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Fig. 1. FLAME example. Top: Samples of the D3DFACS dataset. Middle: Model-only registration. Bottom: Expression transfer to Beeler et al. [2011] subject
using model only.

The field of 3D face modeling has a large gap between high-end and low-end
methods. At the high end, the best facial animation is indistinguishable
from real humans, but this comes at the cost of extensive manual labor. At
the low end, face capture from consumer depth sensors relies on 3D face
models that are not expressive enough to capture the variability in natural
facial shape and expression. We seek a middle ground by learning a facial
model from thousands of accurately aligned 3D scans. Our FLAME model
(Faces Learned with an Articulated Model and Expressions) is designed to
work with existing graphics software and be easy to fit to data. FLAME
uses a linear shape space trained from 3800 scans of human heads. FLAME
combines this linear shape space with an articulated jaw, neck, and eyeballs,
pose-dependent corrective blendshapes, and additional global expression
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blendshapes. The pose and expression dependent articulations are learned
from 4D face sequences in the D3DFACS dataset along with additional 4D
sequences. We accurately register a template mesh to the scan sequences and
make the D3DFACS registrations available for research purposes. In total
the model is trained from over 33, 000 scans. FLAME is low-dimensional but
more expressive than the FaceWarehouse model and the Basel Face Model.
We compare FLAME to these models by fitting them to static 3D scans and 4D
sequences using the same optimization method. FLAME is significantly more
accurate and is available for research purposes (http://flame.is.tue.mpg.de).
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1 INTRODUCTION
This paper addresses a significant gap in the field of 3D face model-
ing. At one end of the spectrum are highly accurate, photo-realistic,
3D models of individuals that are learned from scans or images of
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that individual and/or involve significant input from a 3D artist
(e.g. [Alexander et al. 2009]). At the other end are simple generic
face models that can be fit to images, video, or RGB-D data but that
lack realism (e.g. [Li et al. 2013]). What is missing are generic 3D
face models that are compact, can be fit to data, capture realistic
3D face details, and enable animation. Our goal is to move the “low
end” models towards the “high end” by learning a model of facial
shape and expression from 4D scans (sequences of 3D scans).
Early generic face models are built from limited numbers of 3D

face scans of mostly young Europeans in a neutral expression [Blanz
and Vetter 1999; Paysan et al. 2009]. More recently, the FaceWare-
house model [Cao et al. 2014] uses scans of 150 people with variation
in age and ethnicity and with 20 different facial poses. While widely
used, the limited amount of data constrains the range of facial shapes
that the above models can express.
To address limitations of existing models, we exploit three het-

erogeneous datasets, using more than 33, 000 3D scans in total.
Our FLAME model (Faces Learned with an Articulated Model and
Expressions) is factored in that it separates the representation of
identity, pose, and facial expression, similar to models of the hu-
man body [Anguelov et al. 2005; Loper et al. 2015]. To keep the
model simple, computationally efficient, and compatible with exist-
ing game and rendering engines, we define a vertex-based model
with a relatively low polygon count, articulation, and blend skin-
ning. Specifically FLAME includes a learned shape space of identity
variations, an articulated jaw and neck, and eyeballs that rotate.
Additionally we learn pose-dependent blendshapes for the jaw and
neck from examples. Finally, we learn “expression” blendshapes to
capture non-rigid deformations of the face.
We train the identity shape space from the heads of roughly

4000 CAESAR body scans [Robinette et al. 2002] spanning a wide
range of ages, ethnicities, and both genders. To model pose and
expression variation we use over 400 4D face capture sequences
from the D3DFACS dataset [Cosker et al. 2011] and additional 4D
sequences that we captured, spanning more expression variation.
All the model parameters are learned from data to minimize 3D
reconstruction error. To make this possible we perform a detailed
temporal registration of our template mesh to all the scans (CAESAR
and 4D).

The CAESAR dataset has been widely used for modeling 3D body
shape [Allen et al. 2003, 2006; Bogo et al. 2015; Chen et al. 2011;
Hirshberg et al. 2012; Loper et al. 2015; Pishchulin et al. 2017] but
not explicitly for face modeling and existing body models built from
CAESAR do not capture facial articulation or expression. Here we
take an approach similar to the SMPL body model [Loper et al. 2015]
but apply it to the face, neck, and head. SMPL is a parameterized
blend-skinned body model that combines an identity shape space,
articulated pose, and pose-dependent corrective blendshapes. SMPL
does not model facial motion andwe go beyond it to learn expression
blendshapes.
Given that faces are relatively low-resolution in full body scans,

the task of precisely registering the scans is both critical and difficult.
To achieve accurate registration a form of co-registration [Hirshberg
et al. 2012] is used in which we jointly build a face model and use
it to align the raw data. Given registrations we build a facial shape
model and show that the resulting identity shape space is richer

than that of the Basel Face Model (BFM) [Paysan et al. 2009] and
the FaceWarehouse model.

To the best of our knowledge, FaceWarehouse is the only publicly
available 3D face database with a large number of facial expression
that comes together with template meshes aligned to raw scan data
(from a depth sensor). The D3DFACS dataset has much higher qual-
ity scans but does not contain aligned meshes. Registering such 4D
data presents yet another challenge. To do so we use co-registration
and image texture to obtain high quality alignment from a sequence
of 3D scans with texture; this is similar to work on full bodies [Bogo
et al. 2014]. Including eyeballs in the model also improves alignment
for the eye region, particularly the eye lids. The registration and
model learning process is fully automatic.

In a departure from previous work, we do not tie the expression
blendshapes to facial action units (FACS) [Ekman and Friesen 1978].
Instead we learn the blendshapes with a global linear model that
captures correlations across the face. FACS models are overcomplete
in that multiple settings can produce the same shape; this compli-
cates solving for the parameters from data. The FLAME model, in
contrast, uses an orthonormal expression space, which is further
factored into identity and pose. We argue that this is advantageous
for fitting to noisy, partial, or sparse data. Other types of sparse rigs
can be built on top of, or derived from, our representation.
Unlike most previous models, we model the head and neck to-

gether. This allows the head to rotate relative to the neck and we
learn pose-dependent blendshapes to capture how the neck deforms
during rotation. This captures effects like the protrusion of neck
tendons during rotation, increasing realism.
Our key contribution is a statistical head model that is signifi-

cantly more accurate and expressive than existing head and face
models, while remaining compatible with standard graphics soft-
ware. In contrast to existing models, FLAME explicitly models
head pose and eyeball rotation. Additionally we provide a detailed
quantitative comparison between, and analysis of, different models.
We make our trained models publicly available for research pur-
poses [FLAME 2017]. The release comprises female and male models
along with software to animate and use the model. Furthermore, we
make the temporal registration of the D3DFACS dataset publicly
available [FLAME 2017] for research purposes, enabling others to
train new models.

