1.

More generally, the deformation of a deformed scan M(j)
i is given by:

ϕi : M(j)
i 7→ M(j+1)

i with i ≤ j ≤ n− 1 . (2.1)

This yields the following registration scheme when the deformations in Equa-
tion 2.1 are repeated n− 1 times:
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. . .︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
ϕi

ϕ2
i

ϕn−1
i

︸ ︷︷ ︸
ϕi ϕi

︸ ︷︷ ︸

M1 !→ M(2)
1 !→ . . . !→ M(n−1)

1 !→ M(n)
1

M2 !→ M(3)
2 !→ . . . !→ M(n)

2
...

...
...

Mn−2 !→ M(n−1)
n−2 !→ M(n)

n−2
Mn−1 !→ M(n)

n−1
M(n)

n =Mn

which can be summarized by computing

ϕn−i
i : Mi 7→ M(n)

i (2.2)

for i = 1 . . . n− 1. A step by step visualization for each iteration i is shown in
Figure 2.1.

Ultimately, the deformed scans M(n)
i would only exist for the last point in time

n (labeled in blue) and the full global correspondence would be determined via
transitivity from these aligned scans. Hence, the proposed registration frame-
work for computing Mtot is simply n − i iterations of pairwise registrations
between all consecutive scans Mi and Mi+1. In total, n(n−1)

2 pairwise registra-
tions (i.e. deformations) are required.

Pairwise Registration of Integrated Scans

As mentioned earlier, a pairwise registration between consecutive scans M(j)
i

and M(j)
i+1 is, in general, insufficient for computing an optimal deformation

ϕi(M
(j)
i ) = M(j+1)

i , as illustrated on an example in Figure 2.2.

Fortunately, when the registration scheme from Equation 2.2 is applied for i =
1 . . . n− 1, the number of available scans at instance j increases with i, as shown
in the following equation:
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. . .

M1
M2

M3 M4
Mn

Mn

. . .

M(2)
1

M2 M3
M4

M1

t

Mn

. . .

M2 M3 M4

M1

...

M(2)
1

M(4)
1M(3)

1

...
...

M(n)
1

...

1 2 3 4 n. . .

M(3)
2

M(4)
3 M(n)

n−1

Figure 2.1: An idealized step by step illustration for each iteration of the
registration scheme in 2-D.
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M(1)
1 !→ M(2)

1 !→ . . . !→ M(n−1)
1 !→ M(n)

1
M(2)

2 !→ . . . !→ M(n−1)
2 !→ M(n)

2
. . .

...
...

M(n−1)
n−1 !→ M(n)

n−1
M(n)

n .

In particular, the deformation ϕi(M
(j)
i ) = ϕ(M(j)

i ,M(j+1)
i+1 ) = M(j+1)

i can be

deduced not only from a pair of source and target scans, M(j)
i and M(j+1)

i+1 , but

also from all M(j+1)
k with j + 1 < k ≤ n− 1.

We therefore call the union of all valid target scans:

M(j+1)
tot =

n−1⋃
k=j+1

M(j+1)
k (2.3)

the integrated target scan of a source M(j)
i . We note that the union only makes

sense for perfectly aligned corresponding regions and thus, the existence of the
optimal deformations. We then define a deformation between a source scan and
its corresponding integrated target scan to be ϕ̂i = ϕ(M(j)

i ,M(j+1)
tot ).

Hence, our presented registration scheme of Equation 2.2 is extended to:

ϕ̂n−i
i : Mi 7→ M(n)

i for i = 1 . . . n− 1. (2.4)

Since more data is used for correspondence at a certain frame, this algorithm
would be generally more robust than the one presented in Equation 2.2. How-
ever, the computational cost is obviously higher. A more efficient way to handle
cross-scan correspondences remains an interesting topic for future research.

Refinement of the Pairwise Registration

So far, the hypothesis was that an optimal deformation ϕ̂i is deduced from a
source-target pair, M(j)

i and M(j+1)
tot , as long as the corresponding region be-

tween both scans is sufficiently large. However, only a sub-optimal estimation
is possible, as it is the case with all non-global registration methods where the
introduction of registration errors have to be taken into account. From now
on, we refer to our source and target surfaces as Ms = M(j)

i ⊂ R3 and

Mt = M(j+1)
tot ⊂ R3 since only pairwise registrations are considered.

The goal is to determine a deformation of Ms that aligns the corresponding re-
gions of the scan pairs by satisfying the geometric and kinetic properties of the
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t1 2 3

M1

M2

M3

M1

M2

M3 M1

M2

M3

M(2)
1

M(2)
1

M(3)
1 M(3)

2
M3

M(3)
2

M3

M(3)
1

with deformation ϕ̂with deformation ϕ

M(3)
2

M(3)
2

Figure 2.2: This example shows a case where a registration with integrated
scans is necessary (right column).

scanned object as presented in Section 1.2. While the restrictions imposed by
the scanned object can be implicitly encoded in the deformation model (c.f. Sec-
tion 2.3), the displacement constraints that dictate the deformation itself depend
on the point-to-point correspondences of the corresponding regions Ns ⊂ Ms
and Nt ⊂ Mt. Hence our registration problem can be broken down into corre-
spondence and transformation sub-problems.
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The observation here is that we have an almost identical setting as with tradi-
tional ICP refinement problems. The difference is that we are interested in the
registration of a vast collection of scans with considerably large and complex
deformations occuring over a certain acquisition period. However, since the
number of pairwise registrations is quadratic with the number of input scans,
the accumulation of deformation errors would be one of the core issues, which
is especially the case for large deformations. Moreover, the transformation must
be general enough to cope with complex deformations such as articulated and
non-rigid objects. Being general, the deformation model is also more likely to
introduce errors.

