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Fig. 1. We introduce a deep learning framework to normalize faces in unconstrained portraits w.r.t. perspective distortion, illumination, expression and pose. In
addition to enhanced portrait manipulation capabilities, we can also generate more accurate and visually pleasing virtual 3D avatars. Original image courtesy
of Bengt Nyman (top) and watchsmart/flickr (bottom).

From angling smiles to duck faces, all kinds of facial expressions can be
seen in selfies, portraits, and Internet pictures. These photos are taken from
various camera types, and under a vast range of angles and lighting con-
ditions. We present a deep learning framework that can fully normalize
unconstrained face images, i.e., remove perspective distortions, relight to an
evenly lit environment, and predict a frontal and neutral face. Our method
can produce a high resolution image while preserving important facial de-
tails and the likeness of the subject, along with the original background.
We divide this ill-posed problem into three consecutive normalization steps,
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each using a different generative adversarial network that acts as an image
generator. Perspective distortion removal is performed using a dense flow
field predictor. A uniformly illuminated face is obtained using a lighting
translation network, and the facial expression is neutralized using a gener-
alized facial expression synthesis framework combined with a regression
network based on deep features for facial recognition. We introduce new
data representations for conditional inference, as well as training methods
for supervised learning to ensure that different expressions of the same
person can yield to not only a plausible but also a similar neutral face. We
demonstrate our results on a wide range of challenging images collected in
the wild. Key applications of our method range from robust image-based
3D avatar creation, portrait manipulation, to facial enhancement and recon-
struction tasks for crime investigation. We also found through an extensive
user study, that our normalization results can be hardly distinguished from
ground truth ones if the person is not familiar.

CCS Concepts: •Computingmethodologies→ Computer graphics; Image
manipulation.

Additional Key Words and Phrases: Virtual Avatar, Texture Synthesis, Deep
Learning, Generative Adversarial Network, Image Processing.
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1 INTRODUCTION
A picture of a person’s frontal face with blank expressions, captured
in an evenly lit environment, and free from perspective distortion,
is not only ideal for facial recognition, but also extremely useful
for a wide range of graphics applications, ranging from portrait
manipulation to image-based 3D avatar digitization. While billions
of portraits and selfies are shared over the Internet, people tend
to smile and express their emotions in front of the camera. Pic-
tures are mostly taken under a vast range of challenging lighting
conditions, and selfies generally cause noticeable facial distortions
such as enlarged noses. In the context of counter-terrorism and law
enforcement, images of suspects [Federal Bureau of Investigation
2019] are often limited and highly deteriorated.

Various solutions for image-based relighting and facial alterations
exist, but they typically require accurate prior knowledge about the
person’s face or any available scene parameters. These algorithms
work best if the faces are neutral and captured under well condi-
tioned scene illuminations. Advanced camera effects for facial ex-
pression manipulation [Averbuch-Elor et al. 2017] are also difficult
to apply on these unconstrained photos, since a neutral expression
is often needed that is free from deformations. Furthermore, the
ability to perform proper relighting on images with harsh illumi-
nations is nearly impossible. In particular, when images with very
different focal settings are used, 3D avatar creation apps (e.g., Pin-
screen [2019], Loom.ai [2019], itSeez3D [2019]) tend to produce very
different looking characters [Hu et al. 2017a; Nagano et al. 2018].
We introduce a deep learning-based framework, that can fully

normalize a portrait taken in the wild into a canonical passport
photo-like setting with a blank facial expression. While end-to-
end face normalization systems exist [Cole et al. 2017], they can
only produce low resolution images, which are not suitable for
high-fidelity image-based 3D avatar creation or high-resolution
portrait manipulation. Furthermore, individual normalization tasks
for distortion, lighting, pose, and expressions are not possible. We
propose a technique that does not have these limitations.

From an unconstrained picture, our method sequentially removes
perspective distortion, re-illuminates the scene with an evenly lit dif-
fuse illumination with proper exposure, and neutralizes the person’s
expression. For mild head rotations, our algorithm can successfully
infer a frontal face with its nearby body and hair deformations.
We first normalize a perspective distorted image into a near or-
thographic projection by predicting a dense flow image based on
a variant of [Zhao et al. 2019], followed by a global warp, and in-
painting operation. Next, we fit a 3D face model to the undistorted
image and use this 3D geometry as a proxy to extract auxiliary
information such as the spherical harmonics (SH) coefficients of
the lighting, rigid pose parameters, and UV texture. Using the input
picture and the estimated scene illumination, we use a generative
adversarial network [Isola et al. 2017] to synthesize a high-quality
image of a face lit under even lighting such that the true skin tone

is reflected. We introduce an offset-based lighting representation
in order to preserve high-frequency details such as facial hair and
skin textures. The final step consists of frontalizing the face and
neutralizing the facial expression. The resulting face must not only
be plausible and faithful to the person’s identity, but a consistent
neutral face must be predicted from a wide range of expressions.
While photorealistic facial expression synthesis networks have been
introduced recently, they are only designed to produce expressions
from a neutral face and cannot neutralize from arbitrary expressions.
In particular, unwanted dynamic wrinkles caused generally persist
after a neutralization attempt.

We propose to learn the mapping from a range of expressions to
a single neutral one. We first decompose the problem into a task for
facial geometry neutralization and one for texture neutralization.
To predict a neutralized face geometry, we train a regressor that
can infer identity parameters of a 3D morphable face model using
deep features for facial recognition. Once the neutralized geometry
is obtained, we generate a neutralized face texture using this as
a condition. We then train a generalized version of the recently
introduced photoreal avatar generative adversarial network (pa-
GAN) [Nagano et al. 2018] using both, expression-to-neutral and
neutral-to-expression data sets. Before inference, we adopt a similar
data representation as paGAN using a combination of depth and
normal maps, and incorporate a new technique that can inpaint
occluded regions using symmetry-aware facial textures.

To facilitate the supervised learning, we also introduce a number
of data augmentation techniques to generate synthetic faces, expres-
sions, illumination, and perspective distortion variations for our
normalization tasks. In particular, we simulate distortions using a
variant of [Fried et al. 2016] and produce lighting variations based on
a custom skin shader with soft shadows based on directional light-
ing, as well as additional image processing and grading operations.
For facial expression neutralization, we use a recently proposed
StyleGAN network to generate synthetic faces to augment identity
variations and to train a generalized paGAN, we create renderings
of synthetic faces by blending facial geometry with a UV texture,
and use a pre-trained paGAN for expression synthesis.

We demonstrate the effectiveness of our method on a vast collec-
tion of pictures with varying expressions and lighting conditions.
We can even show how different facial expressions of a same person
can produce plausible and very similar neutral faces. Our user study
shows that people who are not familiar with the input person, have
difficulties distinguishing synthesized portraits from ground truth
ones. In addition to an extensive set of evaluations and comparisons,
we also showcase applications such as portrait manipulation, nor-
malized face reconstruction, image-based 3D avatar creation, and
improved 3D facial animation. We make the following contributions:

• We propose the first framework that can fully normalize focal
length, lighting, facial expressions, and mild poses from a sin-
gle unconstrained portrait, while preserving high-resolution
facial details, the likeness of the person, as well as the original
background.