2 RELATED WORK
Generic face models: Blanz and Vetter [1999] propose the first

generic 3D face model learned from scan data. They define a linear
subspace to represent shape and texture using principal component
analysis (PCA) and show how to fit the model to data. The model is
built from head scans of 200 young, mostly Caucasian adults, all in
a roughly neutral expression. The model has had significant impact
because it was available for research purposes as the Basel Face
Model (BFM) [Paysan et al. 2009]. Booth et al. [2017; 2016] learn a
linear face model from almost 10, 000 facial scans of more diverse
subjects in a neutral expression.
To additionally model variations in facial expression, Amberg

et al. [2008] combine a PCA model of neutral face shape with a
PCA space learned on the residual vectors of expressions from the

ACM Transactions on Graphics, Vol. 36, No. 6, Article 194. Publication date: November 2017.



Learning a model of facial shape and expression from 4D scans • 194:3

neutral shape. The recently published Face2Face framework [Thies
et al. 2015] uses a similar model combining linear identity and
expression models with an additional linear albedo model to capture
appearance. Yang et al. [2011] build several PCA models, one per
facial expression, while Vlasic et al. [2005] use a multilinear face
model; i.e. a tensor-basedmodel that jointly represents the variations
of facial identity and expression. The limited data used to train
these methods constrains the range of facial shapes that they can
express. Since the identity space of our method is trained frommuch
richer data, our model is more flexible and more able to capture
person-specific facial shapes. Tensor-based models assume that
facial expressions can be captured by a small number of discrete
poses that correspond between people. In contrast, our expression
space is trained from sequences of 3D scans. It is unclear how to
extend existing tensor methods to deal with the complexity and
variability of our temporal data.

Modeling facial motion locally is inspired both by animation and
the psychology community where the idea of the Facial Action Cod-
ing System (FACS) [Ekman and Friesen 1978] is popular. To capture
localized facial details, Neumann et al. [2013] and Ferrari et al. [2015]
use sparse linear models. Brunton et al. [2014] use a large number
of localized multilinear wavelet models. For animation, facial rigs
use localized, hand crafted, blendshapes to give the animator full
control. These rigs, however, suffer from significant complexity and
redundancy, with overlapping blendshapes. This makes them ill
suited as a model to fit to data since they afford multiple solutions
for the same shape.

Because generic face models are often quite coarse, several meth-
ods augment coarse face shape with additional higher-frequency
details. Dutreve et al. [2011], Shi et al. [2014], and Li et al. [2015]
add actor specific fine-scale details by defining a wrinkle displace-
ment map from training images. Garrido et al. [2013] build an actor
specific blendshape model with the rest-pose shape created from
a binocular stereo reconstruction and expressions from an artist
generated blendshape model. All these methods are non-generic
as they require offline actor-specific preprocessing [Dutreve et al.
2011; Li et al. 2015] or an actor-specific initial 3D mesh.
Cao et al. [2015] use a probability map to model person-specific

features such as wrinkles on top of a personalized blendshape model.
In their later work [Garrido et al. 2016], they use a generic model
to estimate a coarse face shape of an actor, and build personalized
high-frequency face rigs by relating high-frequency details to the
low-resolution parameters of the personalized blendshapemodel. Xu
et al. [2014] decompose facial performance in a multi-resolution way
to transfer details from one mesh to another. They use pre-defined
expression blendshapes and do not learn a model. The methods
above could be applied as a refinement to add additional facial
details to FLAME with a displacement or normal map.

Kozlov et al. [2017] add non-rigid dynamics to facial animation by
using “blend materials” to control physical simulation of dynamics;
they do not learn the model from scans. Still other work takes
collections of images from the Internet and uses a variety of methods,
including shape from shading, to extract a person specific 3D shape
[Kemelmacher-Shlizerman and Seitz 2011]. They animate the face
using 3D flow, warping, and a texture synthesis approach driven by
a video sequence [Suwajanakorn et al. 2014, 2015].

Alexander et al. [2009] generate a personalized facial rig for an
actress using high-resolution facial scanning and track a facial per-
formance of this actress using a semi-automatic animation system.
Wu et al. [2016] combine an anatomical subspace with a local patch-
based deformation subspace to realistically model the facial perfor-
mance of three actors. Similar to our work, the jaw has a rotational
degree of freedom, but their method uses personalized subspaces
to capture shape details and therefore is not applicable to arbitrary
targets.
Personalized blendshape models are often used for facial per-

formance capture. Such personalized rigs typically require a user-
specific calibration or training procedure [Li et al. 2010; Weise et al.
2011]. Bouaziz et al. [2013] use an identity PCA model along with
deformation transfer [Sumner and Popović 2004]. Cao et al. [2014]
generate personalized blendshapes using a multilinear face model
based on their FaceWarehouse database. Ichim et al. [2015] generate
personalized blendshapes from images of the neutral rest pose and
facial motion recordings. These methods either use artist-designed
generic blendshapes as initialization, or low resolution local expres-
sions designed to resemble FACS action units (FaceWarehouse).

A key step in building our model is the alignment, or registration,
of a template face mesh to 3D scan data. Generic shape alignment is
a vast field (e.g. [Bronstein et al. 2008; Davies et al. 2008]), which we
do not summarize here.We focus onmethods for aligning 3Dmeshes
to scan data to build articulated shape and pose models. There have
been many approaches for aligning static face scans [Amberg et al.
2007; Salazar et al. 2014] but few methods focus on 4D data (se-
quences of 3D meshes). Approaches like Vlasic et al. [2005] rely on
manual key points; such approaches do not scale to deal with thou-
sands of scans. Beeler et al. [2011] use repeated anchor frames with
the same expression to prevent drift. They register high-resolution
meshes with great detail but do so only for three actors, and demon-
strate results only qualitatively on several hundred frames; here
our automated method generalizes to tens of thousands of frames.
Cosker et al. [2011] describe a method to align the D3DFACS dataset
using an active appearance model. They do not evaluate the ac-
curacy of the alignment in 3D and do not make the aligned data
available. Our approach to face registration uses co-registration
[Hirshberg et al. 2012], which has previously only been used with
full bodies.
We note that most previous methods have ignored the eyes in

the alignment process. This biases the eyelids to explain the noisy
geometry of the eyeballs, and creates substantial photometric errors
in the eye region. Consequently we add eyeballs to our mesh and
show that this helps the alignment process.

3 MODEL FORMULATION
FLAME adapts the SMPL body model formulation [Loper et al. 2015]
to heads. The SMPL body model neither models facial pose (articu-
lation of jaw or eyes) nor facial expressions. Extending SMPL makes
our model computationally efficient and compatible with existing
game engines. We use a consistent notation with SMPL.