With these considerations in mind, we suggest following the design of the well-
known pairwise ICP algorithm as illustrated in Figure 2.3 and adapting each
step to our purpose. The sampling, correspondence, and pruning stages will
be discussed in detail in Section 2.2. They are followed by the deformation
procedure which is then presented in Section 2.3.

The justification for using an iterated process is that the estimation of an optimal
deformation and its correspondence form a mutual dependency. For instance,
good correspondences are easier to estimate when the scans are close in shape
and position (i.e. small deformation). On the other hand, a correct deformation
highly depends on the quality of the correspondences.

Unlike ICP methods for rigid objects, the formulation of a termination criterion
is ill-posed. In fact, the ideal condition to abort the loop is when correspond-
ing regions are perfectly aligned. However, this situation cannot be explicitly
determined since no temporal consistent parametrization is available. There-
fore, we specify the number of iterations for the loop similar to other works on
deformations for shape matching (c.f. [Sumner & Popović ’04, Allen et al. ’03]).

2.2 Pairwise Correspondence

Given a source Ms and a target Mt, we now look at how to find point-to-point
correspondences for determining the deformation displacements. Since the mo-
tion of the scanned object is assumed to be smooth and the acquisition frame
rate is high, two corresponding points must be close. Moreover, we assume the
deformation between two acquired scans to be small. Accordingly, their shapes
have to be similar.

Consequently, a reliable and efficient way to estimate corresponding points on
Mt is to search in the vicinity of points sampled from Ms. Relying solely on
point positions, computing the Euclidean closest point would seem to be most
appropriate. However, in the context of rigid ICP, it is well understood that,
under certain conditions, other estimations can yield faster refinement conver-
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1st loop

2nd loop

correspondence and pruning deformation

abort?

sampling

correspondence

pruning

deformation

yes
no

3rd loop

4th loop

Ms

Mt

Figure 2.3: The data flow of the ICP algorithm for non-rigid objects is
shown above. Each refinement step between a plane (blue) and its de-
formed shape (green) is shown below where the point-to-point correspon-
dences are shown in white.

gence such as the projection to the tangent plane. As the effect of both ap-
proaches on the convergence on non-rigid ICP is unclear, we will examine both
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avenues more closely. Note that both methods do not rely explicitly on any spe-
cific geometric features of the surface. They depend on the curvature of Ms
and Mt, but do not use it for correspondence.

Sampling

Before any correspondence is determined, many approaches suggest a partic-
ular sampling strategy for faster convergence and more efficient processing.
An extensive survey is presented in [Rusinkiewicz & Levoy ’01], in which an
interesting method is introduced: namely, a sampling technique that maxi-
mizes the distribution of normals among selected points. This technique has
been demonstrated to be particularly effective for smooth shapes with sparse
features. While better results are likely to be achieved with the aid of more
advanced sampling techniques, we choose to use all available mesh vertices
xi ∈ Ms with i = 1, . . . , n as in [Besl & McKay ’92] for the sake of simplic-
ity as our input scans are already dense and uniformly sampled. However, if
efficiency is desired, we perform a simple isotropic remeshing as described in
[Botsch & Kobbelt ’04] to reduce the number of points while keeping the point
density as uniform as possible.

Closest Surface Point

We define the closest point of a point xi ∈ Ms on a triangle mesh Mt to be

ci = πclosest(xi) = argmin
ci

‖ci − xi‖2 with xi ∈ Ms and ci ∈ Mt .

The closest surface point is a good estimate for the correspondence when Ms
and Mt are close and have almost the same shape. Our assumptions presented
in Section 1.2 satisfy this condition. Moreover, ci can be computed efficiently in
O(log n) using a spatial search data structure such as a kd tree (c.f. [Bentley ’75])
with triangles as geometric entities. In particular, ci is the closest point on the
closest triangle to xi retrieved with the kd tree.

Many convergence properties from rigid ICP using the closest point as cor-
respondence (c.f. [Gelfand et al. ’03]) are similar to those of our registration
framework with deformable scans. For instance, because of the local nature
of the minimization, the convergence can be slow, especially in the case of tan-
gential motions along the surface. The evidence of the linear convergence of
rigid ICP using closest point can be found in [Pottmann et al. ’06].
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Tangent Plane Projection

A different strategy for finding corresponding points of xi ∈ Ms consists of
performing an orthogonal projection on the tangent plane of a point rt ∈ Mt.
rt is the intersection of the ray originating from xi in the direction of its normal.
We refer the corresponding points of xi to as:

ci = πtangent(xi)

and compute it as follows. The ray originating from xi is given by the explicit
representation r(α) = α n(s)

i + xi with normal vector n(s)
i . Intersecting r(α) with

the triangle mesh Mt yields the normal foot point rt = r(αt) ∈ Mt with normal
n(t)

i . For ‖n(t)
i ‖ = 1 we obtain the tangent plane projection:

ci = (I − n(t)
i (n(t)

i )t)(xi − rt) + rt .

