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Fig. 1. Our system infers high-fidelity facial reflectance and geometry maps from a single image (diffuse albedo, specular albedo, as well as medium- and
high-frequency displacements). These maps can be used for high-fidelity rendering under novel illumination conditions.

We present a deep learning-based technique to infer high-quality facial
reflectance and geometry given a single unconstrained image of the sub-
ject, which may contain partial occlusions and arbitrary illumination condi-
tions. The reconstructed high-resolution textures, which are generated in
only a few seconds, include high-resolution skin surface reflectance maps,
representing both the diffuse and specular albedo, and medium- and high-
frequency displacement maps, thereby allowing us to render compelling
digital avatars under novel lighting conditions. To extract this data, we train
our deep neural networks with a high-quality skin reflectance and geometry
database created with a state-of-the-art multi-view photometric stereo sys-
tem using polarized gradient illumination. Given the raw facial texture map
extracted from the input image, our neural networks synthesize complete
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reflectance and displacement maps, as well as complete missing regions
caused by occlusions. The completed textures exhibit consistent quality
throughout the face due to our network architecture, which propagates
texture features from the visible region, resulting in high-fidelity details that
are consistent with those seen in visible regions. We describe how this highly
underconstrained problem is made tractable by dividing the full inference
into smaller tasks, which are addressed by dedicated neural networks. We
demonstrate the effectiveness of our network design with robust texture
completion from images of faces that are largely occluded. With the inferred
reflectance and geometry data, we demonstrate the rendering of high-fidelity
3D avatars from a variety of subjects captured under different lighting con-
ditions. In addition, we perform evaluations demonstrating that our method
can infer plausible facial reflectance and geometric details comparable to
those obtained from high-end capture devices, and outperform alternative
approaches that require only a single unconstrained input image.
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1 INTRODUCTION
Realistic digital faces are increasingly important in digital media.
The capabilities of modern graphics hardware are perpetually reach-
ing new heights, allowing for the use of effects comparable to
those created using offline, state-of-the-art cinematic special ef-
fects systems in real-time, consumer-grade applications and video
games. Meanwhile, the recent surge in augmented and virtual reality
(AR/VR) platforms has created an even stronger demand for high-
quality content for virtual environments, with applications ranging
from entertainment to professional concerns, such as telepresence
[Li et al. 2015; Olszewski et al. 2016; Thies et al. 2016b]. However,
as immersive virtual experiences are driven by compelling human
interaction, the ability to create, animate and render realistic faces
plays a crucial role in achieving engaging face-to-face communica-
tion between digital avatars in simulated environments.

To render a face that appears realistic in an arbitrary virtual envi-
ronment, high-quality geometry and reflectance data are required.
However, acquiring this data from a real person is currently a time-
consuming and cumbersome process, requiring substantial manual
effort, extensive computation, and specialized capture systems op-
erating in constrained and controlled conditions. While it would
ideally be possible for a novice user to accurately model a subject’s
facial shape and reflectance from a single photograph (e.g. ubiqui-
tous mobile “selfie” images), in practice, significant compromises
are made to balance the amount of input data to be captured, the
amount of computation required, and the quality of the final output.
We seek to efficiently create accurate, high-fidelity 3D avatars

from a single input image, captured in an unconstrained environ-
ment. These avatars must be close in quality to those created by
professional capture systems, with the appropriate mesoscopic ge-
ometry and reflectance attributes, yet require minimal computation
and no special expertise on the part of the photographer. These
requirements pose several significant technical challenges. A single
photograph only provides partial data and may be taken under chal-
lenging illumination conditions. Most importantly, skin reflectance
is highly complex, and as such the separation of the surface and
subsurface components of the skin has only been achieved in con-
strained environments. Furthermore, the acquisition of accurate
mesoscopic surface geometry as represented in displacement maps
requires sophisticated capture hardware such as photometric multi-
view stereo systems.

Less intrusive methods are based on simplifying assumptions
such as the Lambertian reflectance of skin, and often make use of
linear appearance models that can recover low frequency facial
appearances such as the coarse shape and diffuse albedo, but fail for
complex lighting conditions and detailed fine-scale facial textures,
such as those containing facial hair, wrinkles, pores, and moles.
Some state-of-the-art techniques infer texture details using a

database of high-resolution face textures and synthesize using a
patch-based [Mohammed et al. 2009] or a neural synthesis approach
[Saito et al. 2017]. However, these approaches have only been demon-
strated on the reflectance aspect of the facial appearance, and thus do
not provide the corresponding fine-scale geometric details needed
to produce a realistic 3D rendering of the face in different views
and illumination conditions. Furthermore, while [Saito et al. 2017]
creates a globally consistent diffuse reflectance map from a partially

occluded input texture, it replaces existing high-resolution details
in the visible region, rather than preserving them and only syn-
thesizing consistent details in the missing regions. In addition, it
requires an expensive iterative optimization process, resulting in
several minutes of computation time to produce the final output.