In SMPL, geometric deformations are due to the intrinsic shape of
the subject, or deformations related to pose changes in the kinematic
tree. With faces, however, many deformations are due to muscle
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shape pose expression

Fig. 2. Parametrization of our model (female model shown). Left: Activation of the first three shape components between −3 and +3 standard deviations.
Middle: Pose parameters actuating four of the six neck and jaw joints in a rotational manner. Right: Activation of the first three expression components
between −3 and +3 standard deviations.

Fig. 3. Joint locations of the female (left) and male (right) FLAME models.
Pink/yellow represent right/left eyes. Red is the neck joint and blue the jaw.

activation, which are not related to any articulated pose change. We
therefore extend SMPL with additional expression blendshapes as
shown in Figure 2. Note that in several experiments we show just
the face region for comparison to other methods but FLAME models
the face, full head, and neck.
FLAME uses standard vertex based linear blend skinning (LBS)

with corrective blendshapes, with N = 5023 vertices, K = 4 joints
(neck, jaw, and eyeballs as shown in Figure 3), and blendshapes,
which will be learned from data. FLAME is described by a function
M (β⃗, θ⃗ ,ψ⃗ ) : R ⃗|β |× ⃗|θ |× ⃗|ψ | → R3N , that takes coefficients describing
shape β⃗ ∈ R ⃗|β | , pose θ⃗ ∈ R ⃗|θ | , and expression ψ⃗ ∈ R ⃗|ψ | and
returns N vertices. Each pose vector θ⃗ ∈ R3K+3 contains K + 1
rotation vectors (∈ R3) in axis-angle representation; i.e. one three-
dimensional rotation vector per joint plus the global rotation.

Themodel consists of a templatemesh,T ∈ R3N , in the “zero pose”
θ⃗∗, a shape blendshape function, BS (β⃗ ;S) : R

⃗|β | → R3N , to account
for identity related shape variation, corrective pose blendshapes,
BP (θ⃗ ;P) : R

⃗|θ | → R3N , to correct pose deformations that cannot
be explained solely by LBS, and expression blendshapes, BE (ψ⃗ ; E) :
R

⃗|ψ | → R3N , that capture facial expressions. A standard skinning
functionW (T, J, θ⃗ ,W ) is applied to rotate the vertices of T around
joints J ∈ R3K , linearly smoothed by blendweightsW ∈ RK×N .
Figure 2 visualizes the parametrization of FLAME, showing the

degrees of freedom in shape (left), pose (middle), and expression
(right).

More formally, the model is defined as

M (β⃗ , θ⃗ ,ψ⃗ ) =W (TP (β⃗, θ⃗ ,ψ⃗ ), J(β⃗ ), θ⃗ ,W ), (1)

where

TP (β⃗ , θ⃗ ,ψ⃗ ) = T + BS (β⃗ ;S) + BP (θ⃗ ;P) + BE (ψ⃗ ; E) (2)

denotes the template with added shape, pose, and expression offsets.
Since different face shapes imply different joint locations, the

joints are defined as a function of the face shape J(β⃗ ;J ,T,S) =
J (T + BS (β⃗ ;S)), where J is a sparse matrix defining how to com-
pute joint locations from mesh vertices. This joint regression matrix
will be learned from training examples below. Figure 3 illustrates
the learned location of the joints, which vary automatically with
head shape.

Shape blendshapes: The variations in shape of different subjects
are modeled by linear blendshapes as

BS (β⃗ ;S) =
⃗|β |∑
n=1

βnSn , (3)

where β⃗ = [β1, · · · , β ⃗|β |
]T denotes the shape coefficients, and

S = [S1, · · · , S ⃗|β |
] ∈ R3N× ⃗|β | denotes the orthonormal shape basis,

which will be learned below with PCA. The training of the shape
space is described in Section 6.3.

Pose blendshapes: Let R (θ⃗ ) : R ⃗|θ | → R9K be a function from
a face/head/eye pose vector θ⃗ to a vector containing the concate-
nated elements of all the corresponding rotation matrices. The pose
blendshape function is defined as

BP (θ⃗ ;P) =
9K∑
n=1

(
Rn (θ⃗ ) − Rn (θ⃗

∗)
)
Pn , (4)
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where Rn (θ⃗ ) and Rn (θ⃗∗) denote the n-th element of R (θ⃗ ), and R (θ⃗∗),
respectively. The vector Pn ∈ R3N describes the vertex offsets from
the rest pose activated byRn , and the pose spaceP = [P1, · · · ,P9K ] ∈
R3N×9K is a matrix containing all pose blendshapes. While the pose
blendshapes are linear in R, they are non-linear with respect to θ⃗ due
to the non-linear mapping from θ⃗ to rotation matrix elements. De-
tails on how to compute the pose parameters from data are described
in Section 6.1.

Expression blendshapes: Similar to the shape blendshapes, the
expression blendshapes are modeled by linear blendshapes as

BE (ψ⃗ ; E) =
⃗|ψ |∑
n=1

ψ⃗nEn , (5)

where ψ⃗ = [ψ1, · · · ,ψ ⃗|ψ |
]T denotes the expression coefficients, and

E = [E1, · · · ,E ⃗|ψ |
] ∈ R3N× ⃗|ψ | denotes the orthonormal expression

basis. The SMPL model does not have anything equivalent to these
expression blendshapes, which are not driven by pose. The training
of the expression space is described in Section 6.2.

Template shape: Note that the shape, pose, and expression blend-
shapes are all displacements from a template mesh T. We begin with
a generic face template mesh and then learn the T from scans along
with the rest of the model. We also learn the blend weights,W , as
described below.

4 TEMPORAL REGISTRATION
Statistically modeling facial shape requires all training shapes to
be in full vertex correspondence. Given sequences of 3D scans, for
each scan, i , the registration process computes an aligned template
Ti ∈ R3N . The registration pipeline alternates between registering
meshes while regularizing to a FLAMEmodel and training a FLAME
model from the registrations as shown in Figure 4. This alternating
registration is similar to that used for human bodies [Bogo et al.
2014].

4.1 Initial model
The alternating registration process requires an initial FLAMEmodel.
As described in Section 3, FLAME consists of parameters for shape
{T,S}, pose {P,W,J }, and expression E, that require an initial-
ization, which we then refine to fit registered scan data.

Shape: To get an initial head shape space, we extract the head
region from the full-body registrations of SMPL [Loper et al. 2015]
to the CAESAR dataset. We refine the mesh structure of the full-
body SMPL template and adjust the topology to contain holes for
the mouth and eyes. We then use deformation transfer [Sumner and
Popović 2004], between the SMPL full-body shape registrations and
our refined template, to get full-body registrations with the refined
head template. Using these registered head templates, we compute
the initial shape blend shapes, representing identity, by applying
PCA to the vertices.