This method has first been proposed for a rigid iterative closest point method
in [Chen & Medioni ’92] and the main idea is to let flat and spherical re-
gions slide along each other (c.f. [Gelfand et al. ’03]). Indeed, when the ini-
tial source and target surfaces are very close, convergence has been proven
to be faster than the closest point method as observed in [Pottmann et al. ’04,
Pottmann & Hofer ’03]. Note that for the analysis of rigid ICP convergence, this
point-to-plane method can even achieve local quadratic convergence for a zero
residual problem if additional regularization and step size control is performed.

In our case, this convergence analysis is more difficult to perform since our op-
timal solution is found when the corresponding regions of a deformed Ms and
Mt perfectly match. Unfortunately, the problem of defining correspondence is
ill-posed.

However, the projection to tangent plane method can be computed efficiently
as well by using a spatial data structure (e.g. a kd tree) for searching the inter-
sections rt similarly to ray-tracing acceleration techniques.

Considering input scans being affected by high frequency noise, it is better to
compute stable normals n(s)

i and n(t)
i by estimating normals from local neigh-

borhoods with larger radii. An extensive analysis on the estimation of surface
normals in noisy scan data can be found in [Mitra & Nguyen ’03].

Correspondence Pruning

A simple heuristic presented in [Pauly et al. ’05] suggests performing a bi-
directional closest point search and to prune the correspondences which have a
high deviation from their original vertices. More precisely, let

bi = π2
closest(xi) ∈ Ms
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be the closest point of ci = πclosest(x)i on the meshMs. When δi = ‖bi− (x)i‖
is larger than a certain threshold σ, we decide to discard the correspondence for
ci. A reasonable estimate for σ is to take the average local sample spacing of
vertices in Ms as illustrated in Figure 2.4.

xi1xi2

ci1 = π(xi1)ci2 = π(xi2)

bi2 = π2(xi2)

bi1 = π2(xi1)

δi1 > σ
σ

δi2 < σ

Mt

Ms

Figure 2.4: In this example, xi1 will be pruned because its bidirectional
closest point bi1 has a deviation δi1 > σ whereas xi2 and ci2 form a valid
correspondence since δi2 < σ.

2.3 Deformation Model

The formulation of a deformation model determines the degrees of freedom
of the transformation undergone during the iterated registration process de-
scribed in Section 2.1. If an overly general deformation model is chosen, it is
likely that an arbitrary shape would result from the registration. When it is
too restrictive (e.g. a near rigid motion), incorrect correspondences would be
computed and the scans would converge to an undesired local minima.

While an extensive survey on different deformation techniques is presented
recently in [Botsch & Sorkine ’07], we choose to adapt the deformation algo-
rithm developed in [Sumner & Popović ’04] within the context of correspon-
dence computation for deformation transfer. The method is general enough
to represent arbitrary non-linear deformations since it has proven its ability to
derive complete deformations from complex triangle mesh animations. More-
over, it preserves deformation smoothness which suits the requirements of our
assumptions made about the scanned object as presented in Section 1.2.
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The general deformation model is represented by a set of affine mappings

x̃ = Φl(x) = Alx + al ∈ R3 with l = 1 . . . m

for each triangle Tl of a triangle mesh M ⊂ R3 with m triangles. Φl relates the
deformed vertex x̃ to the undeformed x ∈ Tl. In particular, the underlying linear
map Al ∈ R3×3 encodes the change in scale, orientation, and skew induced by
the deformation of the triangle with vertices

xp, xq, xr ∈ Tl .

Al is the non-translational component of the deformation and plays a substan-
tial role in describing the non-rigid part of the general transformation Φl(x). To
be able to fully determine Al and al, a fourth undeformed vertex that is non-
planar to with the vertices of Tl is required. We therefore choose the fourth
vertex to be

xs =
(vq)× (vr)

‖(vq)× (vr‖
1
2

+ xp , vi = xi − xp and i ∈ {q, r, s}

and obtain a local coordinate frame of Tl given by Al = (xp; vq, vr, vs) with xp
the origin and the vi the basis vectors. Here, the cross-product is scaled by the
inverse of the square root of its length in order to obtain a proportional scaling
with the triangle edge length. Since our input scans are uniformly sampled, we
obtain a reasonable and simple approximation.

Similarly, the deformed vertices x̃i with i ∈ {p, q, r, s} form a local coordinate
frame Ãl = (x̃p; ṽq, ṽr, ṽs) with ṽi = x̃i − x̃p with i ∈ {q, r, s}. Since al =
x̃p − Alxp, it follows that

A = ṼV−1 , V =
[
vqvrvs

]
and Ṽ =

[
ṽqṽrṽs

]
. (2.5)

Equation 2.5 shows that the elements of the non-translational components Al
are linear combinations of the unknown deformed vertices x̃i and depend on
the coordinates of the undeformed vertices xi.