We propose a deep-learning based approach for inferring a high-
fidelity set of reflectance and geometric data (including a diffuse
albedomap, a specular albedomap, andmedium- and high-frequency
displacement maps representing mesoscopic surface details) from a
single unconstrained RGB input image. To achieve robust and accu-
rate inference in the wild, we train our model with high-resolution
facial scans obtained using a state-of-the-art multi-view photometric
facial scanning system [Ghosh et al. 2011]. Given the unconstrained
2D input image, which can be captured under arbitrary illumination
and contain partial occlusions of the face, our process infers these
high-resolution and high-fidelity geometric and reflectance maps,
which can then be used to render a compelling and realistic 3D
avatar in novel lighting environments, in only seconds.
Since this task is highly ill-posed, we decompose it into several

more tractable problems, which are addressed by separate convolu-
tional neural networks. In the first stage, after obtaining the coarse
geometry by fitting a 3D template model to the input image and
extracting an initial facial albedo map from this model, we use
networks that estimate illumination-invariant specular and diffuse
albedo and displacement maps from this texture. We train these
networks to perform this task on arbitrary RGB images using the
aforementioned 3D scans as ground-truth. While we use an architec-
ture similar to [Isola et al. 2016], we found that several modifications
to the architecture and training process were essential to enable
the networks to perform this task reliably and robustly. Further-
more, we perform data augmentation using synthetic illumination
conditions and simulated diffuse texture variations obtained from a
pre-existing facial photograph database to make the networks more
robust to appearance variation in the input images.
In the second stage, the inferred maps, which may have large

missing regions due to occlusions in the input image, are passed
through networks trained to perform texture completion, synthe-
sizing full diffuse and specular albedo and displacement maps with
globally consistent skin features. While a naive approach to this
problem would make use of the natural symmetry in the human face
to complete missing regions, human faces are not perfectly symmet-
ric, as they contain fine-scale features (e.g., moles, hairs) that are
not seen on the opposing side. We demonstrate that globally coher-
ent high-fidelity textures can be obtained using a multi-resolution
image-to-image translation network, in which latent convolutional
features are flipped so as to achieve a natural degree of symmetry
while maintaining local variations. In the third stage, a network is
used to refine the results of the texture completion process to infer
additional details in the completed regions.

Finally, we employ a convolutional neural network that performs
super-resolution on each of the computed 512× 512 pixel resolution
textures to increase their overall resolution to 2048 × 2048, thereby
further augmenting the level of detail in the final maps.
Using our approach, it is now possible to robustly infer realistic

and accurate high-fidelity mesoscopic-level facial reflectance and
geometric details from unconstrained images containing significant
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occlusions and arbitrary illumination conditions. The resulting data
can be used with the fitted 3D model to render high-fidelity avatars
in different lighting conditions and from arbitrary viewpoints. Fur-
thermore, the resulting avatars have specific features such as facial
hair, moles, and other fine-scale facial details unique to the cap-
tured subject. Once trained, our models can produce this data in
only seconds, with quality comparable to that obtained from much
slower and more cumbersome active-illumination capture systems.
We thus present the following contributions:

• A system for obtaining a complete set of geometric and re-
flectance maps from a single input image. We demonstrate
that the proposed technique outperforms the state-of-the-art
in terms of robustness under challenging conditions, appear-
ance preservation, and the ability to handle large appearance
variations (such as facial hair or specific fine-scale features).

• The demonstration and evaluation of how our approachmakes
this highly ill-posed problem tractable, by performing the
initial inference and texture completion using separate net-
works, each trained on high-fidelity 3D scans obtained using
a multi-view photometric facial capture system. We describe
how the architecture, training data and procedure, and data
augmentation techniques are carefully chosen so as to make
it possible to train these networks to robustly and accurately
infer an arbitrary subject’s facial appearance.

• A multi-resolution, symmetry-aware texture completion and
refinement technique designed to handle the high resolution
and complexity of the training data. Our approach maintains
a plausible degree of symmetry in the resulting textures con-
sistent with that seen in human faces, yet is consistent with
the data observed in the visible regions.