To make the registration process more stable, and to increase the
visual quality of our model, we add eyeballs to our shape model.
To initialize the eyes, we place the left eyeball using the eye region

model of Woods et al. [2016] and regress its geometric center given
a set of vertices around the left eye. Finally, we apply the same
regressor to the equivalent (i.e. mirrored) set of vertices around the
right eye.

Pose: The blendweightsW and joint regressor J are initialized
with weights defined manually by an artist. The initial vertices for
the eyeball joint regressors are manually selected to result in joints
close to the eyeball geometric center.

Expression: To initialize the expression parameters E, we estab-
lish a correspondence through mesh registration between our head
template and the artist generated FACS-based blendshape model of
Li et al. [2013]. We then use deformation transfer, to transfer the ex-
pression blendshapes to our model. Although this initial expression
basis does not conform to our requirements of orthogonality and
expression realism, it is useful for bootstrapping the registration
process.

4.2 Single-frame registration
The data to which we align our mesh includes 3D scan vertices,
multi-view images (two for D3DFACS, three for our sequences),
and camera calibrations. To align a sequence of an individual, we
compute a personalized template and texture map of resolution
2048 × 2048 pixels as described later in Section 4.3.

Our model-based registration of a face scan consists of three steps.

Model-only: First, we estimate the model coefficients {β⃗, θ⃗ ,ψ⃗ } that
best explain the scan by optimizing

E (β⃗ , θ⃗ ,ψ⃗ ) = ED + λLEL + EP , (6)

with the data term

ED = λD
∑
vs

ρ *
,

min
vm ∈M (β⃗, θ⃗,ψ⃗ )

∥vs − vm ∥+
-
, (7)

that measures the scan-to-mesh distance of the scan vertices vs and
the closest point in the surface of the model. The weight λD controls
the influence of the data term. A Geman-McClure robust penalty
function [Geman and McClure 1987], ρ, gives robustness to outliers
in the scan.
The objective EL denotes a landmark term, measuring the L2-

norm distance between image landmarks and corresponding vertices
on the model template, projected into the image using the known
camera calibration. We use CMU Intraface [Xiong and la Torre 2013]
to fully automatically predict 49 landmarks (Figure 5 left) in all
multi-view camera images. We manually define the corresponding
49 landmarks in our template (see Figure 5 right). The weight λL
describes the influence of the landmark term.

The prior term

EP = λθ⃗Eθ⃗ + λ β⃗E β⃗ + λψ⃗ Eψ⃗ (8)

regularizes the pose coefficients θ⃗ , shape coefficients β⃗ , and expres-
sion coefficients ψ⃗ to be close to zero by penalizing their squared
values.
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CAESAR dataset

D3DFACS & self-captured data

Expression & Pose Data 
RegistrationInitial Expression Blendshapes

Shape Model Training

Expression & Pose Model 
Training

Shape Data Registration
FLAME

Face Model

Retargeted

Source

Target Scan

Fig. 4. Overview of the face registration, model training, and application to expression transfer.

Coupled: Second, we allow the optimization to leave the model
space by optimizing

E (T, β⃗ , θ⃗ ,ψ⃗ ) = ED + EC + ER + EP , (9)

with respect to the model parameters {β⃗, θ⃗ ,ψ⃗ } and the vertices of
the template mesh T, which is allowed to deform. In contrast to
the model-only registration, ED now measures the scan-to-mesh
distance from the scan to the aligned mesh T. The coupling term EC
constrainsT to be close to the current statistical model by penalizing
edge differences between T and the modelM (β⃗, θ⃗ ,ψ⃗ ) as

EC =
∑
e
λe

Te −M (β⃗ , θ⃗ ,ψ⃗ )e
 , (10)

where Te and M (β⃗, θ⃗ ,ψ⃗ )e are the edges of T and M (β⃗, θ⃗ ,ψ⃗ ), re-
spectively, and λe denotes an individual weight assigned to each
edge. The coupling uses edge differences to spread the coupling
influence on single points across its neighbors. The optimization is
performed simultaneously over T and model parameters in order
to recover possible model errors in the first stage. The regulariza-
tion term for each vertex vk ∈ R3 in T is the discrete Laplacian
approximation [Kobbelt et al. 1998]

ER =
1
N

N∑
k=1

λk ∥U (vk )∥
2, (11)

withU (v) =
∑

vr ∈N (v) vr−v
|N (v) | , whereN (v) denotes the set of vertices in

the one-ring neighborhood of v. The regularization term avoids fold-
overs in the registration and hence makes the registration approach
robust to noise and partial occlusions. The weight λk for each vertex
allows for more regularization in noisy scan regions.

Texture-based: Third, we include a texture term ET to obtain

E (T, β⃗ , θ⃗ ,ψ⃗ ) = ED + EC + λT ET + ER + EP , (12)

Fig. 5. Predicted 49 landmarks from the CMU Intraface landmark
tracker [Xiong and la Torre 2013] (left) and the same landmarks defined on
our topology (right).

where ET measures the photometric error between real image I and
the rendered textured image Î of T from all V views as

ET =
3∑
l=0

V∑
v=1
∥Γ(I

(v )
l ) − Γ(Î

(v )
l )∥2F , (13)

where ∥X∥F denotes the Frobenius norm of X. Ratio of Gaussian
filters, Γ [Bogo et al. 2014], help minimize the influence of lighting
changes between real and rendered images. Further, as photometric
errors are only meaningful for small displacements, a multi-level
pyramid with four resolution levels are used during optimization to
increase the spatial extent of the photometric error. The image I of
resolution level l from view v is denoted by I (v )l .

4.3 Sequential registration
Our temporal registration approach uses a personalization phase
that builds a personalized template for each subject in the database,
which is then kept constant during tracking the facial performance.

Personalization: We assume that each captured sequence begins
with a neutral pose and expression. During personalization, we
use a coupled registration (Equation 9) and we average the results
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Fig. 6. Sample registrations. Top: shape data extracted from the CAESAR
body database. Middle: sample registrations of the self captured pose data
with head rotations around the neck (left) and mouth articulations (right).
Bottom: samples registrations of the expression data from D3DFACS (left)
and self captured sequences (right). The supplementary document shows
further registrations.

Ti across multiple sequences to get a personalized template for
each subject. We randomly select one of the T for each subject to
generate a personalized texture map that is used later for texture-
based registration. This personalization increases the stability of the
registration, and improves the performance of the optimization, as
it significantly reduces the number of parameters being optimized
in each step.

Sequence fitting: During sequence fitting, we replace the generic
model template T inM (Equation 1) by the personalized template,
and fix the β⃗ to zero. For each frame, we initialize the model pa-
rameters from the previous frame and use the single-frame regis-
tration 4.2. Given the registered sequences, we train a new FLAME
model as described below and then iterate the registration procedure.
We stop after four iterations as the visual improvement, compared
to the registrations after three iterations, is only minor.