The objective of the shape deformation stage is to compute an affine map Φl
for each triangle Tl of a triangle mesh M in order to obtain a deformed triangle
mesh ϕ(M). Since ϕ(M) is a triangle mesh, we require its shared vertices to be
in the same locations. The following constraint ensures connectivity consistency:

Φj(xi) = Φk(xi) , ∀i, ∀j, k ∈ Nt(i)

with Nt(i) the indices of triangles adjacent of the vertex of index i.

Using the deformation model presented above, we can now provide displace-
ments and deformation behaviors as presented in Section 2.1 and 1.2 in terms of
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a constrained minimization problem for deforming M. More precisely, finding
the affine maps Φl for each triangle can be done by minimizing some energy
term E(x̃1, . . . , x̃n) that depends on the deformed shape M. We solve the fol-
lowing minimization for the Φl:

min
Φ1,...,Φm

E(x̃1, . . . , x̃n) subject to Φj(xi) = Φk(xi) , ∀i, ∀j, k ∈ Nt(i) ;

In particular, E(x̃1, . . . , x̃n) encodes the displacement and deformation assump-
tions about the scanned object.

When E(x̃1, . . . , x̃n) depends solely on Al (c.f. Equation 2.5), the minimization
problem proposed above would be defined in terms of the unknown deformed
vertices and the minimization would be over the vertices themselves where the
connectivity constraints are implicitly satisfied:

min
x̃1,...,x̃n

E(x̃1, . . . , x̃n) = ‖ f (x̃1, . . . , x̃n)‖2 (2.6)

with f (x̃1, . . . , x̃n) a function which squared norm is the energy E.

Moreover, if f (x̃1, . . . , x̃n) is linear with x̃1, . . . , x̃n, the solution of the optimiza-
tion problem would be the solution of a linear system, and thus efficient to
solve. In fact, Equation 2.6 could be rewritten in matrix form:

min
x̃1,...,x̃n

‖c− Mỹ‖2

with ỹ = [x̃t
1, . . . , x̃t

n]t a concatenation of all unknown deformed vertices and M
a large, sparse matrix relating ỹ to the vector c. Further, setting the gradient of
the objective function to zero yields the following normal equations:

AtAỹ = Atc

which can be solved efficiently via QR decomposition.

We now specify different objective functions which compute the desired de-
formations when minimized. In addition, they are linear in x̃1, . . . , x̃n (c.f.
[Sumner & Popović ’04]) which dramatically reduces the running time when
computing the large number of deformations for the registration of scan se-
quences.
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Correspondence Constraints

The correspondences determined in Section 2.2 between Ms and Mt define
how the mesh Ms should deform. Once the correspondences are pruned, a
subset of h ≤ n vertices xi from Ms have corresponding points ci which repre-
sent the displacements for xi. We note that the ci are not restricted on the mesh
Mt as it is the case for boundaries. The objective function is given by:

EC(x1, . . . , xn; c1, . . . , ch) =
h

∑
i=1
‖xi − ci‖2 .

Minimizing this equation forces the corresponding points to be as close as pos-
sible when performing the deformation ϕ.

Deformation Smoothness Constraints

The assumptions made in Section 1.2 impose the deformations of our object
to be smooth in space and time. Thus, the deformations of adjacent triangles
should be similar and the deformation itself must be small between two frames.
The deformation smoothness constraint in space is given by:

ES(x1, . . . , xn) =
m

∑
j=1

∑
k∈Nt(j)

‖Aj − Ak‖2
F

with Nt(j) the indices of triangles adjacent of the triangle of index j. In partic-
ular, this term aims at optimizing the smoothness of the change in deformation
and not keeping the surface itself smooth. For instance, a global rigid motion of
an arbitrary shape would minimize this objective function since the deforma-
tions of all triangles are identical.

Similarly the smoothness term in time is defined as:

EI(x1, . . . , xn) =
m

∑
j=1
‖Aj − I‖2 ,

which is minimized when all non-translational terms are as close to the iden-
tity matrix as possible. We note that this objective function prevents the spatial
smoothness term from generating extreme deformations since ES tries to opti-
mize the change in shape of adjacent triangles.
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Deformation via Optimization

Combining the correspondence and deformation smoothness constraints EC,
ES, and EI, we obtain the following minimization problem for computing the
optimal deformed vertices:

min
x̃1,...,x̃n

Etot(x1, . . . , xn; c1, . . . , ch) (2.7)

with

Etot = wSES + wIEI + wCEC

and scalar weights wS, wI, and wC. Etot is a linear combination of objective
functions that are linear in x̃1, . . . , x̃n and is therefore again linear in the de-
formed vertices. Similar to the research conducted in [Sumner & Popović ’04,
Allen et al. ’03], the weights control the deformation behaviors when iterated
deformations are employed for matching shapes. For instance, when Ms and
Mt are initially further apart, we can assume a rigid motion component to be
present in the general deformation ϕ. Therefore, setting a higher value for wS
at the beginning of the iterations would make the deformation as global as pos-
sible, reducing rigid motion components from the overall transformation. After
a certain number of iterations (correspondence computation and deformation),
when Ms has moved closer Mt, we increase wC and decrease wS to better
approximate the target mesh.