2 RELATED WORK

2.1 Facial Reflectance and Geometry Capture.
High-Fidelity Capture. Photorealistic facial appearances can be

captured by specialized hardware in controlled environments with
camera arrays, e.g. the Light Stage [Debevec et al. 2000; Ghosh et al.
2011; Graham et al. 2013a; Ma et al. 2007a]. Though restricted to stu-
dio environments, such techniques have enabled production-level
measurement of lighting and appearance maps, e.g. diffuse albedo,
specular maps, bump maps, subsurface scattering, etc., which can
be used to create realistic digital humans [Alexander et al. 2009; The
Digital Human League 2015; von der Pahlen et al. 2014]. The appear-
ance captured using such techniques can also be used with videos
of the subject performing dynamic expressions to achieve high-
fidelity performance capture [Fyffe et al. 2014]. Haro et al. [2001]
synthesize the full-face skin structures from partial data with a high
degree of accuracy. Cao et al. [2015] perform local regression of
medium-scale details (e.g. dynamic wrinkles caused by facial expres-
sions) using captured high-resolution geometry as training data.
Once trained, their method scales well to new users without addi-
tional training. Optical acquisition devices and elastomeric sensors
have also been introduced to the capturing pipeline for modeling
facial microstructure details [Graham et al. 2013b; Johnson et al.
2011] and skin microstructure deformations [Nagano et al. 2015].
Beeler et al. [2010; 2011] applied shape from shading to emboss
high-frequency skin shading as hallucinated mesoscopic geometric

details for skin pores and creases. In dynamic face capture, fine-scale
facial appearance can be recovered using photometric stereo tech-
niques, e.g. photometric scene flow [Gotardo et al. 2015], spherical
gradient illumination [Wilson et al. 2010] and polynomial displace-
ment maps [Ma et al. 2008]. However, such systems require multiple
images from a stereo capture, meaning that they cannot be applied
to legacy content such as unconstrained images and online videos.

Linear Modeling. Modeling facial appearance variations as a lin-
ear combination of multiple bases has proven to be a popular and
effective method for representing faces. Turk and Pentland [1991]
present Eigenfaces for face recognition, which is one of the earliest
works to represent facial appearance using a linear model. The ac-
tive appearance model (AAM) proposed by Edwards et al. [1998] is
another widely-adopted framework that employs a similar concept,
in which faces are represented as a linear combination of both shape
and appearance. It has inspired several important works in the do-
mains of image alignment [Matthews and Baker 2004; Romdhani
and Vetter 2005] and appearance retrieval [Donner et al. 2006]. The
seminal work by Blanz and Vetter [Blanz and Vetter 1999] put for-
ward the concept of a morphable model for representing 3D textured
faces. By leveraging Principal Component Analysis (PCA), they first
transform the shape and texture of example faces into a vector rep-
resentation and estimate the coefficients of a linear basis for fitting
the model to the input image. This approach is useful not only for
appearance and expression modeling, but also for pose and expres-
sion normalization for face recognition [Zhu et al. 2015]. Extensions
of morphable models have been developed by exploiting Internet
images [Kemelmacher-Shlizerman 2013; Kemelmacher-Shlizerman
and Seitz 2011] and large-scale facial scans [Booth et al. 2016]. While
computationally efficient, PCA-based models are limited by the lin-
ear space spanned by the training samples, and thus are incapable of
capturing fine-scale details or large variations in facial appearance.

Capturing from Unconstrained Images. Inferring local surface de-
tails using shape-from-shading is a well-established technique for
unconstrained geometry capture [Barron and Malik 2015a; Glen-
cross et al. 2008; Langer and Zucker 1994], and has been employed in
digitizing human faces [Garrido et al. 2013; Kemelmacher-Shlizerman
and Basri 2011; Shi et al. 2014]. However, the fidelity of the inferred
details is limited by the illumination conditions of the given input
images, that are often captured under unconstrained settings.
There has been a substantial effort towards the goal of making

facial digitization more accessible. Monocular systems that record
multiple views have been investigated to generate seamless tex-
ture maps for digital avatars [Cao et al. 2016; Ichim et al. 2015;
Shi et al. 2014; Suwajanakorn et al. 2014; Thies et al. 2016a]. [Wu
et al. 2016] improve the quality and robustness of monocular face
capture by introducing local constraints based on the anatomy of
the face so as to better capture details that are difficult to capture
and express using traditional blendshape models. In the case that
only a single image is available, Kemelmacher-Shilzerman and Basri
[Kemelmacher-Shlizerman and Basri 2011] leverage shading infor-
mation and the closest existing reference models to estimate both
facial geometry and the albedo map. Barron and Malik [Barron and
Malik 2015b] utilize a hybrid approach to produce a reasonable esti-
mate of shape, surface normals, reflectance and illumination under

ACM Transactions on Graphics, Vol. 37, No. 4, Article 162. Publication date: July 2018.