• We introduce a highly effective facial expression neutraliza-
tion technique, that can ensure a consistent mapping from a
range of expressions to a single one. The method combines
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a 3D neutral face regressor based on deep features for facial
recognition and a generalized paGAN synthesis model.

• We present novel GANs with custom data representations
for conditional inference that can preserve facial appearance
details that are person specific, under varying lighting condi-
tions, challenging facial expressions, and poses.

• We propose new techniques for augmenting the training data
with synthetic faces, expressions, lighting, shading, and 3D
facial perspective distortions for effective supervised training.

2 RELATED WORK
Lens distortion control, relighting, and facial expression manipu-
lation have been extensively investigated as separate problems in
the graphics and vision community. One can argue that estimat-
ing parameters for each of these tasks using existing methods can
be used to undo these transformations in order to normalize an
unconstrained portrait picture. Even if accurate scene and face pa-
rameters are recoverable, the ability to synthesize a plausible and
photorealistic output is still challenging due to the complexity of
facial deformations and appearance changes under intricate scene
captures. Furthermore, the combination of these problems increase
the difficulty of a proper disentanglement. For instance, a harsh
lighting condition or perspective-distorted face can significantly
deteriorate the ability to restore its neutral face from one with a
smile. We will review the most relevant prior work for these three
problems as well as recently proposed end-to-end approaches based
on deep neural network feature inversion.

Perspective Distortion. As described in [Ward et al. 2018], facial
shots from various distances, can cause distortive effects on the face
and have a significant impact on the perceived nasal size. To this
end, both, methods for estimating the camera-subject distance from
a face photograph have been introduced, as well as algorithms for
manipulating those as a post-effect. [Flores et al. 2013] are the first
to propose a computational approach that can recover the camera
distance from a face using an efficient Perspective-n-Point algorithm.
The method relies on manual placements of facial landmarks. A
fully automated approach for frontal faces was later introduced by
[Burgos-Artizzu et al. 2014], which uses custom facial landmarks
detected using a cascaded regression technique followed by a multi-
variate linear regressor for camera-subject distance estimation. Even
if an accurate distance estimation is possible, we are interested in a
way of undistorting the perspective of a given image.

[Bas and Smith 2018] recently presented a single-view 3D face
modeling approach that can handle ambiguities with 2D constraints
for both orthographic and perspective projections. In particular, if
the camera-subject distance is known, a more accurate face shape
can be estimated than without priors. While combining this model-
ing method with a reliable camera distance estimator could facilitate
our task for face normalization, our approach consists of directly
removing the perspective distortion in the input image using a deep
neural network. A direct manipulation of perspective distortions
on a portrait was introduced by [Fried et al. 2016]. Their technique
relies on a successful 3D face model fitting, followed by a dense
image warp, which is driven by the rendering of the facial distortion
under varying camera-subject distances. If an initial camera distance

cannot be provided and the input image exhibits significant distor-
tion, the fitting of the 3D face model would fail, and a successful
undistortion would not be possible as shown in [Zhao et al. 2019].
While we also predict a dense undistortion flow field for our output
image, our proposed technique does not rely on fitting a 3D face
model, and can therefore undistort an input picture without known
camera distance parameters. Perspective distortion on wide-angle
selfies has been explored by [Shih et al. 2019]. While their method
can correct severe distortion caused by the wide field-of-view, their
work does not address the effect of perspective distortion caused by
subject distance.

Facial Relighting. Face relighting on photographs has been ex-
plored widely in the context of face recognition, which was first
documented in [Adini et al. 1997]. A generative appearance-based
technique for improved face recognition under different illumina-
tions was later introduced in [Georghiades et al. 2001], where they
successfully demonstrate renderings of input faces in novel lighting
conditions using a sparse set of input images captured in a controlled
setting. [Shashua and Riklin-Raviv 2001] employed a reference im-
age with novel lighting condition to transfer its face illumination
to an input picture using a ratio image-based formulation for face
relighting. [Liu et al. 2001] extended this approach to handle fa-
cial expressions under illumination changes. Ratio image-based
techniques have also been adopted to relight faces using radiance
environment maps when the reference face shares the same albedo
as the input one. Plausible delighting operations from a single input
picture were demonstrated in the work of [Wang et al. 2009], in
which a morphable face model is used in combination with spherical
harmonics that model the illumination changes. While their method
can handle extreme lighting conditions, the method only supports
neutral expressions and facial details are lost since it is based on a
linear face model and Lambertian shading under distant lighting.
A technique for transferring local contrasts and overall lighting

directions from one portrait to another was introduced by [Shih
et al. 2014]. While dramatic style transfers were shown, the method
requires both input and reference pictures to have accurate 3D face
models with compatible appearance attributes. In particular, beards
and skin color have to look similar in order to work properly, as the
algorithm would otherwise generate visible artifacts. A formulation
that does not require an accurate modeling of the face was presented
by [Shu et al. 2017] which solves a mass-transport problem to gen-
erate color remapping for more robust geometry-aware relighting.
Both approaches are not suitable for delighting tasks since they
cannot remove dark shadows, and brightening these regions would
lead to significant artifacts. Further, unwanted facial details may
carry over to the synthesized result.
For general photographs, [Barron 2015] introduced a highly ef-

fective approach that can auto white balance images with harsh
lighting conditions. His convolutional color consistency method
works by reformulating the problem as a 2D spatial localization task
in a log-chrominance space using techniques from object detection
and structure prediction. An improved approach using a network
that can process patches with different confidence weights for color
consistency estimation was later proposed by [Hu et al. 2017b].
While both approaches focus on removing illumination color casts
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Fig. 2. System Overview. Given an unconstrained portrait, we remove the perspective distortion, predict an evenly lit face, reconstruct the neutralized geometry and facial texture,
and combine all these output to generate a neutralized portrait. Original image is courtesy of Sterre Van Den Berge.

in images, they are not solving the lighting normalization problem
in faces, and unwanted shadings can still remain. More recently [Sun
et al. 2019] proposed a single image portrait relighting approach
using a deep neural network. While their method addresses more
general portrait relighting, the method requires a complex capture
setup and is difficult to capture a large number of subjects for the
model to be generalized.

Widely adopted facial appearance modeling techniques, such as
morphable face models [Blanz and Vetter 1999] are linear and of-
ten adopt a simple Phong and Lambertian reflectance model for
lighting estimation. Since the facial appearance cannot model high-
frequency details and textures such as facial hair, relighting a face
in unconstrained images can yield visible artifacts and unpleasant
shadings. Despite the recent efforts in improving the separation
and estimation of shape, reflectance, and illuminations in faces, it
remains difficult to render and composite these faces on existing pho-
tographs without appearing uncanny. These intrinsic decomposition
techniques include methods that use statistical reflectance priors [Li
et al. 2014] as well as deep convolutional neural networks [Kim et al.
2018; Sengupta et al. 2018; Yamaguchi et al. 2018]. Our method first
estimates the lighting condition using spherical harmonics, then
uses an illumination-conditioned generative adversarial network to
synthesize a face with normalized lighting conditions.

