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Fig. 1. Overview of our system. Using a single neutral-face input image, we are able to synthesize arbitrary expressions both in image space and UV texture
space. These generated textures, which include a photoreal mouth interior and the eyes, can then be used to pilot dynamic avatars in real-time with minimal
computational resources, usable even in a mobile environment.

With the rising interest in personalized VR and gaming experiences comes
the need to create high quality 3D avatars that are both low-cost and varie-
gated. Due to this, building dynamic avatars from a single unconstrained
input image is becoming a popular application. While previous techniques
that attempt this require multiple input images or rely on transferring dy-
namic facial appearance from a source actor, we are able to do so using
only one 2D input image without any form of transfer from a source image.
We achieve this using a new conditional Generative Adversarial Network
design that allows �ne-scale manipulation of any facial input image into
a new expression while preserving its identity. Our photoreal avatar GAN
(paGAN) can also synthesize the unseen mouth interior and control the
eye-gaze direction of the output, as well as produce the �nal image from a
novel viewpoint. The method is even capable of generating fully-controllable
temporally stable video sequences, despite not using temporal information
during training. After training, we can use our network to produce dynamic
image-based avatars that are controllable on mobile devices in real time. To
do this, we compute a �xed set of output images that correspond to key
blendshapes, from which we extract textures in UV space. Using a subject’s
expression blendshapes at run-time, we can linearly blend these key textures
together to achieve the desired appearance. Furthermore, we can use the
mouth interior and eye textures produced by our network to synthesize
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on-the-�y avatar animations for those regions. Our work produces state-of-
the-art quality image and video synthesis, and is the �rst to our knowledge
that is able to generate a dynamically textured avatar with a mouth interior,
all from a single image.
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1 INTRODUCTION
Recent advances in single-view avatar creation have facilitated the
consumer accessibility and scalable production of compelling CG
avatars, with potential applications in personalized gaming, social
VR, and immersive communication. Such images are easy to access
and consumer friendly - all you need is a sel�e. In addition, such
technology is especially useful for instances in which controlled
capture is not available - for example, celebrities or the deceased.
Photorealistic CG characters are known to be di�cult and expensive
to produce, especially in the context of conventional production
pipelines. The slightest inaccuracy in the modeling, shading, and
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rendering can result in the uncanny valley e�ect. Image-based ap-
proaches, where photographs of subjects are directly used as tex-
tures, can easily achieve convincing results while keeping rendering
costs low, but are not suitable for reproducing complex non-linear
facial expressions or renderings with novel illumination conditions.
Existing methods that can capture facial expression and appear-

ance variations rely on multiple input images which correspond to
a set of key expressions [Cao et al. 2014, 2016; Casas et al. 2016; Li
et al. 2010; Weise et al. 2011, 2009]. A single input image, however,
does not provide dynamic user-speci�c texture variations. If one
were to �t and animate a model using only the texture extracted
from this image, wrinkle shadings and other high-frequency appear-
ance variations would not appear. Predicting realistic-looking and
plausible skin variations from just one neutral expression requires
a comprehensive knowledge of how an entire population would
deform their faces.

As observed in Li et al. [2009], static and dynamic details need to
be separately treated. Static details are for example moles, nasolabial
folds between the cheeks and the upper lip, or periorbital wrinkles,
while dynamic details are caused by the shading changes due to skin
deformations and blushing which occur during the performance
of an expression. Di�erent expression deformations are extremely
intricate and appear at di�erent places depending on the subject and
hence cannot be interpolated linearly across di�erent individuals.
In this work, we also treat the mouth interior and eyes as "dynamic"
details, as they share these qualities. Figure 2 shows that synthe-
sized dynamic details are critical for realistic avatar appearance
especially for the mouth interior. In order to predict realistic and
plausible appearance variations, we need to be able to learn how
these wrinkles and appearance variations form for a large number
of subjects when performing di�erent expressions.
Inspired by recent advances in generative adversarial networks

(GANs) for synthesizing photoreal faces and expressions [Choi et al.
2017; Ding et al. 2017; Karras et al. 2017], we propose a deep learning
approach that can synthesize person-speci�c facial expressions.
Given a single face input image in a neutral pose, our system can
generate novel photoreal expressions from alternate viewpoints, as
well as their corresponding high-resolution UV texture maps which
include both the eyes and mouth interior. Our network is also able
to produce controllable video sequences directly from its output
with a reasonable degree of temporal coherence.