162:4 • S. Yamaguchi, S. Saito, K. Nagano, Y. Zhao, W. Chen, K. Olszewski, S. Morishima, and H. Li

Fig. 2. System Overview. Given an unconstrained input image (left), the base mesh and corresponding facial texture map are extracted. The diffuse and specular reflectance, and
the mid- and high-frequency displacement maps are inferred from the visible regions (Sec. 5). These maps are then completed, refined to include additional details inferred from the
visible regions, and then upsampled using a super-resolution algorithm (Sec. 6). The resulting high-resolution reflectance and geometry maps may be used to render high-fidelity
avatars (right).

a series of preset priors. [Liu et al. 2017] provide a comprehensive
evaluation of the impact of several important factors, such as the
number of facial landmarks and mesh vertices used, when perform-
ing cascaded regression to reconstruct 3D face shapes from a single
RGB image. Li et al.[2014] take advantage of intrinsic image decom-
position techniques to decouple the estimation of the specular and
diffuse components of the human face. While the aforementioned
techniques succeed in generating high-quality appearance models,
they cannot infer the fine-scale reflectance and geometry in unseen
regions. Recently, unsupervised or weakly supervised learning on
facial geometry and reflectance has been proposed using color con-
sistency [Kim et al. 2018; Sela et al. 2017; Tewari et al. 2017a,b] or
synthetic data [Bradley et al. 2017; McDonagh et al. 2016; Richard-
son et al. 2016, 2017; Sela et al. 2017; Sengupta et al. 2017] as an
additional supervisory signal.

2.2 Texture Synthesis and Image Completion
Many textures can be synthesized given a small exemplar patch
using approaches based on the Markov Random Field model, as the
statistical features of local regions of the texture are quite similar
to all others across the entire image [Wei et al. 2009]. State-of-
the-art texture synthesis techniques use various non-parametric
exemplar-based techniques, such as synthesizing textures by as-
sembling individual pixels [Efros and Leung 1999; Wei and Levoy
2000] or stitching patches [Efros and Freeman 2001; Kwatra et al.
2003; Lasram and Lefebvre 2012] of the exemplar; progressively
refining the texture using a global optimization [Han et al. 2006;
Kwatra et al. 2005]; or by computing high-dimensional appearance
vectors for each exemplar pixel exemplar and performing synthe-
sis in this space [Lefebvre and Hoppe 2006]. In general, however,
such texture synthesis techniques only work for stochastic textures,
such as micro-scale skin structures [Haro et al. 2001], and cannot
be trivially applied to medium- or fine-scale facial details, as they

are highly structured in addition to exhibiting local consistency. Li
et al. [2007] hallucinate high frequency details from low-resolution
input using a patch-based Markov network. However, the results
remain blurry and missing regions cannot be inferred. Mohammed
et al. [2009] generate novel faces from a random patch by combining
both global and local models. Although the synthesized faces look
realistic, noisy artifacts are introduced in high-resolution images.
A statistical model for synthesizing detailed facial geometry has
been introduced by Golovinskiy et al. [2006], but it has only been
demonstrated in the geometric domain.

2.3 Deep Learning Based Image Synthesis
The advent of deep learning and its astonishing success in tasks such
as image classification and face recognition has led to recent efforts
to apply these networks to the task of generating images [Kulkarni
et al. 2015; Radford et al. 2015]. While early efforts suffered from
artifacts such as blurry images, limited resolution and little control
over the synthesized image, recent efforts making use of Genera-
tive Adversarial Networks [Goodfellow et al. 2014] have led to a
substantial increase in the quality of images generated using deep
learning techniques, compared to networks trained using only more
conventional loss metrics (such as the L1 or L2 loss on reconstructed
images). In such efforts, a discriminator network is trained in con-
junction with the generator, such that the discriminator learns to
distinguish between real images and synthetic images created by the
generator. Using loss values obtained from this discriminator results
in more sophisticated criteria by which to judge the synthesized
images, and thus teach the generator to synthesize higher-quality
images from a distribution that more closely reflects the manifold
of natural images.
However, GAN-based networks are more difficult to train, and

typically fail to generate high-quality images beyond a very low
resolution. While recent progress has been made [Karras et al. 2017]
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in synthesizing high-resolution images using an adversarial frame-
work, it has still proven quite difficult to control precise details in
the synthesized images (such as the expression in an image of a
face). In recent work by Isola et al. [2016], however, GAN training
has proven to improve the quality of the output and resolution for
image-to-image translation tasks, in which there is a direct corre-
spondence between pixels of the output image and those of an input
image used to guide the synthesis (e.g., when synthesizing cityscape
images from a semantic label map of an image). This work makes
use of a conditional GAN framework, in which the discriminator
is provided the per-pixel label map and must determine whether
the corresponding image is real or synthesized. Olszewski et al.
[2017] employs an architecture derived from this image transla-
tion framework [Isola et al. 2016] to infer dynamic facial textures
from a sequence of images of a subject making a variety of facial
expressions for the purpose of facial performance retargeting, but
this work does not recover the individual surface and subsurface
reflectance maps or the underlying mesoscopic geometry. We use
an architecture similar to Isola et al. [2016] in our work, as we syn-
thesize the resulting reflectance and geometry texture maps based a
texture extracted from the input image that is in the corresponding
UV space. However, substantial changes to the architecture and
training process were required to achieve our desired goal.
Neural networks have also been used to infer the reflectance

properties of general objects [Aittala et al. 2016]. In the context of
inferring facial appearance, Duong et al. [2015; 2015] propose a non-
linear replacement of the AAM which leverages Deep Boltzmann
Machines to capture both non-linearity and large variations of shape
and texture. Pathak et al. [2016] introduce an encoder-decoder archi-
tecture that is conditioned on content for general image inpainting
task. Iizuka et al. [2017] further incorporate both a local and a global
discriminator to synthesize high-quality local details that are consis-
tent with global background. A similar approach is used by [Li et al.
2017] for face inpainting to enhance local and global coherency. Yeh
et al. [2017] iteratively search the closest embedding of a corrupted
facial image in the latent space learned by a deep generative model
to achieve realistic inpainting.
Recently, style transfer techniques using deep neural networks