Facial Poses and Expressions. Morphable face models [Blanz and
Vetter 1999] and many of their extensions with facial expressions,
such as [Cao et al. 2014; Hu et al. 2017a; Thies et al. 2016] have
enabled the modeling of fully textured 3D faces from a single input
image. Frontalizing the face on a portrait can be achieved through
smooth warp between the face region and the background as shown
in [Cao et al. 2014] and [Averbuch-Elor et al. 2017]. For mild head
rotations, the results are typically acceptable since facial textures
only need to be generated in small occluded regions, while keeping
background distortions minimal. [Hassner et al. 2015] shows that a
simpler approach can be achieved by using a single 3D surface as
opposed to a full 3D facemodel as approximation in order to improve
face recognition capabilities. More recently, Huang et al. introduced
TP-GAN [Huang et al. 2017], which can synthesize frontal views
from extreme side views, using a generative adversarial network
that takes advantage of symmetry and identity information. And
extension of this work was presented by [Hu et al. 2018a] which

can also synthesize arbitrary views. While we also adopt a GAN-
based approach for frontalizing faces, we condition our generator
to a dense 3D face geometry similar to [Nagano et al. 2018] which
allows us to preserve high-resolution details.
Expressions can be neutralized by setting coefficients of a fitted

linear facial expressionmodel to zero [Cao et al. 2014; Hu et al. 2017a;
Thies et al. 2016]. [Genova et al. 2018] propose a deep learning based
approach that directly regresses morphable model parameters of
neutral expressions from deep facial recognition features. However,
if the appearance of a linear model is used, high-frequency facial
details that are specific to the user will be lost. If we only deform
the geometry of the input textures to the neutralized expression,
unwanted dynamic wrinkles will persist. The deep learning-based
photorealistic facial texture synthesis method of [Saito et al. 2017]
could achieve more detailed results, but the generated textures may
notmatch the original input, since they hallucinate plausible, instead
of matching high-frequency details. Recently, several methods on
synthesizing photorealistic facial expressions from photos have been
introduced such as StarGAN [Choi et al. 2018], G2-GAN [Song et al.
2017], wg-GAN [Geng et al. 2018] and paGAN [Nagano et al. 2018].
Not only do most of these techniques require a successful initial
face fitting, but they cannot ensure a plausible or consistent neutral
face to be generated from a range of expressions.

Deep Neural Network Feature Inversion. The first deep learning
framework that demonstrates face normalization capabilities was
proposed by [Zhmoginov and Sandler 2016] in which they intro-
duce an iterative and feed-forward technique for inverting a face
recognition embedding which can be used to recover a frontal and
neutral face of a person. While the likeness of the input subject
is recognizable, the results are very blurry and noisy. An elegant
end-to-end approach for full face normalization was recently pro-
posed by [Cole et al. 2017], in which a frontal and neutralized facial
expression is synthesized using facial identity features obtained
from a facial recognition framework. The deep generative approach
is extremely robust and successfully preserves the likeness of the
input subject for extremely challenging scenarios. However, since it
relies on globally learned identity features from a large face data-
base, high-frequency details, such as facial hair and high-resolution
skin appearances cannot be generated and the output is prone to
noise and artifacts. Furthermore, the original background cannot be
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preserved and individual controls for distortion, lighting, and facial
expression manipulation are also not supported.

3 METHOD
Fig. 2 gives a high-level overview of our method. Due to the chal-
lenge of inferring fully normalized photos directly, we subdivide this
challenging task into smaller ones, each addressed by a conditional
generative adversarial network. These tasks consist of perspective
undistortion, lighting normalization, pose frontalization, and ex-
pression neutralization. An additional benefit of breaking down the
entire face normalization problem into sub-problems is that indi-
vidual control is possible (e.g., expression neutralization without
applying lighting normalization).

Given an unconstrained input image, we first transform its camera
perspective into a near-orthographic one by predicting a flow field
(Sec. 3.1). The flow is predicted on the face, then propagated to the
background via inpainting, similar to [Fried et al. 2016]. Once the
perspective distortion is removed, we perform 3D facial fitting to the
input image using [Thies et al. 2016] in order to extract the lighting
condition via spherical harmonics (SH) and the facial texture of the
subject (Fig. 5 and Fig. 7). Notice that the fitted 3D face model from
this stage is not used for the final 3D facial expression neutralization
due to its sensitivity to extreme poses, occlusions and illuminations.
Next, we predict an evenly lit face using a generative adversarial
network (GAN) conditioned on the estimated SH shading image
(Sec. 3.2) and use an offset representation to preserve high-frequency
details. The light-normalized facial region is then composited back
to the background using Poisson blending [Pérez et al. 2003].
A frontalized and expression neutralized 3D facial geometry is

then obtained using a deep neural network for facial neutralization
based on facial recognition features (Sec. 3.3). Finally, we synthesize
a neutralized facial texture using another GAN generator, which is
conditioned on the expression neutralized 3D facial geometry and a
neutral-deformed expression texture (Sec. 3.3). This output can be
used directly for our image-based 3D avatar digitization. However,
if we wish to obtain a face normalized portrait, we composite the
result to the background using the same warping technique used
for perspective undistortion combined with Poisson blending.

Training Data. In this paper, we use the Chicago Face Dataset
(CFD) [Ma et al. 2015] (597 subjects), the compound facial expres-
sions (CFE) dataset [Du et al. 2014] (230 subjects), the Radbound
Faces dataset [Langner et al. 2010] (67 subjects), and the Multi-PIE
database (250 subjects) [Gross et al. 2008], which consists of a total
of ∼10K photographs and a wide variations of expressions and poses.
Each stage uses a different set of data and we apply different data
augmentation and simulation techniques for each network, which
is explained in each sub-section.

3.1 Perspective Undistortion
Given a 2D input image I, we first run landmark detection [Wei et al.
2016] to obtain 2D facial landmarks L. Given I and L, our perspective
undistortion network Gf low predicts a dense 2D flow F to correct
the distortion (Fig. 4):

F = Gf low (I, L) (1)

30cm 40cm 60cm 120cm 500cm

30cm to 500cm

Fig. 3. Training data samples for perspective undistortion.

generatorgrayscale image 2D landmark undistortion flow

Fig. 4. Perspective undistortion pipeline.

We first convert the input image to grayscale and apply a facial
mask to ignore the background. To train the network, we create
dense flow fields by fitting 3D face models to input photographs
with known focal length and camera-subject distance. We then sim-
ulate perspective distortion by rendering each subject with different
camera-subject distances. As done in [Fried et al. 2016], the dense 2D
flow field is derived by rasterizing the face model, before and after
the distance manipulation given 3D mesh correspondence. Since
we learn the flow field in 2D, it is more effective if we sample the
training distance so that the 2D image space appearance changes
evenly. To quantify the changes of the 2Dwarp field, we measure the
mean 2D landmark distance between the perspective projections at
a particular distance and the orthographic projection using a mean
face of a 3D morphable face model [Blanz and Vetter 1999].