Previous methods [Averbuch-Elor et al. 2017] [Olszewski et al.]
that attempt this in the single-image case rely on transferring defor-
mations on-line from a source actor to the target image. However,
these can result in transferring inappropriate texture and pigmenta-
tion details from the actor, often resulting in creepy-looking facial
animations. This is especially true when transferring the mouth inte-
rior. In contrast, our method does not transfer but rather synthesizes
plausible deformations, including the mouth interior.
While GANs are particularly e�ective at synthesizing photoreal

images, they are also notoriously di�cult to control �nely. For in-
stance, existing work is able to generate plausible facial expression
modi�cations, but might also result in undesirable appearance at-
tributes, such as adjustments to skin tone and lighting. To deal with
these issues, we introduce a photoreal avatar GAN (paGAN). pa-
GAN’s network structure allows for �ne-grained control by using

input static image-based avatar dynamic image-based avatar

Fig. 2. Comparison with static texture avatar. Static textures do not allow the forma-
tion of wrinkles and the mouth interior when the face changes pose.

a combination of rendered expressions, depth/normal maps, and
eye-gaze indicators as conditions. These additional controls are
computed by �tting a 3D morphable model to the input image. Our
network is trained using a massive face image dataset that captures
a wide range of subjects and expressions.
Unfortunately, paGAN cannot run in real-time on current mo-

bile devices, due to limited GPU performance. However, once the
network is trained, we can use it to generate a sparse set of key
expression textures. This sparse set can then be separated into a
comprehensive set of blendshape-driven UV texture maps based on
the Facial Action Coding System (FACS)[Ekman and Friesen 1978].
These textures are then used to produce compelling image-based
avatars with dynamic facial expressions, which can be driven by
blendshapes on a mobile device at full 30 fps. We further develop
an image-based approach to synthesize photoreal textures of the
mouth interior and eye regions of the avatar using paGAN.

Our proposed technique o�ers several distinct bene�ts. As shown
by Cao et al. [2016], image-based facial blendshapes such as ours do
not require complex skin deformations or re�ectance separations
in the form of di�use and specular maps, which are needed for
sophisticated rendering pipelines. Unlike the previous work of [Cao
et al. 2016], we do not require multiple input images, but only a
single photo. Furthermore, as we can compute all relevant assets
o�ine, the dynamic-texture online retargeting can be performed
in real-time with minimal computational resources in a graphics
engine such as Unity or even on a mobile device.

This work is the �rst to our knowledge that produces dynamically
textured avatars, including photorealistic mouth interior and eye
regions, from a single image. Our comparisons show that paGAN
generates visually superior and higher resolution images than other
deep learning alternatives.

Our contributions can be summarized as follows:
• The �rst image-based dynamic avatar creation framework
from a single photograph and end-to-end deep learning ap-
proach for the digitization and rendering of photorealistic
faces.
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Fig. 3. System Overview. Le�: we train GAN that can produce novel expressions in various viewpoints given a neutral face image, and conditioning parameters. Right: extracted
textures from our trained network are used to drive a dynamic avatar in real-time on a mobile device.

• We develop a novel deep generative model that can synthesize
photorealistic videos of arbitrary facial expressions and views
given a single input image of a person. We introduce a novel
conditional GAN that is controlled using estimated depth and
normal maps, as well as a loss function that preserves the
identity of the subject.

• Our synthesis network can generate plausible mouth interior
and eye regions from a still portrait, while ensuring photoreal-
istic and person-speci�c deformations of the subject, whereas
existing techniques directly transfer expressions from the
source.

2 RELATED WORK
Facial Expression Modelling. The work of [Blanz and Vetter 1999]

is the �rst instance of learning a 3D PCA model of face shape and
texture, using around 200 subjects in neutral poses. In order to model
the variation in expressions, previous work [Amberg et al. 2008]
combine a PCA model of a neutral-expression face shape with a
PCA space derived from the residual vectors of di�erent expressions
to the neutral pose. More recent techniques [Booth et al. 2017, 2016]
are able to learn a linear face model of a neutral expression using
around 10,000 scans. Vlasic et al. [2005] use a tensor-based model
to jointly represent variations in identity and expression, and Yang
et al. [2011] build a separate PCA model per facial expression. Cao
et al. [2014] released a comprehensive bi-linear face model database
using depth-sensor captured data. Since these methods capture
the texture variations by blending linearly between subjects and
expressions, they cannot handle high-frequency details such as
wrinkles. Nevertheless, these dynamic face models are suitable for
single-view face modeling and tracking applications [Blanz and
Vetter 1999; Bouaziz et al. 2013; Cao et al. 2014, 2016; Garrido et al.
2016; Hsieh et al. 2015; Hu et al. 2017; Li et al. 2013; Saito et al. 2016,
2017; Thies et al. 2015, 2016a; Weise et al. 2011].