[Gatys et al. 2016, 2015] have demonstrated the capacity to com-
bine the content of an image with a target style while preserving
the structure of key visual features in the content image. Rather
than synthesizing images using a forward pass through a network
trained for a specified image synthesis task, these approaches it-
eratively modify an image passed through a pre-trained network
using the feature activations of this network as guidance for the
synthesis process. This ensures that a subset of these features for
the modified image closely match those of a style image (such as an
impressionist painting) while retaining the general content of the
initial image. Inspired by the idea of defining style as mid-layer fea-
ture correlations of a neural network [Gatys et al. 2016, 2015], Saito
et al. [2017] model the facial texture as a convex combination of
“style” features extracted from high-resolution face database, thereby
achieving photorealistic texture inference from a partial view. Hu
et al. [2017] further extend this approach to generate a full-head
digital avatar from a single image. Though Saito et al. [2017] have

Fig. 3. Solving the described sub-tasks separately makes the complete texture infer-
ence pipeline more tractable, allowing us to generate highly plausible output. Directly
generating a complete texture map from a partial input with a single network produces
significantly inferior results.

achieved photorealistic quality, their inference requires a slow and
intensive iterative optimization for texture synthesis.
Our method, on the other hand, can achieve comparable qual-

ity with [Saito et al. 2017] at a speed that is close to real time. In
addition, our method is capable of inferring a much richer set of tex-
ture maps (diffuse albedo, specular albedo and displacement maps)
unlike a significant body of previous techniques that are limited
to diffuse albedo prediction under the assumption of Lambertian
surface reflectance.

3 OVERVIEW
Our system pipeline is illustrated in Fig. 2. Given a single input image
captured in unconstrained conditions, we begin by extracting the
base mesh of the face and the corresponding texture map obtained
by projecting the face in the input image onto this mesh. This
map is passed through 2 convolutional neural networks (CNNs)
that perform inference to obtain the corresponding reflectance and
displacement maps (Sec. 5). The first network infers the diffuse
albedo map, while the second infers the specular albedo as well as
the mid- and high-frequency displacement maps. However, these
maps may contain large missing regions due to occlusions in the
input image. In the next stage, we perform texture completion and
refinement to fill these regions with content that is consistent with
that found in the visible regions (Sec. 6). Finally, we perform super-
resolution to increase the pixel resolution of the completed texture
from 512 × 512 into 2048 × 2048. The resulting textures contain
natural and high-fidelity details that can be used with the base mesh
to render high-fidelity avatars in novel lighting environments.
To obtain high-quality results, we found that it was essential to

divide the inference and completion process into these smaller ob-
jectives so as to make training process more tractable, as seen in Fig.
3. Using a single network that performs both the texture completion
and detail refinement on all of the desired output data (reflectance
and geometry maps) produces significantly worse results than our
described approach, in which the problems are decomposed into
separate stages addressed by networks trained for more specific
tasks, and in which the diffuse albedo is generated by a separate
network than the one that generates the remaining output data.
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4 TRAINING DATA
Training the networks to infer and complete the geometry and re-
flectance maps from the projected texture obtained from an input
image requires a substantial corpus of input texture maps with
corresponding ground truth reflectance and geometry maps. This
data is captured with seven high-resolution DSLR cameras and a
spherical LED dome, using the polarized gradient spherical illumi-
nation technique of [Ghosh et al. 2011]. The captured data includes
high-resolution photographs of the subject from multiple views,
sub-millimeter accurate facial geometry with a displacement map
and a set of specular and diffuse albedo maps. The diffuse albedo
(RGB channel) and specular albedo (single channel) respectively
indicate the view-independent diffuse intensities and specular in-
tensities with the Fresnel reflection normalized, derived from po-
larized spherical gradient illumination as in [Ghosh et al. 2011; Ma
et al. 2007b]. Thorough definitions of these terms can be found
in [Weyrich et al. 2006]. The displacement map contains the high-
and medium-frequency geometric details relative to the base sur-
face mesh, while the original high-resolution mesh is recovered by
embossing the base surface with these displacements. Dense cor-
respondences for the 3D scans are obtained with a state-of-the-art
multi-view dynamic facial capture method [Fyffe et al. 2017]. These
texture maps are stored in a consistent UV space such that we can
learn the variation in common skin features shared by different
individuals. The displacement maps are separated into medium- and
high-frequency displacements. We found that this separation, which
is common for facial capture [Graham et al. 2013b; Ma et al. 2008;
Nagano et al. 2015], is necessary to make the training process for
our networks tractable. Training using the original displacement
maps, in which both the medium-frequency displacements (which
contain geometric details in the range of several millimeters) and the
high-frequency displacements (which may be in the sub-millimeter
range) are represented in a single map leads to the high-frequency
displacements being regarded as noise that is disregarded during
training, and thus is not inferred properly. We separate these compo-
nents using a standard Difference of Gaussians operation. The very
low-frequency components of the displacement are first removed
by subtracting the result of a 201 × 201 Gaussian filter from the raw
displacements. The medium-frequency displacements are extracted
by applying a 17 × 17 Gaussian filter to the resulting displacement
maps. Subtracting these medium-frequency components from the
input to this filter yields the high-frequency displacements.
Our data set includes both male and female subjects covering a