Perspective distortion is nonlinear to the camera-subject distance
and focal length. In particular, it changes rapidly when the distance
gets closer and/or the focal length becomes shorter. For this reason,
we vary the sample rate along the distance to capture more changes
in closer distances (30cm to 1.2m). In Fig. 3, we show that perspective
distortion is roughly linear if the distances are sampled evenly in the
vertical error scale (blue dots and the corresponding pictures in the
bottom row). We sample 10 discrete distances (blue and black dots)
for our synthetic training data. This procedure generates ∼100K
ground truth flow images for all subjects in the our training data.
As seen in the graph, the perspective distortion converges nearly to
an orthographic projection at 5m. We chose this as our reference
distance to warp all the input images, as if they were captured at
5m distance with a telephoto lens (approx. 350mm in 35mm camera).
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Fig. 5. Lighting normalization pipeline.

An example of synthetic flow (from 30cm to 5m) is shown on the
top right of Fig. 3.
To train the network, we employ a weighted L2 pixel loss that

measures the difference between the prediction from our U-net
based generator [Isola et al. 2017] Gf low (I, L) and ground truth
synthetic flow Fдt :

L = ⟨W,
Fдt −Gf low (I, L)

2⟩ (2)

We accumulate the squared difference per pixel using a weight map
W, which is created by rasterizing the input 2D landmark image L
(see Fig.4) to favor increased accuracy around the 2D facial features.
We apply Gaussian blurring with a kernel size K (K = 31 in our
experiment) to ensure smoothness of the output flow and use 10×
higher weights around facial features. We also experimented with
an adversarial loss as used in other normalization pipelines, but
did not find it useful. In order to make the inference more robust
against challenging input images, we added random brightness,
contrast, and blurring during the training. Since our network is
based on image-to-image translation, we found that the training
is more efficient, if we estimate a flow that aligns with the input
image pixels. A drawback of such forward warping is that a naive
pixel-level mapping can cause holes in the target image. To properly
warp all the pixels including the image background, we perform
flow inpainting combined with Laplacian smoothing as done in
[Fried et al. 2016]. Once the perspective distortion is removed, we
perform 3D face fitting [Thies et al. 2016] to the corrected input
image, and obtain a fitted 3D mesh, SH shading coefficients, and UV
texture for subsequent steps.

3.2 Even Light Illumination
While spherical harmonics-based (SH) illumination models [Ra-
mamoorthi and Hanrahan 2001] can represent real-world illumi-
nations effectively, if the scene’s reflectance is near Lambertian,
the skin of human faces have generally more complex reflectance
properties, such as specular reflections, subsurface scattering, cast
shadows. As shown in Fig. 17, a naive shading decomposition can
lead to significant artifacts. Nevertheless, we show that this SH-
based shading information is sufficient in providing a coarse guide
for the scene illumination when inferring an evenly lit face using
a deep learning-based approach. Instead of directly using the esti-
mated lighting condition to decouple the illumination, we perform
this task using a conditional generative adversarial network for
image synthesis by conditioning the inference using the estimated
SH values, obtained from 3D face fitting (see Fig. 5).

original simulated shading relit

Fig. 6. Training data sample for lighting normalization.

To preserve important high-frequency facial details during the
inference of high-resolution images, such as (pores, facial hair, spec-
ular reflections, etc.), we introduce an offset-based image representa-
tion, instead of inferring target pixel colors directly from a generator.
Hence, we predict a lighting offset image Ol it by a generatorGl it
that produces an evenly lit face, if it is added to the input image.
More specifically, given a masked input image I and spherical har-
monics shading image S, the illumination normalized photograph Il
is produced as

Il it = Ol it + I (3)

where Ol it = Gl it (I, S). Our experiments show that this approach
is able to preserve significantly higher resolution details as shown
in Fig. 18. To train our network, we produced a large volume of
synthetic illumination data via portrait relighting. For each data-
base picture in the training data, that is captured under uniformly
lit white illumination, we fit a 3D morphable face model. We then
use directional lighting and image-based lighting using custom
OpenGL/GLSL shaders implementing soft shadows, microfacet spec-
ularities [Cook and Torrance 1982], and subsurface scattering to
simulate a wide range of scene illuminations. We created 10 lighting
variations (5 random directional lighting and 5 random HDR envi-
ronments) per-subject, which leads to 100K training image samples
in total. In order to relight eyes and teeth realistically, we created a
billboard geometry for the eyes and mouth interiors, and perform
inpainting on the shading image to relight partially visible hair on
the face. Fig. 6 shows an example of our simulated training data
for lighting augmentation. To further increase robustness, we also
add random contrast and brightness perturbations to simulate poor
quality input. Please refer to the supplemental material for more
details.

For the training, we employ a multi-scale L1 pixel difference loss
and an adversarial loss as follows:

L = Ladv + λℓ1Lℓ1 (4)

Lℓ1 evaluates pixel differences at multiple scales to ensure globally
consistent skin color estimation. Specifically,

Lℓ1 =
K∑
k=1

Ikдt − Iklit

 (5)
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Fig. 7. Expression and pose normalization pipeline.

Ladv is a multi-scale adversarial loss adapted from [Wang et al.
2018].

Ladv = E
(I,S,Iдt )

[
logDk

(
I, S, Ikдt

)]
+ E

(I,S)

[
log

(
1 − Dk

(
I, S, Iklit

))]

(6)
where {Dk }Kk=1 are discriminators trained on different image scales
to detect local and global artifacts. For both losses, we evaluate the
error on an image pyramid [Wang et al. 2018] with K = 2 levels,
where I2{дt,l it } are down-scaled to 1/4 width and height of the
original images I1{дt,l it } (128 and 512 resolution in our experiment).
We use λ�1 = 20 for our experiments.

As our network predicts normalized appearances only inside the
facial region, we perform Poisson image blending [Pérez et al. 2003]
as a post-process to composite the normalized image seamlessly
into the background.

3.3 Expression Neutralization
Our expression neutralization consists of geometry neutralization
and facial texture neutralization, each of which is addressed by a
dedicated deep neural network. After the facial expression is nor-
malized, the face can be optionally composited to the background
for portrait manipulation applications. We warp the background
using 2D flow derived from 3D mesh correspondence before and af-
ter geometry normalization using the technique described in [Fried
et al. 2016] and composite the face region to the background using
Poisson blending [Pérez et al. 2003].