Facial Expression Capture. While only for the geometry of facial
expressions, Weise et al. [2009] recorded hundreds of frames of a
subject’s performance to build its PCA expression model, before

tracking. Li et al. [2010] later developed an example-based blend-
shape modeling technique that only requires a sparse set of key
expressions as input to generate a full set of FACS-based expressions.
This technique has been adopted in the Kinect-driven facial perfor-
mance capture framework [Weise et al. 2011] and its commercial
implementation Faceshift. Using a dedicated expression scanning
session using a high-end 3D acquisition system, previous work [Cao
et al. 2015] demonstrates a method that can simultaneously model a
face’s overall geometry, as well as �ne-scale geometry details, such
as wrinkles. The authors of [Casas et al. 2016] show that photoreal-
istic looking face models can be built easily using dynamic textures
obtained from multiple RGB-D acquisitions. Cao et al. [2016] only
use an RGB sensor to create an image-based 3D avatar with dynamic
facial textures, but require multiple images of the user and some
manual input. In the context of video face replacement, previous
work [Dale et al. 2011] use both a re-timed source and target video
to warp the facial performance between subjects. To model skin tone
variations such as blushing, Jimenez et al. [2010] build a dynamic
appearance model of skin from in vivo measurements of melanin
and hemoglobin concentrations.

Facial Detail Transfer. Without the need for capturing additional
expressions, one way to produce �ne-scale texture details during a
performance capture is to transfer high-frequency appearance vari-
ations from the source video to a target. The method of [Olszewski
et al.] is able to transfer expression textures from a performer to a
target 3D face for a video-based face replacement application. In
particular, this method uses a conditional GAN that operates in the
UV texture space. Averbuch-Elor et al. [2017] animate a still portrait
using a source actor, but transfer the dynamic details (e.g., wrinkles)
from the source, which are not necessarily compatible with the
facial features of the portrait. While the above two methods only
need a single target image, they copy the mouth interior from the
source, which may result in uncanny results.

Facial Texture Synthesis. Instead of transferring details from a
source to a target, another way of generating details is to synthe-
size details from the input image directly. Saito et al. [2017] uses a
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pre-trained classi�cation network to synthesize complete and photo-
realistic textures by using feature statistics of multiple layers [Gatys
et al. 2015].

Isola et al. [2016] are the �rst to show that one can learn "transla-
tion" functions using GANs which map images from one domain
to another. Recently, this kind of image-to-image translation frame-
work is applied to capture high-�delity facial re�ectance and geom-
etry [Huynh et al. 2018; Yamaguchi et al. 2018]. Zhu et al. [2017]
extend the work of [Isola et al. 2016] by showing that such transla-
tion is possible when ground-truth pairing examples are absent. In
both these works, however, each domain transfer requires a sepa-
rate function. Choi et al. [2017] show that, in fact, a single model is
able to perform image-to-image translation for multiple domains.
However, they are limited to synthesizing a sparse set pre-de�ned
semantic expressions such as smiling, frowning, etc. More recently,
Kim et al. [2018] are able to generate controllable performances if
provided with a video of the target actor. In contrast, our method
can do so using only a single image. Song et al. [2017] use �ducial
points, which describe facial geometry, as a conditioning factor as
the input to a GAN for outputting varied expression. Their method
is con�ned to a low resolution, however, at 128 ⇥ 128. Furthermore,
these landmark points are sparse and therefore fail to capture dis-
tinct facial identities and expressions. In contrast, our method uses
dense normal and depth maps as conditioning factors which are
much more capable of capturing the �ne geometric details of a
particular expression. The authors of [Ding et al. 2017] show that
an expression code module can be learned alongside an encoder-
decoder framework, which allows a user to control the intensity
of an expression. Karras et al. [2017] recently propose a method
of optimizing GANs progressively, adding new layers to both the
discriminator and generators throughout the training.

3 METHOD OVERVIEW
Dynamic Texture Synthesis. Given a single face image in a neutral

pose, along with a desired blendshape expression and viewpoint, our
deep generative network (paGAN) is able to produce a realistic im-
age of the face with the desired expression (Section 4). Our network
is conditioned on multiple inputs, including eye gaze and a rendered
image of normals of the 3D �tting to the target image, providing �ne
scale control of the output. We note that we use a single network
that is able to work for all identities, whereas the method of [Kim
et al. 2018] use di�erent networks trained for each target avatar,
requiring for each a source video as training data. Likewise, though
Olszewski et al. [Olszewski et al.] can produce animations from a
single image of new subjects, they use temporally aligned video
performances for training. In either case, a tedious process is re-
quired to accommodate new subjects or extend the training set size.
Our method works for any number of subjects on a single network,
and only requires lightweight annotation of the data (which images
have the same identity). Once trained, our network can produce
fully-controllable temporally stable video performances from any
image. Please see Figure 3 (left half) for details.