variety of ages and races. The population ratio of our data is the
following:male/f emale = 1 : 1, Caucasian/Asian/Af rican = 80 :
15 : 5, and Aдes : 10′s/20′s/30′s/40′s/50′s/60′s = 5 : 40 : 25 : 20 :
5 : 5. It consists of 329 high-resolution facial scans from 25 subjects
performing up to 30 different facial expressions. We increase the
data variation using several data augmentation techniques:

• Synthetic lighting augmentation: we augment the variation
of the input lighting with synthetic rendering in order to
obtain robust inference in the wild. To do this, we employ
the ground truth facial geometry and reflectance to render
the face in multiple natural HDR environments using the
hybrid normal rendering [Ma et al. 2007a] and ambient oc-
clusion technique. To simulate the natural occlusion seen in

L1

FMDecoderEncoder

skip connection

 D

input texture

Real/Fake

visibility mask

Fig. 4. Reflectance inference pipeline. The texture extracted from the input image
and the corresponding visibility mask are passed through a U-net encoder-decoder
framework to produce a diffuse reflectance map. Another network takes the same input
and produces the specular reflectance and mid- and high-frequency displacement
maps. These networks are trained using a combination of L1 and adversarial loss (D),
as well as feature matching loss (FM), using features extracted from the discriminator.

unconstrained images, we randomly perturb the head orien-
tation and generate a visibility mask in UV space indicating
which pixels are visible from this viewpoint. This visibility
mask is used both at training and test time. We note that
synthetic renderings have been shown to reduce the amount
of training data required for and improve the robustness of
learned subject-specific priors for facial expression capture
[McDonagh et al. 2016]. In this work we demonstrate that
similar techniques can be used to improve the quality of ap-
pearance capture results attainable using a tractable amount
of high-quality ground-truth geometry and reflectance data.

• Skin diffuse albedo augmentation: we employ the Chicago
Face Database (CFD) [Ma et al. 2015], which contains pho-
tographs of subjects from a wide variety of races, to increase
the variety of skin tones in our dataset. We sample a number
of subjects from the missing races from the CFD database and
transfer the overall skin tone to the subjects in our dataset.
This process is performed during training such that the distri-
bution of skin tones in the diffuse albedo textures is similar to
the skin color distribution found in the CFD. We find that this
makes our approach more robust to the variety of skin tones
seen in the unconstrained images used in our evaluations,
particularly the darker skin tones that are underrepresented
in our captured dataset.

5 REFLECTANCE AND GEOMETRY INFERENCE
We first adopt a pixel-wise optimization algorithm [Hu et al. 2017;
Thies et al. 2016a] to obtain the base facial geometry, head orien-
tation, and camera parameters. Using this data, we can project the
face in the input image into a texture map in the UV space used
in our pipeline. The non-skin region is removed in image space
using a state-of-the-art semantic segmentation [Zhao et al. 2017]
technique fine-tuned on the facial segmentation dataset provided
by [Saito et al. 2016]. Once the input RGB texture is extracted, it
may be used in the reflectance and geometry inference networks
(Fig. 4) to obtain the corresponding diffuse and specular reflectance
maps and the mid- and high-frequency displacement maps.
For this task, we employ a U-net architecture with skip connec-

tions similar to [Isola et al. 2016]. Such an architecture is well-suited
to our task, as the skip connections between layers of the encoder
and decoder modules allow for the easy preservation of the overall
structure of the input image in the output image, thereby avoiding
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Fig. 5. Our texture completion pipeline. The inferred texture and visibility mask are downsampled by a factor of 4 and completed. The resulting low-resolution texture is upsampled
to the original resolution and blended with the input texture, then passed through a network that refines the texture to add subtle yet crucial details. Finally, a super-resolution
algorithm is applied to generate high-fidelity 2048 × 2048 textures.