5 DATA
FLAME is trained from two large publicly available datasets and
our self-captured sequences.

Our capture setup: For our self-captured sequences we use a multi-
camera active stereo system (3dMD LLC, Atlanta). The capture
system consists of three pairs of stereo cameras, three color cameras,
three speckle projectors, and three white light LED panels. The
system generates 3D meshes with an average of 45K vertices at
60fps. The color images are used to create a UV texture map for
each frame and we use them to find image-based facial landmarks.

Training data: The identity shape parameters {T,S} are trained
on the 3800 registered heads from the US and European CAESAR
body scan database [Robinette et al. 2002]. The CAESAR database
contains 2100 female and 1700male static full-body scans, capturing
large variations in shape (see Figure 6 top). The CAESAR scans are
registered with a full-body SMPL model combined with our revised
head template using a two-step registration approach. First, the
global shape is initialized by a model-only registration with the
initial model, followed by a coupled refinement (Section 4.2). The
shape parameters are then trained on these registrations.
Training the pose parameters {P,W,J } requires training data

that represent the full range of possible head motions, i.e. neck
and jaw motions. As neither CAESAR, nor the existing 3D face
databases, provide sufficient head pose articulation, we captured
neck rotation and jaw motions of 10 subjects (see Figure 6 middle)
to fill this gap. The jaw and mouth sequences are registered as
described in Section 4. The head rotation sequences are registered
using a coupled alignment, where only the vertices in the neck
region are allowed to leave the model space, coupled to the model,
while all other vertices stay in model space. This adds robustness to
inevitable large facial occlusions when the head is turned. Overall,
the pose parameters are trained on about 8000 registered heads.

The expressionmodel, E, uses two sources of training data, namely
registrations of D3DFACS [Cosker et al. 2011] and self-captured se-
quences. All motion sequences are fully automatically registered
with the registration approach described in Section 4, leading to a
total number of 69, 000 registered frames (see Figure 6 bottom). In
these 3D sequences, neighboring frames can be very similar. For
efficiency in training, we consequently sample a subset of 21, 000
registered frames to train the model.

Test data: FLAME is evaluated quantitatively on three datasets.
First we use the neutral scans of the BU-3DFE [Yin et al. 2006] data-
base with its 3D face scans of 100 subjects with a large variety in
ethnicity. Second we use self-captured sequences of seven subjects,
performing different facial expressions, including the six prototypi-
cal expressions, talking sequences, and different facial action units.
Note that the training and test subjects are fully disjoint. Third, we
the 347 registered frames of the Beeler et al. [2011] sequence.

Implementation details: The registration framework is written
in Python, using Numpy and Scikit-learn [Pedregosa et al. 2011]
to compute PCA. All other model parameters are optimized by a
gradient-based dogleg method [Nocedal and Wright 2006], where
all gradients are computed using Chumpy [Loper and Black 2014]
for automatic differentiation.

Parameter settings: Our registrations are obtained by a bootstrap-
ping framework that alternates between model training and regis-
tration. During each iteration, we choose the parameters as follows:

We generally choose λ β⃗ = λθ⃗ = 0.03. For model-only registration,
we set λD ∈ {100, 300}, and λl = 0.002, for coupled and texture
based registration, we choose λk = 10.0. The coupling to the model
varies depending on the regions of the face to deal with noise. We
set λe = 3.0 for the face region (Figure 7) and λe = 30.0 and for
all other vertices. For coupled registration, we further use λD =
1000, for texture-based registration λD = 700 and λT = 0.1. For
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high

low

Fig. 7. Head regions with higher coupling edge weight (left) and higher
Laplacian weight (right).

the third iteration, λe is reduced to 1.0 in the face region, for the
fourth iteration to 0.3. For the fourth iteration, we further choose
λk = 100.0 for the non-facial regions shown in the right of Figure 7.

A high coupling weight effectively prevents vertices leaving the
model space and hence increases the robustness to noise. As the
noise within a scan differs for different regions, i.e. it is significantly
higher in hair regions, we use higher coupling weights for the
back of the head, back of the neck, and the eyeballs (Figure 7 left).
For regions like the forehead, a high coupling weight prevents the
registration from effectively capturing the motion (e.g. when raising
the eyebrows). A higher Laplacian weight (Figure 7 left) however,
adds some smoothness and hence lowers the influence of noise,
while allowing tangential motion to be captured.

Performance: Our registration takes about 155 s for one frame.
(model-only (Eq. 6): 25 s; coupled (Eq. 9): 50 s; texture-based (Eq. 12):
80 s) on a single thread on a quad-core 3.2 GHz Intel Core i5 with
32 GB RAM

6 MODEL TRAINING
Given registered datasets for identity (Figure 6 top), pose (Figure 6
middle), and expression (Figure 6 bottom), the goal of training
FLAME is to decouple shape, pose, and expression variations to
compute the set of parameters Φ = {T,S,P, E,W,J }. To achieve
this decoupling, the pose parameters {P,W,J }, expression pa-
rameters E, and shape parameters {T,S} are optimized one at a
time using an iterative optimization approach that minimizes the
reconstruction error of the training data. We use gender specific
models Φf for female, and Φm for male, respectively.

6.1 Pose parameter training
There are two types of pose parameters in our model. First, there
are parameters specific to each subject (indexed by i ∈ {1, · · · Psubj})
such as personalized rest-pose templates TPi and person specific
joints JPi . Second, there are parameters spanning across subjects
such as blendweightsW and the pose blendshapes P. The joint
regressor J is learned to regress person specific joints JPi of all
subjects from the personalized rest-pose templates TPi .
The optimization of these parameters is done by alternating be-

tween solving for the pose parameters θ⃗ j of each registration j,
optimizing the subject specific parameters {TPi , J

P
i }, and optimiz-

ing the global parameters {W,P,J }. The objective function being
optimized consists of a data term ED that penalizes the squared
Euclidean reconstruction error of the training data, a regularization

term EP that penalizes the Frobenius norm of the pose blendshapes,
and a regularization term EW that penalizes large deviations of the
blendweights from their initialization. The weighting of the regular-
izers {EP ,EW } is a tradeoff between closely resembling the training
data and keeping the parameters general. Hence, the regularizers
prevent FLAME from overfitting to the training data, and make it
more general. The method and objectives used for the optimization
of joint regressors, pose and shape parameters are described in more
detail by the SMPL body model [Loper et al. 2015], as we adapted
their approach to represent pose and shape for FLAME.

In absence of a subject specific template TPi , the initial estimation
of the pose coefficients θ⃗ while training the pose space is done
using an initial average template. To be robust with respect to large
variations in shape, this is done by minimizing the edge differences
between the template and each registration.
To avoid TPi and JPi being affected by strong facial expressions,

expression effects are removed when solving for TPi and JPi . This is
done by jointly solving for pose θ⃗ and expression parameters ψ⃗ for
each registration, subtracting BE (Equation 5), and solving for TPi
and JPi on those residuals.