Image Based Dynamic Avatar. Once this network is trained, we
are able to perform real-time avatar manipulation on amobile device.
We employ a strategy of "compressing" our learned model so that it

input view-independent
synthesis

view-dependent
synthesis

zoom-in zoom-in

Fig. 4. View-aware texture synthesis evaluation. "View-independent synthesis" shows
the result of using a frontally-synthesized texture placed on a fi�ed mesh turned
sideways, whereas view-dependent synthesizes the side-view face directly from paGAN.
Distortion in the mouth region is clear for the former approach.

can run with minimal computational resources, as current mobile
devices cannot incorporate the full paGAN on their GPU. To achieve
this, we generate a realistic image for each of a set of predetermined
expressions, K , that we call "key expressions" (Section 5). Then,
using a �tted model to the target, we extract textures in UV space
for each of these "key expressions." We use K = 6 key expressions
for all experiments.
Once these "key expression" textures are computed, we are able

to expand them via activation masks into a larger set of FACS-based
textures, each corresponding to a speci�c blendshape vector. We
are able to produce 51 textures with the activation masks. Then,
by reading the expression blendshape coe�cients of a user, we can
replace both the geometry and appearance of said user with the
likeness of the target by linearly combining the FACS textures.

We note that these key-textures are computed with our network
o�ine and can then be used for real-time applications with a mobile
device. We further note that even high-end real-time desktop game
characters (e.g., Digital Ira [Alexander et al. 2013]), use only up to
eight key expressions, which is further decomposed into FACS-based
blendshape textures.
We also use an image-based method for rendering the eyes and

mouth interior of the dynamic avatar. We use the trained paGAN
to pre-generate multiple textures of both the eyes and the mouth
interior, which we then pass to a mobile device (Section 6). For the
eye region, we retrieve the nearest eye texture based on the gaze
signal from the mobile phone facial tracker to represent dynamic eye
gaze. For the mouth, we use a per-pixel weighted median approach
[Suwajanakorn et al. 2017] to synthesize appropriate dynamicmouth
interiors. Finally, we incorporate the method of [Hu et al. 2017] to
add hair to the �nal model. Please refer to Figure 3 (right half) for
details.

4 DYNAMIC TEXTURE SYNTHESIS
Given a frontal faced image I , we �rst �t a 3D Morphable Model
to the image using the method of [Thies et al. 2016b] to obtain the
initial mesh MI = (�I , �I ,RI ), where �I and �I are the respective
identity and expression coe�cients of the �tting to image I, and
RI encodes the orientation parameters (rotation and translation).
We then compute the face texture TI which is unwrapped from I to
UV-space. Unlike Thies et al. [2016b], the mesh we use is not hollow
behind the eyes and the mouth.

For an arbitrary target expression E with blendshape coe�cients
�E and rigid transform parameters RE , we drive M by replacing
the expression blend-shape coe�cients to obtain the mesh ME =

ACM Transactions on Graphics, Vol. 37, No. 6, Article 258. Publication date: November 2018.



paGAN: Real-time Avatars Using Dynamic Textures • 258:5

(�I , �E ,RE ). Our dataset contains faces varying up to 45 degrees in
every direction from the neutral pose, which allows us to produce
photo-realistic facial performances with a large range of motion. We
train to output varying viewpoints in order to produce convincing
side-view textures for our �nal avatar. Rendering a straight-on
texture from a side-view results in artifacts (see Figure 4).
The input of the network consists of

AI = (I ,�(ME ),� (ME ), �(I ), �(ME ,TI ))

, where �(ME ) is an image of the rendered normal directions ofME ,
� (ME ) is the depth map, �(I ) is a masked-image encoding the the
direction of gaze, and �(ME ,TI ) is a rendered image ofME using the
input texture TI , which we call the "deformed neutral" image. We
use the camera space ofM for each input, so all images are aligned.

masked
neutral image

Real/Fakeexpression
(depth+normal)

deformed neutral
+

gaze

F

D

Lid

Ladv

generator

Ll1

Fig. 5. Illustration of cGAN with discriminator for expression synthesis.