the artifacts and limited resolutions found in more typical encoder-
decoder networks. This allows the network to use more of its overall
capacity to learn the appropriate transformation from the provided
input to the desired output. As we perform inference in UV space,
there is a direct correspondence between each pixel in the input
RGB texture map and those in the inferred reflectance and geometry
maps. However, we found that using this network architecture and
training process is insufficient to obtain reasonable results for our
task. To make this problem more tractable, we introduce several
significant modifications, described below, to increase the resulting
image quality and stabilize the training process:

Training Loss. During training, the L1 and GAN discriminator
losses are computed only within the aforementioned visibility mask.
This allows the network to focus on inferring details from only
the regions that will be used in the final output. We also add a
feature matching loss term using the features obtained from the
discriminator, and use unconditional GAN loss, following recent
efforts [Zhu et al. 2017]. We found that these modifications lead
to better overall visual quality in the generated output. Note that,
as we employ high fidelity rendering including ambient occlusion
and subsurface scattering with hybrid normal rendering [Ma et al.
2007a] in our training data, it is non-trivial to obtain a differentiable
composition on-the-fly to compute reconstruction loss, unlike [Shu
et al. 2017; Tewari et al. 2017b].

Dual Networks. We use two networks with identical architectures,
one operating on the diffuse albedo map (subsurface component),
and the other on the tensor obtained by concatenating the specular
albedo map with the mid- and high-frequency displacement maps
(collectively surface components). We observed that concatenating
all the data into a single input tensor leads to poor overall perfor-
mance. This is because that surface and subsurface components
capture different optical features of the skin, and the conflicting
features interfere with one another and cause the network to fail to
robustly recover each component. On the other hand, separating
each component and inferring them in isolation causes instability
in the training that interferes with the network’s ability to recover
the high-frequency displacement. We found that this separation of
the diffuse component from the others results in the best overall
performance, which is reasonable given that the specular reflection

has a significant correlation with fine-scale details in the surface
geometry (e.g., [Ghosh et al. 2011; Ma et al. 2007b] use specular
analysis to recover such geometric details).

Network Architecture. To improve the accuracy of the high-
frequency details, we change the stride size from 2 to 1 in the first
and last convolution layers. We also add additional convolutional
layers to the U-net such that the spatial dimension of the deepest
layer is 1 × 1, which leads to a better encoding of the global context.

6 SYMMETRY-AWARE TEXTURE COMPLETION AND
REFINEMENT

As the inferred reflectance and geometry maps often contain large
missing regions due to occlusions caused by various factors (e.g.,
hair and non-frontal viewpoints), this inference is followed by an-
other stage in which these missing regions are completed (Fig. 5). As
with the inference stage, we find that the best results are obtained
by training one network pipeline to complete the diffuse albedo and
another to complete the other components (specular albedo, mid-
and high-level displacement). However, we observe that completing
large areas at a high resolution still does not converge to a reason-
able result due to the high complexity of the learning objective.
Furthermore, state-of-the-art inpainting methods work very poorly
in our scenario, in which the missing region can be quite large in
the case of extreme occlusions. These regions must be completed in
a manner that results in natural, globally coherent facial textures
free of distracting artifacts. In such cases, the convolutional layers
of these networks cannot extract meaning features within their
receptive fields.
Thus, we propose to stabilize the training and improve the re-

sulting quality by dividing the inpainting problem into simpler
sub-problems. The 512 × 512 resolution input textures are first re-
sized to 128×128 and texture completion is performed by a network
to obtain complete low-resolution textures. Second, we perform
bilinear upsampling by a factor of 4 on the completed textures and
blend each with the visible region in the corresponding input tex-
ture. This process is followed by detail refinement, in which these
completed textures are processed to create globally coherent tex-
tures with the same level of high-fidelity details. These networks
make use of the same architecture as those used for reflectance and
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Fig. 6. Feature flipping in the latent space. The intermediate features obtained from
the convolutional layers of the network are flipped across the V-axis and concatenated
to the original features. This process allows the texture completion process to exploit
the natural near-symmetry in human faces to infer texture maps that contain local
variations but are nearly symmetric.

geometry inference (though the low-resolution completion network
is modified to account for the 128×128 resolution input and output).

Furthermore, we leverage the spatial symmetry of UV parameter-
ization and maximize the feature coverage by flipping intermediate
features over the V-axis in UV space and concatenate them to the
original features (Fig. 6). This technique allows the network to use
the context provided by visible regions of the face to complete miss-
ing parts of the corresponding region on the opposite side, such
as when the left half of the face is largely occluded due to a non-
frontal viewpoint. We demonstrate that this feature flipping results
in completed textures that do not display an uncanny degree of near-
perfect symmetry, but rather contain a natural degree of symmetry
as is seen in real faces. We found that this technique provided supe-
rior results to common methods for expanding the receptive field
of convolution layers, such as making use of dilated convolutions
or global pooling layers. Finally, the resulting 512 × 512 resolu-
tion textures are upsampled to 2048 × 2048 using a state-of-the-art
super-resolution algorithm [Ledig et al. 2016].