In order to minimize accumulation errors, ϕ(Ms) is recomputed from the orig-
inal undeformed shape Ms after each optimization step of Equation 2.7.

In analogy to registration of rigid shapes, fractional transformations can also be
considered, as mentioned in [Mitra et al. ’04]. More precisely, it makes sense
to take smaller steps in the direction of the transformation for each iteration.
This is because the correspondence and deformation computations are based
on approximants that are only valid locally and no explicit assumption except
closeness is made about the initial alignments of the source and target mesh.
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Chapter 3

Preliminary Results

The primary concern of this preliminary work is to examine the proposed gen-
eral registration framework presented in Section 2.1 by solving individual sub-
problems using simple and well-established techniques.

In order to stretch the limits on what can be achieved, we use methods that
make weaker assumptions about the input data than those presented in Section
1.2. For instance correspondence and pruning are achieved simply by using
positional information of surface points. No higher order local description of
the shape is ever used. Another example is that our deformation model does
not enforce isometry. Therefore, the scan of a certain frame can take any shape
when a sufficiently large number of deformations is applied to it.

The objective here is to analyze the main issues arising from the proposed
methodology, which are exposed in Section 3.1. Implications of the experimen-
tal results are discussed in more detail in Section 3.2. All experiments were
performed on a 2.16 GHz Intel Core 2 Duo with 2 GB RAM.

3.1 Experiments

The evaluation of our experimental results is based on synthetic data as well
as on real scans acquired by a recently developed high speed structured light
scanner (c.f. [Weise et al. ’07]). This section will examine the case with triv-
ial shapes undergoing simple transformations and more complex ones such as
an animated cloth. Finally, an example of real scan data undergoing complex
deformations is presented where the analysis of the performance of our algo-
rithm w.r.t. stability, tolerance of noise, and outliers will play a substantial role.
Equally important, the robustness of the algorithm against ineptly chosen input
parameters has to be considered as well.

27
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While most of the algorithms presented in Chapter 2 have parameters that can
be determined automatically with simple heuristics (e.g. pruning threshold,
deformation weights, etc. . . ), we choose to adjust them manually at this stage
of research. The main reason for this is that the performance of the interplay of
the individual algorithms are not yet fully understood.

Note that the evaluation of the overall quality of registration methods for rigid
objects is usually done by analysing the convergence rate. For the non-rigid
case, this is difficult to perform, since, for real data, no correspondence infor-
mation except estimations is known in advance. For synthetic data however,
correspondence can be obtained simply by using the parametrization of a com-
plete 3-D model and acquiring virtual depth maps. Nevertheless, one possi-
ble way to examine convergence for real scan data is to use manually selected
point-correspondences, which will be fruitful to examine in future work.

Simple Motions and Deformations

Our first experiment is the registration of a plane undergoing a simple curved
motion as shown in Figure 3.1 (a). In addition, the plane is continously bent
as it moves along the motion path. This example has no particular semantic
purpose on shape completion of a 3-D model. Instead, it is a simple test to see
if the proposed registration scheme behaves as expected for a near-ideal case.

The model has 800 faces and 441 vertices and the input sequence is generated by
linear interpolating between a source plane and its deformed target model. In
particular, mesh connectivity is preserved during motion and the median edge
length is approximately equal to 5 (we use it as a density estimation for our
uniformly sampled meshes). We then sample uniformly in time twelve frames
as illustrated in Figure 3.1 (b) to obtain the meshes M1 . . .M12. Accumulating
all scans in the same coordinate system as in Figure 3.1 b clarifies the spatial
inconsistency when no registration is performed.

We then apply a different number of iterations of the registration algorithm in-
troduced in Equation 2.2. Note that it would be more reliable to use Equation
2.4 although the computation would be more involved. As anticipated, a longer
curved surface is obtained for Mtot after 11 iterations as shown in Figure 3.1
f. Intermediate results are visualized in the Figures 3.1 (c), (d), and (e) for 3, 5,
and 7 iterations, respectively. In particular, we perform for each iteration four
registration refinements, i.e. four explicit correspondence, pruning, and defor-
mation steps. For an aggressive pruning we set σ = 0.1 instead of estimating
the sampling density. To keep the deformation of each step as smooth as possi-
ble, we choose wS = 1000, wI = 1, and wC = 1. Since the correspondences are
recomputed in each step, the source scan better adapts itself to the geometry of
the target scan as with fractional transformations often an integral part of rigid
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ICP (c.f. [Mitra et al. ’04]). When the four refinement steps are performed, each
pair of consecutive scans are eventually aligned.

In this example, no particular issues are observed and the registration behaves
as expected. Moreover, for this simple case, the proposed framework is robust
against inadequately chosen input parameters.