Using this input, we train an image translation network [Isola et al.
2016] to infer the real face imagewith the correct facial deformations,
IE . The intuition here is that IE and �(ME ,TI )will be relatively close
already. Static texture details should remain aligned, and dynamic
deformations caused by the expression �E can be explained well by
the �tted mesh’s normals and depth. Furthermore, the normal-image
provides a dense pixel-wise orientation map, which is important for
the realistic generation of view-dependent eyes and mouth textures.
See Figure 5 for architecture illustration and input examples.
More succinctly, we train a U-net based generator G with skip

connections [Isola et al. 2016] that tries to generate the true expres-
sion image IE from the input (I ,�(ME ),� (ME ), �(I ), �(ME ,TI )). Our
loss is given by:

L = �ad�Lad� + �idLid + �`1L`1 (1)

, where Lad� , Lid , and L`1 are the adversarial, identity-preserving,
and the pixel-wise Manhattan reconstruction loss, respectively.

Adversarial Loss. We train a patchGAN discriminator D [Isola
et al. 2016] that attempts to distinguish between the real hextuple

(I ,�(ME ),� (ME ), �(I ), �(ME ,TI ), IE )

, and the generated one

(I ,�(ME ),� (ME ), �(I ), IE�t ,G(·))

, where IE�t refers to the rendered blendshape �t to the ground-
truth image of the actor performing expression E. The adversarial
loss is given by lo�(D(G(·))
Pixel-wise Loss. The pixel-wise loss is de�ned as | |G(·) � IE | |1,

the sum of pixel-wise absolute di�erences between the generated
expression image and ground-truth expression image.

Identity-Preserving Loss. We use the pre-trained model of Light
CNN[Wu et al. 2015] to compute a 256 dimension feature vector
encoding the identity of the subject’s face, and employ the following
identity preserving loss to enforce the identity-likeness between I0
and the generated image:

Lid = kF (I ) � F (G(AI )k1 (2)

5 BUILDING FACS TEXTURES

key expression activation mask FACS expression

Fig. 6. FACS expressions and corresponding activation masks.

Once the network is trained, we are able to generate any expres-
sion we would like for a target neutral image, and can synthesize
per-frame textures from any sequence of blendshapes. However,
this method is computationally intensive, as we would have to ren-
der the condition images (see Figure 5) and run the GAN synthesis
at every frame. This needs a high-end desktop GPU and would
make real-time applications incredibly di�cult on mobile devices.
Furthermore, failures at a given frame could result in temporal
inconsistencies and undesirable artifacts.

Now, suppose instead that we had a texture mapTe corresponding
to each blendshape e 2 E, where E is the set of blendshapes in
our model, each of which corresponds to a FACS action. We could
then use a linear combination of these textures, weighted by the
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Fig. 7. Gallery of results of image-based dynamic avatars. Avatar hair generated using the method of [Hu et al. 2017]. The far right column shows the avatar rendered for a real-time
application in a scene for mobile devices.

expression blendshape coe�cients of the �tting, to construct the
output texture map we wanted. In this case, a single o�ine pass
could get us the textures we needed for real-time synthesis, without
further need of the network. In addition, we could train the network
to focus on producing these expressions in particular, decreasing the
risk of error. In actuality, the process to achieve this is more complex.
First of all, a naive linear blending of entire UV textures won’t
actually work, as the facial appearance changes locally. Instead,
inspired by previous work [Seol et al. 2011], we further apply a
UV activation mask per expression which is computed by taking
the per-vertex deformation magnitude of each expression from the
neutral pose.
That is, given a blendshape mesh e 2 E and a neutral mesh M ,

its activation mask Ae at vertex � in UV space is de�ned as follows:
Ae (�) = | |e(�)�M(�)| |2. That is, the mask’s value for vertex� is the
magnitude of the deformation at that vertex. The vertex deformation
is interpolated to neighboring pixels in UV space so there are no
holes or gaps in the activation mask. Also we apply small Gaussian
blur on it to remove any discontinuities. A visualization of the
activation maps of di�erent expressions can be found in Figure 6.

Then, the �nal texture at pixel � for expression blendshape coef-
�cients {ate } at frame t can be computed as follows:

c(�) = w0(�) ·T0(�) +
’
e 2E

we (�) ·Te (�) (3)

, wherewe indicates an activation mask modulated by a blendshape
coe�cient, that is, we = ate · Ae (�). Likewise, w0 is a weight of a
neutral expression w0 = max(0, 1 � Õ

e 2E we (�)). w0 and we are
further normalized to satisfyw0 +

Õ
e 2E we = 1

While this works in theory, directly obtaining an individual FACS
blendshape texture Te is not practical because performances of

isolated FACS (e.g., raising a single eyebrow) is incredibly di�cult for
actors. Instead, we �rst infer textures for a setK of "key expressions"
that we found to be easily performed and reconstruct the FACS based
textures from these. For a key expression k 2 K and corresponding
blendshape coe�cients {ake }, an activation weightwk is given by
wk =

Õ
e 2E ake ·Ae (�). Now using the "key expressions", we compute

the dynamic texture as:

c(�) = w0(�) ·T0(�) +
’
k 2K

wk (�) ·Tk (�) (4)

, where wk is further modulated by time-varying blendshape co-
e�cients {ate } as wk =

Õ
e 2E ake · ate · Ae (�) and w0 = max(0, 1 �Õ

k 2K wk (�)) followed by normalization. Finally, a FACS texture
for expression e is recovered by settingwk = ake ·Ae (�) (i.e., ati = 1
for i = e and ati = 0 otherwise).