Geometry Neutralization. Despite the limited output resolution,
Cole et al. [2017] introduced a highly robust method to synthe-
size a face with blank expressions using deep facial recognition
features [Schroff et al. 2015]. While Cole et al. [2017] can infer 2D
landmarks from the facial recognition features, our regressor infers
neutralized full 3D models as similarly done in [Genova et al. 2018].
Let α be the identity coefficients of a linear 3D morphable model for
the input I. We train a regressor with multi-layer perceptron (MLP)
layersR(C) that takes the facial featuresC to predict α (|α | = 91). For
the facial recognition features C, we used 1792-D vectors extracted
from the last pooling layer using the Inception ResNet v1 [Szegedy
et al. 2016] architecture, similar as in [Cole et al. 2017]. Training
the network requires pairs of input facial recognition features and
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Fig. 8. Geometry neutralization pipeline. Original image is courtesy of Keniaxmar-
garita/flickr.

ground truth 3D geometry. We extract features from a pre-trained
facial recognition network and use 3D face fitting results [Thies
et al. 2016] with known camera and subject distances to produce
the training data. The network is trained with the following loss:

L = λposLpos + λlandLland + λpr iorLpr ior + λsymLsym (7)

Lpos presents the per-vertex position distance in 3D between the
ground truth mesh Pдt and predicted mesh P

Lpos =
��Pдt − P

��2 (8)

Lland is similar to Lpos , but measured on a subset of 68 vertex
positions L corresponding to the facial features of [Kazemi and
Sullivan 2014].
Lsym is a facial symmetry loss that minimizes the distortion by

computing the difference of each corresponding pair of vertices
(l , r ) ∈ L on the left and right side of the face after flipping both to
the same side.

Lsym =
∑

(l,r )∈L

���|Pl | − |Pr |
���2 (9)

Lastly, Lpr ior accounts for the error between the predicted and
ground truth blendshape coefficients:

Lpr ior =
��αдt − R(C)

��2 (10)

Our network employs three layers of MLP with Leaky ReLu non-
linearities with leakiness 0.2 (Fig. 8). In our experiments, we set
λpos = 2, λland = 0.01, λpr ior = 0.01, and λsym = 0.01. Since
our geometric loss formulation is generic, it is not limited to linear
models, and more sophisticated ones can be used [Wu et al. 2018b].
While we have an immense amount of training samples, our training
dataset only contains 1K unique facial identities, which can lead
to overfitting during training. In order to augment the variation of
unique facial identities, we introduce a way to synthesize novel iden-
tities by interpolating two identities continuously (described in the
next paragraph), using features from the state-of-the-art StyleGAN
network. Similar to [Cole et al. 2017], we only generated frontal faces
of new identities with blank expressions for the data augmentation
since the deep facial recognition network is robust to expressions
and pose variations. We perform this identity augmentation on our
training dataset and created 160K new subjects, resulting in 170K
training data samples. We mixed our base training data and the
augmented data with the ratio of 1 : 2 during the training (See
Fig. 22 for the effect of the data augmentation).
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input A input Breconstructed A reconstructed Bλ = 0.75 λ = 0.5 λ = 0.25

Fig. 9. StyleGAN embedding and interpolation. Real input images A and B are embe-
ded intowa andwb , and their interpolations produce new synthetic faces.

Data Augmentation for Geometry Neutralization. [Karras et al.
2018] proposed an alternative generator architecture, StyleGAN ,
based on generative adversarial networks. We use StyleGAN to
interpolate two neutral faces to synthesize new fake people in order
to augment the number of neutral subjects in our dataset. We for-
mulate this task as a latent space embedding problem. In particular,
given an arbitrary image, we extract a representative latent vector
w , which can be used as an input of StyleGAN and generate the
same image. We embed two images into the latent space and obtain
two latent vectorsw1 andw2. Then, a linear function is used to in-
terpolate the latent vectorw = λw1+ (1−λ)w2 and a new image can
be generated using the new vectorw . Given a real image Ir , we first
initialize a random latent vectorw and StyleGAN (w) to generate a
random synthetic image If . With a pre-trained model for perceptual
loss [Johnson et al. 2016], our method minimizes the perceptual
loss between Ir and If by freezing both generators and perceptual
model weights, and optimizing w using gradient descent. In our
implementation, we optimize the intermediate latent space (18 lay-
ers and each layer is a 512 vector) of StyleGAN and use the output
layer block4_conv2 of VGG-16 [Simonyan and Zisserman 2014]
for the perceptual loss. We show the embedding and interpolation
results in Fig. 9. In practice, we only add the mean interpolation re-
sults to the dataset and create 160K new subjects. We use StyleGAN
augmentation to train the neutral geometry regressor.

Facial Texture Neutralization. We achieve pose and expression
neutralization using a novel generalized variant of the photorealis-
tic expression synthesis network of [Nagano et al. 2018]. Given a
neutral picture of a source and target expressions, this work can syn-
thesize arbitrary photorealistic facial expressions while maintaining
person-specific identities. In our facial expression neutralization,
we want the opposite effect, i.e., synthesize a photorealistic neutral
expression from arbitrary facial expressions and pose of a person.
Given the neutralized geometry inferred from the previous stage
(Sec. 3.3), the rigid pose, and the UV expression texture from the
initial face fitting process, we first frontalize the face by resetting
the rotation component, and render the normal/depth image and the
expression texture on the neutralized geometry to create images for
conditioning the GAN (Fig. 7). While [Nagano et al. 2018] demon-
strates photorealistic expression synthesis using a similar network,
we found that naively providing pairs of input expressions and their
corresponding neutral faces does not produce a high-quality result.
Unlike facial expression synthesis from a neutral photograph, the
neutralization training target needs to predict one exact neutral
from a wide range of facial expressions. We conjecture that such

many-to-one mapping is prone to overfitting, as perhaps the target
lacks sufficient variations. Another concern is that since the input
pictures exhibit a wide range of facial expressions, it is difficult for
the network to extract consistent identity features.

From our experiments, we found that the network trained from a
neutral input picture to a range of output facial expressions (i.e. pa-
GAN by [Nagano et al. 2018]) is better at preserving person-specific
identity features. Hence, we train a generalized version of the pa-
GAN model by mixing both neutral-to-expression and expression-
to-neutral datasets, and use only the expression-to-neutral dataset
during test time. In this way, the network can learn the neutral-
ization task (i.e. remove wrinkles, inpaint occluded areas, and syn-
thesize plausible eyes) while better preserving the likeness of the
person after inference. To train our generalized paGAN variant,
we initialized the network using the original pre-trained paGAN
model. In addition to the training strategy, we made an additional
improvement on the conditional images. For side-facing training
images, a naive facial texture computation with projection causes
large visual artifacts in invisible or occluded areas. We address this
by identifying invalid facial areas via facial symmetry, followed by
Poisson blending and inpainting to recover from the artifacts. Our
model is trained using the following loss function:

L = Ladv + λℓ1Lℓ1 + λIdLId (11)

where Ladv and Lℓ1 are the multi-scale adversarial and pixel loss as
in Sec. 3.2 and LId , an identity loss adapted from [Hu et al. 2018b]
that minimizes features of the last pooling layer and fully connected
layer of a pre-trained facial recognition network [Wu et al. 2018a].
In our experiment, we used λℓ1 = 20 and λId = 0.25. Similarly, for
the geometry neutralization training, in the previous section, we
also perform data augmentation to train the generalized paGAN
model. While the synthetic faces interpreted by StyleGAN are re-
alistic with background and hair, it also provides high-frequency
artifacts, which is not suitable when learning high-fidelity textures.
Hence, we perform a different data augmentation to increase the
identity variations by blending the 3D geometry and UV texture (see
the next paragraph for details). Training a texture neutralization
network requires pairs of a neutral and expression photos. To this
end, we created synthetic expressions using a pre-trained paGAN
model. We used 6 key expressions used in [Nagano et al. 2018]. In
total this augmentation produces around 90K identities each with 6
expressions. During training, we mix synthetic faces and real photos
from our training data with a ratio of 1 : 2 (See Fig. 23 for the effect
of the data augmentation).