(a) (b)

(c) (d)

(e) (f)

t

M1

M12

M1 . . .M12

M(8)
1 . . .M12

M(6)
1 . . .M12M(4)

1 . . .M12

M(12)
1 . . .M12

Figure 3.1: Data set of a plane undergoing simple motion and deformation.
This example examines our approach for a near-ideal case.
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Complex Isometric Deformations

We now look at an example where a quadrangular cloth is deformed by letting
it fall onto an invisible sphere. The aim here is to examine how well the regis-
tration works on surfaces that undergo large and complex deformations while
being isometric and having a low stiffness factor. Because the deformation pre-
serves isometry between edge vertices, a one-to-one point correspondence is
explicitly given by the mesh vertices. Ideally, after all iterations of the regis-
tration process, the scans from all frames should perfectly match the last one.
A deviation from the last scan indicates accumulated inaccuracies of our ap-
proach.

A sequence of 20 triangle meshes with each 1024 vertices and 1922
faces is generated with a recent cloth simulation technique described in
[Goldenthal et al. ’07]. Each frame of the sequence is shown in Figure 3.2 (a).
Figure 3.2 (b) displays all frames within a single coordinate system.

We then perform 19 iterations of the registration using the same parameters
as the previous experiment from Figure 3.1 except that for the deformation
smoothness constraint we set wS = 500. Figure 3.2 (c) shows the resulting

frames M(20)
1 . . .M20 simultaneously. Similarly, Figure 3.2 (d), (e), and (f) vi-

sualize the frame sequences M(12)
4 . . .M20, M(20)

7 . . .M20, and M(20)
10 . . .M20,

respectively. In particular, the set of scans shown in Figure 3.2 (f) is a subset of
scans from (e), which itself is a subset of (d) and so on.

This example clarifies the main problem of our approach. In fact, for frames
that are close to the target time instance which is 20, in this case the last 10
frames, a reasonable registration can be obtained. However, the further we dis-
sociate in time from the target scan, the less accurate and robust our registration
becomes. Therefore only a portion of the frame sequence can be registered cor-
rectly, namely those around the target frame.

Figure 3.2 (g) compares the wireframes between the meshes M(20)
6 and M20

and (h) between M(20)
15 and M20.

We clearly observe that the deformation in Figure 3.2 (g) becomes unstable at
some point. This is mainly due to the dominating constrain of the smoothness
term in space ES over the smoothness term in time EI as discussed in Section 2.3.
Consequently the surface become stretched and the edges at the mesh boudary
become longer.

Note that we decreased the influence of the spatial smoothness term ES as we
found out that the registration did not manage to align well the corresponding
regions with the previous parameter.
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t

(a)

(b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2: Data set of a cloth falling onto an invisible sphere. This example
examines our registration technique for the case of complex but isometric
deformations.
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Real Input Scans

Unless explicitly mentioned, all examples with real scan data in this report are
acquisitions captured using a real-time 3-D scanner based on structured light
[Weise et al. ’07]. The system uses a standard DLP projector and two high speed
cameras with a resolution of 640 × 480 pixels. The acquisition method uses
a phase-shift pattern and GPU based accelerated processing for solving corre-
spondences of the optical triangulation. Phase discontinuity is overcome using
data acquired simulaneously from the two cameras and a motion compensation
technique reduces artifacts due to fast motion in the depth direction. The over-
all shape acquisition rate is between 13 and 15 fps depending on the complexity
of the scene. A working space of approximately 1 cubic meter is possible.

Comparing to synthetic input data, the main difference of using real scan data is
that artifacts due to hardware limitations are introduced and usually the shape
and deformations of the scanned object are more complex (c.f. Section 1.2).
Since our ultimate goal is to perform registration of arbitrary scans captured
from the real world, we will attempt to explore the performance of our approach
on the acquisition of a grasping hand, shown in Figure 3.3 (a). Each captured
mesh contains approximately 30 K vertices and 60 K faces and the mesh con-
nectivity varies for each frame. The hand is a non-trivial example, as it exposes
different types of deformations simultaneously. For instance, the movement of
the fingers represents a mixture of articulated and non-rigid deformation. This
is clarified in Figure 3.3 (b) where again we gather all frames into a same co-
ordinate system. Moreover, the amount of rigidness also varies for different
locations of the object’s surface.

Using the same input parameters as for the first example described in Figure 3.1
except for a stronger influence of the deformation smoothness term ES = 10000,
we perform 9 iterations of the registration and obtain a very biased result as il-
lustrated in Figure 3.3 (c). However, if we only compute the registration for
the last four scans, as shown in Figure 3.3 (d), a reasonable result can be pro-
duced, as demonstrated in Figure 3.3 (e). Similar to the animated cloth example
in Figure 3.2, our proposed approach is only reliable for frames close to the tar-
get ones. Again, the hypothesis is that the method seems to be mainly limited
by the accumulation of errors in each iteration. In addition, we note that no
registration with integrated scans as presented in Section 2.1 is performed in
this example. As a consequence, many corresponding regions do not perfectly
align.