6 REAL-TIME IMAGE BASED AVATARS
While Cao et al. [2016] introduce a method to generate dynamic per-
frame-textured avatars, they require multiple input images by the
user. On the other hand, Hu et al. [2017] demonstrates the ability to
reconstruct an avatar from a single image, but is unable to compute
dynamic textures for it. Our pipeline, in contrast, is able to both
generate a dynamically textured avatar while still only requiring a
single image. Furthermore, the avatar can be controlled in real-time
from the user’s facial performance on a mobile device (see Figure 7).

FACS-based Textures. We pre-compute K (= 6) key expression
textures (see previous section) and pass them onto the mobile device
afterwards. For e�ciency, we implemented Equation 4 on a pixel
shader and directly compute the dynamic texture without explicitly
storing individual FACS textures. For each frame of the avatar’s
animation, using the tracked expression coe�cients from the user,
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k-NN [Suwajanakorn et al. 2017]

Fig. 8. Alternative mouth synthesis approach using k-nearest-neighbor retrieval and
blending. Using the weighted-median approach of [Suwajanakorn et al. 2017] produces
sharp teeth while avoiding artifacts.

we are able to synthesize per-frame textures online (as described in
Section 5) and apply it to the deformed mesh.

Gaze Control. The eyes are dealt with in a similar manner: we
pre-compute 20 eye-textures for the avatar that approximate all
viewing directions using our paGAN and pass them to the mobile
device. Using the gaze tracker on the mobile device, we pick an eye
texture with the nearest gaze direction and composite it onto the
UV face texture.

Mouth Interior Synthesis. First, we pre-compute L (up to 300)
mouth interior textures that correspond to a large variation of mouth
poses using the dynamic texture synthesis in Section 4. Next, instead
of using a naive nearest-neighbor retrieval, we employ the per-
pixel weighted median blending of [Suwajanakorn et al. 2017]. Out
of L pre-computed textures, 50 nearest neighbor (NN) frames are
used for the weighted median blending, which is implemented on
a pixel shader. Following the implementation of [Suwajanakorn
et al. 2017], the NN frames are determined and weighted based on
the correlation of the sparse mouth landmarks between the current
and the L database frames. The database frames are chosen from a
subset of synthesized talking and range of mouth poses so they cover
su�cient deformation and appearance variations. A comparison of
di�erent mouth synthesis methods for a compressed avatar can be
found in Figure 8.

7 DATA COLLECTION AND TRAINING DETAILS
We use a combination of datasets for training and evaluating our
system. We list them below:

• Our proprietary data consisting of 67 subjects with di�ering
numbers of expressions and viewing angles, up to 40 per
individual.

• 158 out of 597 available subjects from the Chicago FaceDataset
(CFD). We choose subjects that have multiple expressions
within the dataset [Ma et al. 2015] and use the rest for testing.

• 230 subjects with 22 expressions each from the compound
facial expressions (CFE) dataset [Du et al. 2014].

• 14 subjects with 30 expressions each from the work of [Ol-
szewski et al.].

• 23 subjects with 15 expression each from the ICT 3DRFE
dataset [Stratou et al. 2011].

• 67 subjects, each with 3 gazes and 3 camera angles per each
of 8 expressions, from the Radbound Faces dataset [Langner
et al. 2010].

Table 1. Photometric error from ground truth. Best performance is achieved
with full model.

input MSE SSIM PSNR
depth/normal 299.5 0.9406 24.74

deformed neutral 260.1 0.9380 25.37
combined 102.5 0.9783 28.74

For training data, our network only needs a set of unconstrained
expression photographs and does not require a complex capture
setup. Our data is automatically annotated using a face �tting pro-
cess described in Section 4. After the initial face �tting, we mask
out the non-face region of the input using the �tted 3D geometry
(see Figure 3 left). We additionally apply some feathering to remove
the hard edges on the mask. These pre-processed images are then
re-sized, rotated, and translated so the faces are aligned on top of
each other. We train on 9,000 images and leave 1,000 aside for test-
ing. We train for 200 epochs on an NVIDIA Tesla V100 GPU using
the Adam optimizer [Kingma and Ba 2014] with an initial learning
rate of 0.0001 in PyTorch and a batch-size of 32. We weight our loss
function using �ad� = 1, �id = 0.15, and �`1 = 10. Our network
outputs at a resolution of 512 ⇥ 512 pixels.