6.2 Expression parameter training
Training the expression space E requires expressions to be decou-
pled from pose and shape variations. This is achieved by first solving
for the pose parameters θ⃗ j of each registration, and removing the
pose influence by applying the inverse transformation entailed by
M (⃗0, θ⃗ , 0⃗) (Equation 1); where 0⃗ is a vector of zero-valued coeffi-
cients. We call this step “unposing” and call the vertices resulting
from unposing the registration j as VUj . As we want to model ex-
pression variations from a neutral expression, we assume that a
registration defining the neutral expression is given for each subject.
Let VNE

i denote the vertices of the neutral expression of subject i ,
also unposed. To decouple the expression variations from the shape
variations, we compute expression residuals VUj − VNE

s (j ) for each
registration j , where s (j ) is the subject index j . We then compute the
expression space E by applying PCA to these expression residuals.

6.3 Shape parameter training

Training the shape parameters consists of computing template T
and shape blendshapes S for the registrations in the shape dataset.
Similarly as before, effects of pose and expression are removed
from all training data, to ensure the decoupling of pose, expression,
and shape. The template T is then computed as the mean of these
expression- and pose-normalized registrations, the shape blend-
shapes S are formed by the first ⃗��β �� principal components computed
using PCA.

6.4 Optimization structure
The training of FLAME is done iteratively by solely optimizing pose,
expression, or shape parameters, while keeping the other parameters
fixed. Due to the high capacity and flexibility of the expression space
formulation, pose blendshapes should be trained before expression
parameters in order to avoid expression overfitting.
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7 RESULTS
We evaluate the quality of our sequence registration process and
the FLAME models learned from these registrations. Comparisons
to Basel Face Model and FaceWarehouse model show that FLAME
is significantly more expressive. Additionally we show how FLAME
can be used to fit 2D image data and for expression transfer. Please
see the supplementary video for more details.

Visualization: Weuse a common color coding to present all results
throughout the entire document. Input data such as static or dynamic
3D face scans are shown in a light red color. Meshes that are within
the space of a statistical model, obtained by model-only registration
(Section 4.2) or by sampling the latent space of a model, are shown
in blue. For comparison, we use the same color to visualize results
of FLAME, Basel Face Model, or FaceWarehouse model. Meshes,
obtained by leaving the shape space in a coupled or texture-based
alignment (Section 4.2) are visualized in light green.
FLAME is a fully articulated head model (see Figure 2). Never-

theless, most training and test scans only capture the face region.
To facilitate comparison between methods, in such cases we show
registrations of similar facial regions only. For comparisons to scans
with clean outer boundary and without holes (e.g. Figures 16), we
use the background of the scan images to mask the region of inter-
est. For scans with noisy outline and holes (e.g. Figure 11) we use a
common pre-defined vertex mask to visualize all registrations.

7.1 Registration quality
Registration process: Our registration process contains three steps:

a model-only fit, a coupled fit, and a texture-based refinement. Fig-
ure 8 visualizes the registration results of each optimization step.
The model-only step serves the initialization of the expression, but
it is unable to capture all personalized details. After coupled align-
ment, the registration tightly fits the surface of the scan but the
synthesized texture reveals misalignments at the mouth, nose, and
eyebrows. While the texture-based registration slightly raises the
geometric error across the face, it visually improves the registration
around the mouth, nose, and eyebrow regions while reducing the
sliding within the surface.
Note, we do not explicitly model lighting for the synthesized

image, which causes visual differences compared to the original
image due to cast shadows (e.g. seen at the cheeks). Using a Ratio of
Gaussians for filtering alleviates the influence of lighting changes
in our optimization setup.

Alternating registration: Figure 9 shows representative results
for each of the alternating registration iterations. While the regis-
tration is unable to capture the facial expressions properly in the
first iteration, after more iterations, the quality of the registration
improves.

Quantitative evaluation: Figure 10 (top) visualizes the median
per-vertex distance to the scan. The distance is measured across
all 69, 000 registered frames of the D3DFACS database and our self
captured sequences (top) and the 347 registered frames of the Beeler
et al. [2011] sequence.
For the registered training data (Figure 10 top), within the face

region (excluding the eyeballs), 60% of the vertices have a median

distance less than 0.2mm, 90% are closer than 0.5mm. Visible re-
gions of higher distance are mostly caused by missing data (at the
neck, below the chin, or at the ears) or noise in the scans (at the eye-
brows, around the eyes). As described in Section 5, our registration
framework uses higher Laplacian weights in non-face regions to
increase the robustness to noise and partial occlusions in the scans.
While not causing visual artifacts in the registrations, this transition
between the face and non-face part causes a slightly enlarged error
at the boundary of the mask, noticeable at the forehead.

The goal of our registration framework is to fully-automatically
register a large set of sequences (> 600) from different sources (i.e.
D3DFACS and self-captured sequences). For robustness to self-cast
shadows and lighting changes, the influence of the photometric
error (Equation 12) has a low weight (wT = 0.1). Due to this, our
registrations are not entirely free of within-surface drift, especially
in regions without salient features (i.e. forehead, cheeks, neck). The
bottom of Figure 10 evaluates the within-surface drift of our reg-
istration on the publicly available Beeler et al. sequence. While
the distance between our registrations and the Beeler et al. scans
is small (bottom left), measuring the distance between our regis-
trations and their ground-truth registration reveals some within-
surface drift (bottom right). Note, since the Beeler et al. data are
with uniform lighting, one could use our registration method with
a higher weighted photometric error, potentially further lowering
the drift error.

Qualitative evaluation: Figure 11 shows sample registrations of
the D3DFACS dataset (top) and our self-captured sequences (bottom).
For all sequences, the distance between our registration and the
scan surface is small, and our registration captures the expression.
Note that our registration is able to track even subtle motions such
as eye blinks well as can be seen in top row of Figure 11.

7.2 Model quality
A good statistical model should ideally be compact and generalize
well to new data, while staying specific to the object class of the
model. A common way to quantify these attributes is to measure
the compactness, generalization, and specificity [Davies et al. 2008,
Chapter 9.2] of the model. These measurements have previously
been used to evaluate statistical models of various classes of objects,
including 3D faces (e.g. [Bolkart and Wuhrer 2015; Booth et al. 2017;
Brunton et al. 2014]). These evaluations provide a principled way
to determine the model dimensions that preserve a large amount of
the data variability without overfitting to the training data.