Data Augmentation for Texture Neutralization. We first synthesize
fake frontal neutral faces which include both geometry and texture,
and then we use paGAN to create expressions of these synthetic
faces. Given a frontal face image I , we first fit a 3D morphable model
to the image using the method of [Thies et al. 2016] to obtain the
initial 3D mesh dataMI = (αI , βI ,TI ), where αI and βI are the cor-
responding identity and expression coefficients. We then compute
the face texture TI which is unwrapped from I to UV-space. Given
two face images A, B and their mesh dataMA,MB , we interpolate
the coefficients and textures of the two faces, independently. Given
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input A λ = 0.5 input B

Fig. 10. Data augmentation by interpolating facial geometry and texture. A new face
in the middle is generated by blending subjects A and B.

MA = (αA, βA,TA) andMB = (αB , βB ,TB ), a new faceMN is gener-
ated asMN = (λαA + (1 − λ)αB , λβA + (1 − λ)βB , λTA + (1 − λ)TB ),
with λ ∈ [0, 1]. Given a seed faceA, we pick a target face by selecting
one of the k = 200 nearest neighbors of A and interpolate them to
obtain a new face with its 3D mesh. We use the same measurement
for the distance between faces A and B as in [Cole et al. 2017]:

d(A,B) = θ ‖LA − LB ‖ + ‖TA −TB ‖ (12)

where L are matrices of 2D landmarks. We use θ = 10.0 in our
experiments. The blending results are shown in Fig. 10. We set
λ = 0.5 to produce faces that are as different as possible as those we
have, and ignore repetitive image pairs. While we could have used
the second augmentation method for the geometry neutralization
as well, we found that using the two different methods leads to
better results as the second method can only synthesize the face
region and cannot provide unique variations in the head shapes with
background that are necessary for the face recognition network.

4 EXPERIMENTS AND RESULTS
We will showcase the results on three applications and highlight
the effectiveness of our technique on a wide range of subjects of dif-
ferent skin tones and age, as well as extremely challenging lighting
conditions, unknown camera properties, and even stylized input
images. We further provide a comprehensive evaluation of individ-
ual algorithmic components, and compare our technique with the
current state-of-the-art. We also refer to the accompanying video
for additional results, including 3D avatar digitizations, progressive
steps of perspective undistortion, and facial neutralization.

4.1 Applications
Portrait Manipulation. As our normalization techniques are mod-

ular, we can apply perspective undistortion, lighting normalization,
and expression normalization individually to achieve portrait manip-
ulation. In Figs. 1, 11 and 12, we demonstrate portrait manipulation

results by sequentially applying an individual normalization com-
ponent. After the lighting is normalized, the portrait can be re-lit
with an arbitrary lighting condition using the proxy 3D geometry
and texture obtained as part of the lighting normalization process
(Fig. 12 fourth column). Here we demonstrate relighting using a
directional light following the technique described in Sec. 3.2.

Single-View 3D Avatar Creation. Normalized portraits are highly
suitable for image-based virtual avatar modeling tasks and are key
for producing visually pleasing and high-fidelity results robustly.We
produced all of our 3D avatar results using the method of [Nagano
et al. 2018]. The fifth and sixth columns in Fig. 1 and Fig. 11 show
3D avatars created before and after the normalization. An undis-
torted input ensures accurate avatar geometry, normalized lighting
produces a texture that can be re-lit with novel illuminations, and
expression normalization enables correct facial animations, all of
which are crucial for consumer accessible virtual avatars.

Face Reconstruction in Law Enforcement. In the context of crime
investigation and counter-terrorism, there are often limited pic-
tures of suspects or kidnapped persons, as shown for instance in
the most wanted list maintained by the U.S. Federal Bureau of In-
vestigation [Federal Bureau of Investigation 2019]. Graphical rep-
resentations such as facial composites are often used to provide
additional depictions on how these subjects may look like. In cases
when the person is performing an expression (e.g., a smile) and the
picture is taken in an uncontrolled lighting environment, we can
show how a normalized face can provide additional information for
identification and recognition, as shown in Fig. 13.

4.2 Performance
All of our networks are trained on a desktop machine with Intel
i7-6800K CPU, 32 GB RAM and two NVIDIA GeForce GTX 1080 ti
(12 GB RAM) GPUs using Pytorch. Our networks output cropped
aligned face images with a resolution of 256x256 for perspective
undistortion flows, and 512x512 for the other normalization outputs.
Training takes 12 hours for the perspective undistortion network, 6
days for the light normalization network, 24 hours for the geome-
try neutralization network, and 2 days for the generalized paGAN
model. All the results are produced on the same machine. The initial
face fitting takes 0.5s. The prediction of undistortion flow takes 2ms
and postprocess for perspective undistortion takes 5s. Light normal-
ization inference takes 7ms and postprocess takes 2s. Expression
geometry neutralization and texture inference take 1ms and 7ms,
respectively. Final Poisson blending and inpainting take 5s. In total,
our method takes 13s for a given portrait.

4.3 Perspective Undistortion
In Fig. 14, we show the generated avatars using the original images
(left group) and the ones with perspective normalization (right
group). Without perspective normalization, generated avatar shapes
can exhibit a large variations, and using wrong focal lengths can
produce avatars with wrong shapes (i.e. face becomes too wide or
narrow). 3D face modeling can still produce correct avatar shapes
using the correct focal length (indicated with black boxes), but
usually it is unknown in advance for unconstrained portraits. On the
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input with perspective
normalization

with lighting
normalization

with pose and expression
normalization

avatar generated 
before normalization

avatar generated 
after normalization

Fig. 11. First column: input photo. Second to fourth column: portrait with individual normalization component applied, i.e., perspective normalization, perspective+lighting
normalization, and full normalization. The fifth and sixth columns show an avatar generated from an original input without normalization and from a fully normalized picture. From
top to bottom, original images are courtesy of Daniel X. O’Neil, Michael Beserra, Benjamin Griffiths, Jens Karlsson, Remykennyl, Keith Parker, and Pamela Stone.
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input perspective
normalization relightinglighting

normalization

Fig. 12. Application: portrait manipulation is possible by individually applying each
normalization component. After the lighting is normalized, the portrait can be relit
with arbitrary lighting using an auxiliary 3D geometry and texture.