An interesting visualization of the deformation behavior is shown in Figure 3.3
(f) where the scans M(1)

1 ,M(5)
1 ,M(10)

1 track the progress of deformation of the
first acquired scan. Figure 3.3 (g) shows the same visualization for the scans
M(6)

6 ,M(8)
6 ,M(10)

6 originally acquired at time 6. We see that the shape nicely
wraps itself around the shape of the target scan M10.
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Furthermore, Figure 3.3 (2) (a), (b), (c), and (d) show an incremental visualiza-
tion of the individual scans from Figure 3.3 (c) added one after the other.

3.2 Caveats and Implications

Different scenarios of input data were examined using our registration frame-
work. Our experiments showed that even for rudimentary methods for solving
the pairwise correspondence and deformation problems, good results could be
produced for frames that are close in time with the target frame. This also
means that for small deformations for the scanned object, correspondences
based solely on positional informations and general deformation algorithms are
relatively well suited. However, for objects that undergo larger deformations,
the registration approach becomes unstable and results in unaligned scans, mis-
alignments and drastic deformations. We will see next that the cause of these
issues are all related to each other.

Unaligned Regions

A plausible cause for unaligned scans is that we did not use integrated scan
registrations as introduced in Section 2.1 for our experiments. Another source
for unaligned regions is produced by using global weights for the deforma-
tion smoothness, i.e. wS and wI, throughout the registration process. As an
increased influence of wS and wI makes the pairwise refinement behave like a
fractional transformation, the alignment of shape regions that are too far away
might not be complete.

We draw from this observation that an incorporation of integrated scan regis-
tration is necessary in order to avoid unaligned regions. In particular, a careful
design is advised since the correspondence between non-consecutive scans is
even more sensitive to error accumulation. Also, an automatic and more adap-
tive estimation of the deformation parameters is likely to reduce unaligned re-
gions. In particular, scans that are closer in shape and position should be less
constrained by ES and EI.

Misalignments

We refer to misalignments as matched regions that are differing from the correct
corresponding region after the registration. For consecutive scans, correspon-
dence estimations using our non-rigid ICP-based refinement have proven to be
relatively reliable, but still imperfect. Hence, an accumulation of small errors
results in inconsistent alignments after multiple iterations of the registration.
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As opposed to global rigid registration (c.f. [Gelfand et al. ’05, Pulli ’99]), solv-
ing our problem exclusively with local optimizations is hard since we do not
yet possess a clear formulation of an overall error minimization term toward
which the algorithm should converge. Moreover, non-rigid deformations are
inherently sensitive to incorrect correspondence estimations, which again is not
the case for rigid registrations.

At this point, an immediate remedy to this problem seems to be improving the
correspondence and pruning stage with more sophisticated local shape match-
ing methods that locally approximate the surface at higher orders. Also, from
the temporal coherence assumption between scans that are close in time, we
could consider multiple frames in proximity for performing a single registra-
tion iteration instead of just a pair of consecutive scans. And since our input
scans are affected by noise, perhaps it makes sense to use a target scan for cor-
respondence that is represented at a coarser level (e.g. via smoothing).

In addition, adding more restrictions into the deformation model would in-
crease robustness to accumulated correspondence errors from the registration
refinement. As mentioned previously, registration using near-isometric defor-
mations were not investigated in this report. Although an isometric deforma-
tion would prevent the shapes from bloating as illustrated in Figure 3.3 (c), un-
desired creases as known for cloth simulation techniques might appear. Thus,
the behavior of a more appropriate and efficient deformation model that in-
cludes the assumptions presented in Section 1.2 remains to be investigated.

Another question to answer is under what circumstances each deformation step
should be computed from its original shape. This has been briefly addressed at
the end of Section 2.3, but has not yet been incorporated into the implementa-
tion for our experiments.

Uncontrolled Drastic Deformations

Drastic deformations were often observed in our experiments (c.f. Figure 3.2 (c),
(d), (e), and 3.3 (c)). As seen previously, the main reason for this improper be-
havior is due to the dominating weights of the spatial smoothness term ES over
the temporal one EI. However, keeping deformation stability under control us-
ing this deformation model is difficult since our parameters should be valid
globally throughout the registration process for a fully automatic approach.

Other than using a more restrictive deformation model, one possibility would
be to integrate a trial an error mechanism which locally increases the temporal
deformation term when a drastic deformation is being detected.
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(a)

(b)

(f) (g)

(c)

(d) (e)

Figure 3.3: Data set of grasping hand acquired using a high-speed struc-
tured light scanner. This example examines our method for the case of real
input data which undergoes complex deformations and is significantly af-
fected by noise, outliers, and acquisition holes.
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(a) (b)

(c) (d)

Figure 3.4: Incremental visualization of the individual scans of a compara-
tively successful registration from Figure 3.3 (c).



Chapter 4

Summary and Outlook

4.1 Research Status

This report provides an analysis of the registration problem from scans of de-
formable objects captured with a high-speed 3-D scanner. A detailed compar-
ison to other types of scan registration algorithms allowed us to clarify the as-
sumptions to make in our specific setting. Also, it helped us determine well-
established techniques upon which our algorithms were built.