We found that high quality dense annotations using the deformed
neutral, normal and depth maps obtained from the 3D face �tting
[Thies et al. 2016b] (see Figure 5) were necessary for stable training
and high-quality temporal coherent output from the GAN. Using
these dense conditions, the network is able to focus on learning
expression-speci�c details, such as wrinkles, mouth, and eye tex-
tures, based on the shape condition. Hence, we can avoid ambiguity
in the training, which could otherwise lead to corrupted results. We
also note that the training result depends on a balanced set of data
and ensure that the number of training photos is similar per subject
and the variations of the expressions are well distributed.

8 RESULTS
Figures 1 and 7 show synthesized key expressions and instances
of our dynamic avatars, after FACS textures have been computed
(outlined in Section 5). Our method is able to reproduce sharp wrin-
kles and creases in the avatar’s complexion when being driven by
blendshapes. Refer to the supplementary video for further examples.
A gallery of network results can be found in Figure 9. Notice that
our network is able to synthesize highly variable expression details
including wrinkles and the interior of the mouth at di�erent viewing
angles.

Comparisons. Figure 10 shows comparisons with ground truth
expressions. A visualization of a per-pixel Euclidean distance error
on example instances can be found in Figure 11. We also provide
a table for the photometric error in Table 1. It is easy to see that
our method produces much perceptually superior results than other
state of the art GAN approaches such as Song et al. [2017] and Choi
et al. [2017] which have noticeable artifacts (see Figure 12).

The di�erence in quality compared with Song et al. [2017] is espe-
cially noteworthy, given that both our method and theirs condition
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expression source

target1 target6 target7 target8target2 target3 target4 target5

Fig. 9. Gallery of synthesized expressions. Note that only the blendshape fi�ing of the source is used to produce these results - no transfer of wrinkles/mouth from the source image
is used. Original image courtesy of Ge�y Images (target 3 and 4).

GANs on geometric properties. We thus posit that using dense geo-
metric indicators, such as the pixel-wise normals and depth, gives
much more control when working with GANs than sparse �ducial
landmarks. This hypothesis is reinforced when comparing with a
version of our method that omits using either the deformed neutral
or the normal/depth maps as an input (see Figure 13). When omitted,
�ne scale features such as the mouth interior do not appear at all.

A comparison with expression transfer methods can be found in
Figure 14. These can sometimes produce results found in the source
image that are not appropriate in the target. We show other avatar
methods in Figure 15 and Figure 16. The avatars generated in 15
require multiple input images while the method of [Hu et al. 2017]
in Figure 16 does not have dynamic textures.

Performance. Table 2 lists the running time for each stage of our
pipeline. Our o�ine experiments are performed using an Intel Core
i7-5930K CPU with an NVIDIA Tesla V100 GPU. Our real-time ex-
periments are performed on an Apple iPhone X. Note that while the
trained network takes only 7 ms on the desktop for texture synthesis,
directly porting such a network onto a mobile is impractical. Our
proposed method, on the other hand, allows real-time performance
on mobile devices.

User Study. We conduct an Amazon Mechanical Turk study ask-
ing participants to distinguish real face images from the synthetic
ones generated by our method. The user study is performed on
dynamic expression photos since the main focus of our GAN is to
provide photorealistic key expressions for our real-time avatar.
The questionnaire is posed in the following format: each question
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input neutral image synthesized expressiondeformed neutral + gaze
for condition ground truth

Fig. 10. Gallery of synthesized results compared with ground truth. Though synthe-
sized deformations do not always correspond with ground-truth dynamic details, the
network-generated expression are remain plausible and realistic due to the adversarial
loss. Only the deformed neutral and gaze image is shown for the condition.

contains 5 face images, 4 of which are real and 1 of which is gen-
erated by our network. Examples of real and synthesized images
are given before the questionnaire, and the tester is asked to pick
the generated one out of 5 images each time, without a time limit.
There are two modes of question, one in which each image is the

ground truth ours photometric error
0 50

Fig. 11. Visualization of a photometric error compared to ground truth.

input sparse landmarks [Song et al.] our method

input discrete set of expressions [Choi et al.] our method

Fig. 12. Comparison with other GAN-based texture synthesis methods. Other meth-
ods produce noticeable artifacts.

same identity making di�erent expressions, and one in which each
image is of a di�erent individual making the same expression.