Compactness: A statistical model should describe the training
data with few parameters. Compactness measures the amount of
variability present in the training data, that is captured by the model.
The compactness for a given number of k components is C (k ) =∑k
i=1 λi/

∑rank (D)
i=1 λi , where λi is the i-th eigenvalue of the data

covariance matrix D. The compactness of FLAME is independently
evaluated for identity and expression, by computing C (k ) for a
varying number of components.

Generalization: A statistical model ideally generalizes from the
samples in the training data to arbitrary valid samples of the same
class of objects. Generalization measures the ability of the model to
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Fig. 8. Results of the model-only, coupled, and texture-based registration steps for one scan. Top: scan, registrations, and scan-to-mesh distance for each
registration visualized color-coded on the scan. Bottom: original texture image, synthesized texture image for each step, and the corresponding photometric
errors.

scan first iteration second iteration third iteration fourth iteration

Fig. 9. Results of each iteration of the alternating registration approach.
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Fig. 10. Median per-vertex distance between registration and the scan
surface. Top: Distance measure across all frames of all female (left) and male
(right) training sequences. Bottom: Distance measure across all registered
frames for the Beeler et al. [2011] sequence (left) and the ground-truth error
(right) measuring the within-surface drift. The supplementary video shows
the full registration sequence.

represent unseen shapes of the same object class. The generalization
ability is commonly quantified by fitting the model with a varying
number of components to data excluded from the model training,
and measuring the fitting error. The identity space of FLAME is

evaluated on the neutral BU-3DFE data, registered using a coupled
alignment. The expression space is evaluated on self-captured test
sequences, registered with the texture-based registration framework.
During evaluation of the identity space, i.e. for a varying number of
identity shape components, the number of expression components
is fixed to 100. For evaluation of the expression space, the number
of shape parameters is fixed to 300, accordingly. For each model-fit,
the average vertex distance to the registration is reported as fitting
error.

Specificity: A statistical model is required to be specific to the
modeled class of objects, by only representing valid samples of this
object class. To evaluate the specificity of the identity and expression
space, we randomly draw 1000 samples from a Gaussian distribution
for a varying number of identity or expression coefficients, and
reconstruct the sample shape using Equation 1. The specificity error
is measured as the average distance to the closest training shape.
For identity space evaluation, the expression parameters are kept
at zero; for expression evaluation, the identity parameters are zero,
accordingly.

Quantitative evaluation: Figure 12 shows compactness, general-
ization, and specificity, independently evaluated for the identity and
expression space. With 90 identity components our model captures
98% of the data variability, and with 300 components effectively
100%. The generalization error gradually declines for up to 300
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Fig. 11. Sample frames, registrations, and scan-to-mesh distance of one sequences of the D3DFACS database (top) and one sequence of our self-captured
sequence (bottom). The supplementary document shows further registrations.
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identity components, while specificity not increase significantly.
Consequently, we use models with 90 and 300 identity components
throughout our evaluations. We denote these with FLAME 90 and
FLAME 300, respectively. For expression, we choose 100 components,
representing 98% of the data variability.

Qualitative evaluation: Figure 13 qualitatively evaluates the in-
fluence of a varying number of identity components for fitting the
neutral BU-3DFE face scans (the supplementary document shows
more samples). The error measures, for each scan vertex, the dis-
tance to the closest point in the surface of the registration. While
FLAME 49 fits the global shape of the scan well, it is unable to
capture localized person specific details. Increasing the number of
components increases the ability of the model to reconstruct local-
ized details. FLAME 300 leads to registrations with an error that is
close to zero millimeters in most facial regions.

FLAME models head and jaw motions as joint rotations. Figure 14
shows the influence of the trained pose blendshapes. The pose
blendshapes recreate realistic neck details when turning the head
and stretch the cheeks when opening the mouth. The learned pose
blendshapes result in significantly more realism than LBS.

7.3 Comparison to state-of-the-art
We compare FLAME to the Basel Face Model (BFM) [Paysan et al.
2009] and FaceWarehouse model (FW) [Cao et al. 2014]. We evaluate
the ability of each model to account for unseen data by fitting them
to static and dynamic 3D data not part of the training; in all cases
we use the same model-fitting framework. BFM is trained from
200 neutral expression shapes and all 199 identity components are
available. FW is learned from 150 shapes but the model only includes
50 identity components plus 46 expression components.

Identity: The identity space is evaluated by fitting the models to
the neutral BU-3DFE scans, initializing with the landmarks provided
with the database. For a fair comparison to FW and BFM, FLAME is
constrained to use comparable dimensions. Consequently we only
make use of 49 FLAME shape components for comparison to FW
and 198 components for comparison with BFM (we subtract one
component since we select the appropriate gender). We further show
the expressiveness of FLAME with 90 and 300 components.

Figure 15 shows the cumulative scan-to-mesh distance computed
over all model-fits to the neutral BU-3DFE scans. With the same
number of parameters, for FLAME 49, 74% of the scan vertices have
distance lower than 0.5mm, compared to 69% for BFM 50 or 67% by
FW. Compared to BFM with all components, for FLAME 198, 94% of
the vertices have a distance less than 0.5mm, compared to 92% for
BFM Full. With 300 components, FLAME 300 fits 96% of the vertices
with a distance of less than 0.5mm.

Figure 16 compares the models visually (the supplementary docu-
ment shows more examples). Compared to FLAME, BFM introduces
high-frequency details that make the fits look more realistic. Never-
theless, the comparison with the scans reveals that these details are
hallucinated and spurious, as they come from people in the dataset,
rather than from the scans. While lower-resolution and less detailed,

FLAME is actually more accurate. Note, since FLAME contains mod-
eled eyeballs, the eye region looks more realistic than the closed
surface of BFM or the empty space of FW.

Expression: The ability to capture real facial expressions is evalu-
ated by fitting FW and FLAME to our self-captured high-resolution
dynamic test sequences (see Section 5). For comparison, we first
compute a personalized shape space for each model per sequence
by only optimizing the identity parameters, keeping the expression
fixed to a neutral expression. For the rest of the sequence, only the
expression and pose are optimized, initialized by landmarks, while
the identity parameters are kept fixed. To remove one source of
error caused by noisy landmarks, we register all test sequences with
our texture-based registration framework and extract the same set
of landmarks as shown in Figure 5. As for the identity evaluation,
we constrain FLAME to be of comparable dimension to FW for a
fair comparison. We use 49 components for identity and as for FW,
46 components for expression and pose; i.e. we use 43 components
for expression, and 3 degrees of freedom for the jaw rotation.

Figure 17 compares the median of the per-vertex distance to the
scans, measured across all registered frames of the test data. For
FW, 50% of all vertices in the face region have a distance lower than
1.0mm, compared to 67% for FLAME 49, 73% for FLAME 90, and 75%
for FLAME 300. With the same number of parameters, FLAME fits
the data closer than FW.
Figure 18 visualizes examples from this experiment. While FW

is able to perform the expression for the first sequence (top row),
FLAME gives a more natural looking result with a lower error. For
the second sequence (bottom row), FW is unable to reconstruct the
widely open mouth. As FLAME models the mouth opening with a
rotation, it better fits this extreme expression. As Figure 17 shows, if
we used more components, FLAME would significantly outperform
FW.