input output

Fig. 13. Examples of neutral face reconstruction of a kidnapped child (top) and
terrorist suspect (bottom) from the FBI Most Wanted database. Original images are
courtesy of the Federal Bureau of Investigation.
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Fig. 14. Evaluation of perspective undistortion on 3D avatar modeling. Without
normalization, 3D avatar modeling exhibits a large variations in facial shape depending
on a focal length used in the facial fitting. Using the correct focal length can produce
correct 3D shape (black boxes), but it is unknown in advance for unconstrained pictures.
After perspective undistortion, face modeling can always produce correct shapes. Focal
lengths (f) in 35mm sensor size.

right group, the normalization removes the perspective distortion of
the input image and the facial modeling always produces plausible
geometry with fixed focal length value (350mm in 35mm in our

case), which closely matches to the one created with the original
image and the correct focal length.
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Fig. 15. Evaluation of perspective undistortion consistency. Photos taken from near
to far distances exhibits significant variations in facial proportions (first row). After
perspective undistortion, faces in normalized photos (second row) as well as the
corresponding 3D avatar shapes (third row) are consistent. The heatmap on the lower
right corner shows standard deviations for per-vertex Euclidean distance among 3D
avatars.

Weevaluate the robustness of our perspective undistortionmethod
in Fig. 15 using a variety of distorted input images from near to far.
Our algorithm can produce consistent portraits after perspective
undistortion, as well as consistent avatar geometries.

input (near) ours[Fried et al.] ground truth (far) landmarks 
comparison

Fig. 16. Perspective undistortion comparison with [Fried et al. 2016]. The last column
shows the 2D landmark alignments of our results (blue), [Fried et al. 2016] (green) and
the ground truths (red).

In Fig. 16, we show a comparison with the previous work of
[Fried et al. 2016] on the CMDP dataset [Burgos-Artizzu et al. 2014].
Our method can successfully remove the perspective distortions
(especially in the nose area) for near range photos (first column),
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Table 1. Ground truth Euclidean distance landmark error compared to
[Fried et al. 2016]

Fried-GT(pix) Ours-GT(pix)
4.557051 3.948873
1.192981 1.654887
2.379486 2.262243
3.185447 3.295902

producing visually similar facial proportion to the ground truth
(fourth column), which are captured at a far distance. Table 1 shows
the numerical difference computed from the aligned landmark to
the ground truth. Our method produces comparable results to the
previous work without knowledge of any camera parameters. Please
see the supplemental material for additional numerical evaluations.

4.4 Even Light Illumination

input shading image oursnaive 
decomposition

Fig. 17. From left to right: input image, shading estimation from 3D face fitting,
naive decomposition by dividing the input image with the shading showing significant
artifacts, and our result. Original image is courtesy of Keith Parker.

input without delta with deltazoom zoom

Fig. 18. Comparison of light normalization networks predicting the image Il it (with-
out delta) and predicting only the offset Ol it (with delta). Predicting Il it directly
yields loss in details. Original images are courtesy of Milena Martínez (top) and Trouni
Tiet (bottom).

Fig. 17 compares our method with a naive lighting decomposition
method using an estimated shading image. Due to the inaccuracies
of the reconstructed 3d mesh and the limited capabilities of spher-
ical harmonics, the naive decomposition (third column) exhibits
significant artifacts, while our method ensures high-fidelity output.
We also compare our lighting normalization approach with a

variant of the method in Fig. 18. By predicting the lighting offset
image, we are able to preserve high-frequency intricate details (i.e.

input ours[Shih et al.] [Shu et al.]

Fig. 19. Comparison with the portrait relighting methods [Shih et al. 2014] and [Shu
et al. 2017]. Their results are produced using Fig.4 (a) in the supplemental material of
[Shih et al. 2014] as a target lighting image. The previous work suffers from severe
artifacts and cannot preserve the skin tone as well as ours. Original images are courtesy
of Timothy Wood (top) and Toby Simkin (bottom).

facial hair) present in the input photograph (last two columns). The
results tend to be blurred if the generator attempts to generate all
the pixels from scratch (second and third columns).
In Fig. 19, we show how our method clearly outperforms state-

of-the-art portrait relighting techniques for the task of delighting.
In particular, only our approach can recover convincing skin tones
of the subject that are appropriate for different ethnicity. Also our
method does not rely on a lighting target reference.

input [Hu et al.] oursmanual

Fig. 20. Comparison with [Hu et al. 2017b] for portrait color correction, where our
method is able to handle extreme directional lights and harsh shading on the face.
Original images are courtesy of J. Davis Harvill (top).

Fig. 20 illustrates even more challenging lighting examples which
include strong directional illuminations and rim lighting. Such harsh
lighting conditions cannot be fixed using only color balance and
exposure control, even when performed manually by a skilled dig-
ital artist (third column). On the other hand, our method can still
recover plausible, though not perfect, facial appearances for both
underexposed and overexposed areas. The robustness of our method
is also demonstrated in Fig. 21. By illuminating the subject with a
wide range of colored lighting conditions, our normalization method
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Fig. 21. Consistency of lighting normalization results for various input illumination
colors. In the last column, we show the per-pixel variance computed on normalized
pixel values, indicating the consistency of estimated result.

can reveal consistent facial skin tones of each person. On the last
column we show the variance of estimated pixel colors, showing
the consistency of our estimation.

4.5 Expression Neutralization
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Fig. 22. Comparison with variants of geometry neutralization methods. Second row:
naively resetting expression components to zero. Third row: our geometry neutralization
without data augmentation. Our result (fourth row) shows the best results. Original
images are courtesy of Michael Beserra, jcapaldi / flickr, Daniel X. O’Neil, and Sterre
van den Berge (from left to right).

In Fig. 22, the second row shows the result using the geometry
obtained by naively resetting all the expression parameters to zero
and third row shows the results with neutralized geometry obtained
from ourmethodwithout synthetic data augmentation (Sec. 3.3). The
identity is clearly better preserved with our full pipeline (fourth row)
and also appears more natural using our geometry neutralization
technique (Sec. 3.3).
Fig. 23 demonstrates the effect of data augmentation for facial

texture neutralization in Sec. 3.3. Results without data augmentation
lead to severe artifacts around the eyes.

input w/o data augmentation w/ data augmentation

Fig. 23. Effects of data augmentation on the facial texture neutralization network.
The second column shows the training results without data augmentation and the
third column shows the results using synthetic faces. Original image are courtesy of
NWABR/flickr (top) and Sheba_Also/flickr (bottom).

input [Zhu et al.]  
(neutral)

[Choi et al.] 
(neutral)

ground truth 
(neutral)ours

avg error�
0.0631

avg error:
0.0718

avg error:
0.0690

ours (naive)

avg error:
0.0414

Fig. 24. Our expression normalization results compared with the state of the art
methods and the ground truth. The bottom row visualizes the per-pixel error as heat
maps as well as their average errors computed in normalized pixel values.