The registration scheme for time coherent and deforming scans proposed herein
represents a general framework for obtaining the complete object at an arbitrary
instance in time. In this work, the focus is to obtain the registration for the time
instance of the last acquisition. The method has two iteration loops. The outer
loop propagates each scan to the next time instance and the inner loop performs
a non-rigid ICP method decoupling the correspondence and the deformation
problem.

Both sub-problems were addressed using a general approache where not all
assumptions mentioned in Section 1.2 were taken into consideration. In the
correspondence stage, we only examined the closest point method and our de-
formation model is mainly dictated by smoothness constraints about the object.
Also, the pruning of correspondences is currently only based on positional in-
formation.

Consequently, the resulting registration is only able to perform adequately for
near-ideal input data and scans undergoing complex deformations as long as
the amount of deformation is small. As expected, our method breaks down for
large scale deformations since it does not fully adhere to our imposed assump-
tions. The main sources of errors and their implications were discussed in detail
in Section 3.2, where different strategies for improvement were presented.

37
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One issue that has not been discussed so far, is the cost of the overall computa-
tion. There are two main bottlenecks in our approach: the corresponding point
computation and the deformation which requires solving a sparse linear sys-
tem. Although for a pair of scans, the computation time is still reasonable (in
the order of several seconds on a modern PC for complex scans), our problem
consists of computing multiple registration refinements which again consist of
multiple deformations. Furthermore, it is evident that the registration problem
we are facing deals with a large amount of high-resolution input scans. Never-
theless, the issue of efficiency will not be handled as a primary objective in this
work as we strive to obtain high-quality 3-D reconstructions.

4.2 Future Directions

Putting the implications discussed in Section 3.2 into perspective, our prelimi-
nary work opens up a whole new line of focus:

• Accurate Correspondence:

For the correspondence step in the pairwise refinement, we did not exam-
ine the performance of tangent plane projections in our experiments. Since
it has been proven to converge faster than the closest point approach for
rigid ICP, it might behave similarly for the non-rigid case. Depending on
the initial alignments of a pair of scans, the corresponding point might not
be located on the target surface point. For this, we might define a termi-
nation criterion that consist of repeating the refinement until the distance
of all corresponding points that are initially close converge to zero.

Another option for improving correspondence is to consider higher order
shape descriptions. For instance normal information or even local cur-
vature approximations can be taken into account in addition to just posi-
tional information. An even rougher method would consist of fragment-
ing a source scan into multiple large patches and rigidly matching each
one to the target scan. The displacements of all vertices will then form
the pairwise point-to-point correspondences. This way, correspondence
would be more attuned to local shape matching based on rigid regions of
articulated deformations.

• Robust Deformation:

As our experiments confirm, the accumulation of many negligible errors
introduced in the individual refinement iterations can cause drastic errors
in the resulting registration. They are manifested in disfigured meshes
where the edge lengths are likely to change considerably as soon as a cer-
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tain number of iterations is attained. We see two immediate possible so-
lutions.

Since the deformation in each iteration is computed from a deformed
shape, except for the first iteration, the initial steady state of each acquired
scan becomes unrecoverable. One possibility here is to design the regis-
tration scheme such that all deformations are computed from the scan’s
initial shape.

Although this might reduce the amount of accumulated errors, more ad-
vanced deformation models that impose stronger restrictions about the
behavior of the scanned surface would be more robust. As mentioned
earlier, near-isometric deformations might be the next step to explore.

• Learning Deformation Models:

So far, our registration method is based on prior assumptions about the
deformation model. Consequently, it might not be suitable for the scanned
object in question. One solution would be to estimate the parameters of a
general deformation model from partial observations of the scene geom-
etry. This also means that additional unknown variables would have to
be determined in the optimization routine, which makes the registration
problem even more difficult.

However, first steps toward learning deformations from acquisition
data have already been proposed recently (c.f. [Allen et al. ’06],
anguelov05scape). In particular, they require a template 3-D model of a
complete object.

• Registration of Articulated Scans:

Another type of data we did not examine in our experiments is articu-
lated objects with rigid components. This represents a specific subtype
of our general registration problem. As opposed to the hand example,
the transformation is restricted to multiple rigid motions each belonging
to a specific surface region. If we want to keep our general deformation
procedure, we could find a way to infer rigid motions and use them for
the correspondence. In some way, this is a simplified method for learning
deformation models. Techniques for extracting rigidness are studied in re-
search on skinning mesh animations (c.f. [James & Twigg ’05]) and partial
and approximate symmetry detection (c.f. [Mitra et al. ’06]).

• Multi-view Registration:

In this work, we focussed on the registration of dynamic objects from a
single range sensor for which the working space is approximately 1 cu-
bic meter. When the scanned object is too large (e.g. a human body) so
that an important region cannot be seen at all for a significant amount of
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capturing period, there would be no way to know what shape this non-
acquired region would have during this period. The problem is therefore
underdetermined in the general case.

One avenue to make sure most regions are covered during the acquisition
would be to combine multiple range scanners acquiring a dynamic object
from different perspectives simutaneously. As a result, this might form the
beginning of a new registration problem consisting of combining multiple
scan sequences that are sparsely distributed in space, but each of them
sampling the scene densely in space and time.
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