7.4 Shape reconstruction from images
FLAME is readily usable to reconstruct 3D faces from single 2D
images. For comparison to FaceWarehouse, we fit both models to
2D image landmarks by optimizing the L2-norm distance between
image landmarks and corresponding model vertices, projected into
the image using the known camera calibration. Unlike other facial
landmarks, the face contour does not correspond to specific 3D
points. Therefore, the correspondences are updated based on the
silhouette of the projected 3D face as described in Cao et al. [2014].
The input landmarks are manually labeled in the same format as in
FaceWarehouse. As in Section 7.3, we use 49 components for identity
and 46 components for expression and pose (43 for expression and
3 for jaw pose), for a fair comparison.
Figure 19 shows the 2D landmark fitting using both models.

FLAME better reconstructs the identity and expression. To quantify
the error in the fit shown in Figure 19, we measure the distance
from the fitted mesh to the ground truth scan. Due to the challenges
in estimating depth from merely 2D landmarks, we firstly rigidly
align the fitted mesh to scan using precomputed 3D landmarks, and
then measure the distances. For qualitative comparison, we further
show the fitted mesh from a novel view for better comparison to
the ground truth scan. As shown in Figure 19, FLAME has lower
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Fig. 12. Quantitative evaluation of identity shape space (top) and expression space (bottom) of the female and male FLAME models. From left to right:
compactness, generalization female, generalization male, specificity female, and specificity male.
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Fig. 13. Expressiveness of the FLAME identity space for fitting neutral scans of the BU-3DFE face database with a varying number of identity components.
The supplementary document shows further examples.

3D error, suggesting that FLAME may provide a better prior for
estimating 3D facial shape from 2D image features.

7.5 Expression transfer
FLAME can easily be used to synthesize new motion sequences,
e.g. by transferring the facial expression from a source actor to
a target actor, while preserving the subject-specific details of the
target face. This transfer is performed in three steps. First, the source
sequence is registered with the proposed registration framework
(Section 4.3) to compute the pose and expression coefficients {θ⃗s ,ψ⃗s }
for each frame of the source sequence. Second, a coupled registration
(Section 4.2) is used to compute a personalized template Tt for
the target scan. Finally, replacing the average model template T
by the personalized target template Tt results in a personalized

FLAME model Mt (β⃗ , θ⃗ ,ψ⃗ ) of the target actor. The result of the
expression transfer is then the model reconstructionMt (⃗0, θ⃗s ,ψ⃗s )
using Equation 1.

Figure 20 shows the expression transfer between two subjects in
our test dataset, while Figure 1 shows transfer to a high-resolution
scan from Beeler et al. [2011]. The supplemental material shows
additional results.

7.6 Discussion
While FLAMEmoves closer to custom head models in realism, it still
lacks the detail needed for high-quality animation. Fine-scale details
such as wrinkles and pores are subject-specific and hence (i.e. due to
the missing inter-subject correspondence) are not well modeled by
a generic face model. A different approach (e.g. via deep learning)
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Fig. 14. Influence of the pose blendshapes for different actuations of the
neck and yaw joints in a rotational manner. Visualization of FLAME without
(top) and with (bottom) activated pose blendshapes.
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Fig. 15. Cumulative scan-to-mesh distance computed over all model-fits of
the neutral BU-3DFE scans.

could be used to infer high-frequency and non-linear details, but
this is beyond the scope of this work.
The surface-based decoupling of shape, pose, and expression

variations (Sec. 6) requires a lot of diverse training data (Sec. 5).
Exploiting anatomical constraints, i.e. by using a rigid stabilization
method [Beeler and Bradley 2014], could further improve the de-
coupling, but this would require a significant amount of work to
handle the large amounts of training data as reasoning about the
underlying skull is needed.
Here we learned expression blendshapes and showed that they

capture real facial expressions better than those of FaceWarehouse.
We argue that these capture important correlations across the face
and result in natural looking expressions. Still animators may prefer
more semantic, or localized, controls. Consequently one could learn
a mapping from our space to semantic attributes as shown in other
works [Allen et al. 2003; Hasler et al. 2009; Vlasic et al. 2005] or train
a localized space as proposed by Neumann et al. [2013] from our
provided expression registration, and replace the global expression
space of FLAME with a local one.

Here we found that modeling the eyes improved alignment and
the final model; we plan to do something similar for mouths by
explicitly modeling them. FLAME is connected to a neck, which has
the same topology as the SMPL body model. In the future we will
combine the models, which will enable us to capture both the body
and face together. Since we have eyes in the model, we also plan to
integrate eye tracking.
One could also personalize our model to a particular actor, re-

stricting the expression space based on past performance. Our model
could also be fit to sparse marker data, enabling facial performance
capture using standard methods. Future work should also fit the
model to images and video sequences by replacing simpler models
in standard methods. Finally, images can be used to add more shape
detail from shading cues as in recent work [Garrido et al. 2016].

8 CONCLUSION
Here we trained a new model of the face from around 33, 000 3D
scans from the CAESAR body dataset, the D3DFACS dataset, and
self captured sequences. To do so, we precisely aligned a template
mesh to all static and dynamic scans and will make the alignments
of the D3DFACS dataset available for research purposes. We defined
the FLAME model using a PCA space for identity shape, simple ro-
tational degrees of freedom and linear blend skinning for the neck,
jaw, and eyeballs, corrective blendshapes for these rotations, and
global expression blendshapes. We show that the learned model is
significantly more expressive and realistic than the popular Face-
Warehouse model and the Basel Face Model. We compare the models
by fitting to static 3D scans and dynamic 3D sequences of novel
subjects using the same optimization method. While significantly
more accurate, FLAME has many fewer vertices, which also makes
it more appropriate for real-time applications. Unlike over-complete
representations associated with standard manual blendshapes, ours
are easier to optimize because they are orthogonal. The model is
designed to be compatible with existing rendering systems and is
available for research purposes [FLAME 2017].
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Fig. 18. Reconstruction quality from high-resolution motion sequences compared to FaceWarehouse (FW). Intermediate frames of three motion sequences.
FLAME is restricted to have the same number of parameters as FW.
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Fig. 19. Comparison of FaceWarehouse model (top) and FLAME (bottom) for 3D face fitting from single 2D image. Note, that the scan (pink) is only used for
evaluation. The supplementary document shows further examples.

Fig. 20. Expression transfer from a source sequence (blue) to a static target scan (pink). The aligned personalized template for the scan is shown in green, the
transferred expression in yellow. The supplementary document shows further examples.
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