We compare our expression neutralization method with state-
of-the-art GAN techniques of [Choi et al. 2018] and [Xiangyu Zhu
et al. 2015] as well as a naïve approach by reseting all expressions
to zero for the geometry (see Fig. 24). Even if intense facial wrinkles
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are present in the expression, our method successfully removes
them and produces a convincing neutral expression that reasonably
matches the ground truth shown in the last column. Other methods
however seem to struggle with removing strong expressions and
yield artifacts especially in the mouth interior. In the bottom row
of the figure, we show a quantitative comparison using pixel dif-
ferences and average error for each method compared against the
ground truth. The heatmap is computed after aligning each image
to the ground truth using eye and nose landmarks.

expressions

input
output

neutral

Fig. 25. Consistency evaluation of expression neutralization. Our method produces a
consistent neutral expression (bottom row) from various facial expressions in the input
photos (top row).

We demonstrate the consistency of our expression neutralization
method in Fig. 25. Although the input expressions shown in the first
row exhibit a wide variety of facial deformations and wrinkles, our
method can produce neutralized expressions that are reasonably
consistent.

input expression naive [Nagano et al.] ours ground truth

Fig. 26. From left to right: input images with expressions, naïve neutralization results
trained with expression-to-neutral images, results from [Nagano et al. 2018], our result
with generalized paGAN, and the ground truth neutral images.

Fig. 26 demonstrates the importance of having both neutral-to-
expression and expression-to-neutral training data in order to ensure
identity preservation and high-fidelity output. The facial identity
tends to change after synthesis with an naive training (second col-
umn), which only consists of using expression-to-neutral samples.
While an expression synthesis network [Nagano et al. 2018] can
preserve facial identity well (third column), the network cannot fully
remove unwanted wrinkles and expressions. The generalized pa-
GAN model (fourth column) is most successful both in neutralizing
expressions while keeping the identity.
We compare our normalization result with the state-of-the-art

facial normalization approach [Cole et al. 2017] based on deep fea-
tures for facial recognition (Fig. 27). While their method is robust

input [Cole et al.] ours

Fig. 27. Comparison with the end-to-end normalization method of [Cole et al. 2017].
Our results are much higher-fidelity and preserve high-frequency details from inputs.
Original images are courtesy of Steven Damron, Tommy Low, and jcapaldi/flickr.

w.r.t. extremely challenging examples and can generate recogniz-
able facial identities, our method can preserve high-frequency facial
details and attributes, and produce higher resolution images.

4.6 User Study
We conducted a user study to assess the perceptual quality of our
normalized faces. Over 400 testers from Amazon Mechanical Turk
were asked to distinguish between our results and actual photos
with proper portrait setting. Specifically, we provide 3 images of
a subject in a row: (1) an input image with perspective distortion,
extreme expression or unusual color lighting, (2) the ground truth
image taken in a studio setting, and (3) the normalized result from
our pipeline. Testers are required to pick the ground truth image
from the latter two. 10 questions of different subjects are asked for
each tester, with positions of answers randomly shuffled. Three ques-
tions of them have known answers to filter out random/malicious
submission. Ideally, our pipeline should produce indistinguishable
results from the ground truth, leading to a 50% fooling rate (testers
cannot perform any better than random guessing). And a fooling
rate of 0% would indicate that our results has noticeable difference
from real photographs. As shown in Table 2 the fooling rate of each
task is close to completely fooling users who are not familiar with
the identities. Please refer to the supplemental material for more
data including user study test samples.
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Table 2. Fooling rate of user study. Our method performs very close to being
able to fool the users absolutely (with a 0.5 rate).

Task Fooling rate

perspective distortion 0.481
expression 0.438

lighting 0.446

4.7 Limitations
Our approach has several limitations (Fig. 28). Handling harsh light-
ing condition remains a challenge (top left). While our light normal-
ization technique can produce high-resolution details (see Fig.18),
the result could be slightly blurred or contain artifacts when com-
posited to the background for portrait manipulation applications
due to the Poisson blending. While our method can handle faces
with mild poses, faces with strong side views are still challenging
(top right). Also, our method does not handle frontalization of the
body (bottom left). If the input has strong artistic filters such as
Instagram filters, the skin color might not look convincing after
lighting normalization (bottom right). While we show that neu-
tralization from various expressions and lighting conditions can
produce a reasonably consistent output, the results are still far from
perfect.

input output input output

Fig. 28. Limitation: input imageswith extreme lighting conditions and large occlusions
(top left), strong side-views (top right), non-frontal bodies (bottom left), and strong
artistic filters e.g. Instagram selfies (bottom right). Original images are courtesy of
Chris Roberts (top left) and Carlos Pacheco (bottom left)

5 DISCUSSION
We have shown that it is possible to fully normalize an uncon-
strained portrait while preserving facial details and resolution using
a pipeline that performs perspective distortion removal, delighting,
followed by facial frontalization and neutralization. Our perspecive
normalization results are comparable to [Fried et al. 2016], but we
do not require any camera parameter initialization (e.g. EXIF data)
or 3D facial fitting. Our deep learning-based lighting normalization
technique only approximates a real diffuse illumination conditions,
and cannot be compared with ones that are obtained using a highly

controlled capture environment [Ghosh et al. 2011]. Nevertheless,
our delighting results are significantly superior than the current
state-of-the-art and our produced skin tones are more consistent
than end-to-end solutions such as [Cole et al. 2017] when different
inputs are used. Furthermore, we show that our sequential normal-
ization approach can produce significantly higher fidelity results
than the end-to-end approach of [Cole et al. 2017], as high-frequency
facial details are preserved. Furthermore, having intermediate steps
in the pipeline gives us additional control for disentangled portrait
manipulation. One of our core findings is that our combined ap-
proach of 3D neutral face regression based on deep features for
face recognition combined with an inverted generalized paGAN
can successfully invert highly complex facial expressions under ex-
tremely challenging capture conditions. As indicated by our user
study, our normalization results are perceptually on par with real
ones. However, if the person is appears familiar, it becomes harder to
fool someone, whether the result is synthetic or not. Since portraits
can now be normalized, more applications (e.g., portrait manipu-
lation, 3D avatar creation) can benefit from these capabilities and
generate more convincing results. We also believe that our solution
can potentially impact law enforcement applications where high
quality facial enhancement and reconstructions are needed due to
limited available photographs of suspects or kidnapped persons.

Future Work. There are several directions we would like to pursue
next. First, we would like to improve the robustness of our system,
w.r.t., large head rotations and occlusions, especially by hair. Further-
more, we believe that providing additional input images or videos of
the same person can be useful in determining a more accurate pre-
diction of a normalized face, but handling additional unconstrained
data may also increase the complexity of the problem. We would
also like to extend our facial frontalization capabilities to other parts
of the body, such as for hair, neck, and body regions. We believe
that a more complete 3D human body and scene inference approach
could help us produce plausible results from input data, where a
large portion of a person’s body is side facing. In the long term, we
think that it would be possible to fully normalize high-resolution
portraits, where the subject has more complex emotional states,
such as crying, having tears in their eyes.
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