If a user is not able to tell the di�erence, s/he should be getting the
correct answer at around a 20.0% rate with random guessing. We
asked each of 200 users 3 of these questions, constructed at random.
The average rate of choosing correctly was 26.6% ± 0.054% for same
expression type questions and 25.7% ± 0.036% for same identity
type questions and nobody was able to identify all the synthesized
images. See Table 3 for details. This indicates that our method nearly
completely fooled the users.

9 CONCLUSION
We have demonstrated paGAN - an end-to-end deep learning ap-
proach for facial expression texture synthesis - on a wide range of
challenging examples. We show how individualized and continuous
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input only
deformed neutral

only
depth/normal

 depth/normal
deformed neutral

Fig. 13. �alitative ablation evaluation of paGAN. The second column from le� is
generated from a network trained using only a deformed neutral face in addition to the
input image. The third column from le� uses all inputs except the deformed neutral,
and the right-most column is the result from the full model.

target

[Olszewski et al.] our methodexpression source

target

[Averbuch-Elor et al.] our methodexpression source

Fig. 14. Comparison with expression transfer methods. Transfer from source can
produce inappropriate results. The method of [Averbuch-Elor et al. 2017] (bo�om)
seems to transfer the source’s tongue too high in the target mouth (third column),
whereas our method does not use the source tongue.

variations of facial expressions, including the mouth interior and
eyes, can be synthesized in various poses from a single input image.
Our technique does not train individualized networks for each iden-
tity [Kim et al. 2018], meaning new subjects are easy to process. We
show that paGAN enables performance-based animation using an
image-based dynamic avatar as well as video-driven facial anima-
tion, by generating a compressed model representation that can be
run on a mobile device in real-time.

input  [Ichim et al.] our method

input

[Suwajanakorn et al.] our method

input

[Cao et al.] our method

reference

reference

reference

Fig. 15. Comparison with other avatar methods. Other methods require multiple
input images, whereas we only require one. The second method comparison is rendered
without hair and ears for more direct comparison with Suwajanakorn et al. [2015].
Daniel Craig images courtesy of Ge�y Images.

Limitations. As mentioned earlier, our method requires the input
face to be roughly frontal, in a neutral pose, and well illuminated.
Our method mostly fails, when the subject has a three quarter view
face, is smiling, or when a hard shadow is cast on its face (Figure 17
�rst and second columns). Furthermore, we cannot handle a tongue
sticking out and occlusions from hair, glasses, or hands (Figure 17
third and fourth columns). Also it is not possible to predict the exact
person-speci�c dynamic appearance (e.g., same number of teeth)
from just a single still portrait (Figure 18).

Future Work. There are many future avenues to extend our work.
Video re-enactment [Kim et al. 2018; Thies et al. 2016b] has been
shown to be possible given a video as input. These re-enactments
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[Hu et al. 2017]  ours (compressed) ours (synthesized expression)

Fig. 16. Comparison with Hu et al. [2017]. They do not used an image-based approach
for eyes and teeth, but generic 3D models instead, resulting in an uncanny appearance.

Table 2. Running time of each stage. Creating textures per frame is very
slow on a cell-phone, while our modified pipeline runs at 30 fps on an iPhone
X. For hair modeling, we are using the code from [Hu et al. 2017] without
optimization.

stage time (ms)
neutral face �tting 500

hair modeling [Hu et al. 2017] 100,000
texture synthesis (desktop) 7
texture synthesis (mobile) 350

tracking (mobile) 10
texture composition (mobile) 4

mouth interior synthesis (mobile) 15

Table 3. Fooling rate of user study. Our method performs very close to being
able to fool the users absolutely.

Task Fooling rate
random guessing 0.800

di�erent expressions 0.743±0.036
di�erent individuals 0.734±0.054
perfect distinguisher 0.000

include the background and body of the target avatar. The natural
next step is to do this from a single image. It would also be interest-
ing to collect data with accurate lighting annotations; using lighting
as a condition would be especially useful for the mobile application,
allowing us to relight the face to match the user’s current environ-
ment. Our method works for generic expressions transferred to a
user-speci�c identity, even though the resulting expression blend-
shape may not accurately predict the ones from this person. In the
future, we could jointly predict user-speci�c shapes in addition to
expression textures for more accurate results.

inp
ut

sy
nt
he

sis

Fig. 17. Failure cases. An input with an angled face and a non-neutral expression
can lead to artifacts (first column). The input has a strong shadow, which cannot be
removed, when synthesizing a new viewpoint (second column). Occluding objects such
as the tongue (third column), the hand, and glasses (fourth column) also cannot be
removed in the synthesis.

ground truth synthesis

Fig. 18. The ground truth mouth interior is missing a tooth, but network synthesizes
a full suite of teeth.
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