7 IMPLEMENTATION DETAILS
We train each network using the Adam optimizer [Kingma and Ba
2014] with a learning rate set to 0.0002. In addition to the aforemen-
tioned data augmentation techniques, we perform random flipping
of the input images across the V-axis to further increase the training
dataset size. All training was performed on an NVIDIA GTX 1080
Ti graphics card. To train the texture completion networks, we use
an occlusion mask from the input image or a random rectangular
mask. We generate a mask at a random point in the image with an
area ranging from 0.25 ×W × H to 0.5 ×W × H . For the inference
network, we set the weights of the L1, discriminator, and feature
matching losses to 10, 1, and 0.005, respectively. For the completion
network, the weights are set to 10, 1, and 0.2. For the refinement
network, the weights are set to 20, 1, and 0.05.
We use three separate discriminators, one for each of the out-

put maps, to train the network that infers the specular albedo and
displacements. While this results in increased memory usage and
computation when training this network, we found that superior
results were obtained compared to using one discriminator that
decides whether the combined output maps are real or fake. For the
completion and refinement networks, we found a single discrimina-
tor operating on the entire output tensor to be sufficient.

diffuse specular disp
PSNR 22.42 17.96 23.89
SSIM 0.81 0.44 0.73

Table 1. Quantitative evaluation. We measure the peak signal-to-noise ratio (PSNR)
and the structural similarity (SSIM) of the inferred images for 100 test images compared
to the ground truth. The inferred displacement value is computed using the output
medium- and high-frequency displacement maps to recover the overall displacement.

In addition to the specified input, each network also accepts
the visibility mask extracted from the initial 3D mesh fitting, as
seen in Fig. 5. This allows them to better distinguish between the
regions on which they must focus their capacity (such as the visible
region for the initial reflectance and geometry inference, or the
occluded region that must be completed for the texture completion
network). We only compute and backpropagate loss for the visible
region in the initial inference network, as the other regions will be
completed and refined by the subsequent networks. We found that
superior results were obtained from the refinement network when
the adversarial and feature matching loss were backpropagated only
from the occluded regions, while the L1 loss is backpropagated from
the entire image. This allows the network to focus its capacity on
refining the incomplete regions, which are only filled with the low-
resolution output of the completion network, while maintaining the
overall quality of the visible regions of the inferred reflectance and
geometry maps. For the texture completion network, all losses are
computed for the entire input image.

The reflectance and geometry inference networks are trained for
60,000 iterations (requiring approx. 12 hours and 6 GB of GPU mem-
ory). The texture completion networks are each trained for 60,000
iterations using the masked ground truth images, and another 30,000
iterations to fine-tune the network using the output of the initial
inference networks (approx. 6 hours, 1.5 GB GPU memory). The
detail refinement network is likewise trained for 60,000 iterations
and fine-tuned for another 30,000 iterations using the output of the
trained texture completion networks (approx. 12 hours, 4.5 GB GPU
memory). The super-resolution network is trained for 1000 epochs
using our training data as ground truth.

8 RESULTS
All our results are rendered with brute-force path tracing in the
Solid Angle’s Arnold renderer [Solid Angle 2016] with physically
based specular reflection and subsurface scattering with high dy-
namic range image-based illumination. The resulting surface and
subsurface reflectance, together with the base surface mesh and the
displacement, are used to produce the final render using a layered
skin reflectance model as in [The Digital Human League 2015] (see
supplemental material for more details on the rendering process).

Evaluation. We quantitatively measure the ability of our system
to faithfully recover the reflectance and geometry data from a set
of 100 test images for which we have the corresponding ground-
truth measurements. The results are seen in Table 1. We see that the
system is able to recover the diffuse albedo and overall displacement
quite well, though the higher complexity of the specular albedo
results in a larger difference from the ground truth. However, our
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Fig. 7. Inference in the wild. The first column contains the input image and the corresponding inferred output applied to the base mesh. The second and third columns contain new
renderings of the avatar under novel lighting conditions (the lighting environments we use are inset in the top left example renderings).
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Fig. 8. Zoom-in results showing synthesized mesoscopic details.

Fig. 9. Consistency of the output obtained using input images of the same subject
from different viewpoints.

qualitative evaluations demonstrate that the inferred data is still
sufficient for rendering compelling and high-quality avatars.
In Fig. 7, we show several results obtained using unconstrained

input images from the CelebA dataset [Liu et al. 2015], with the
input images, the corresponding inferred textures, and sample ren-
derings using the inferred data. Despite the widely varying subject
appearance, lighting conditions, facial expressions, and view angles
with occlusions, the results demonstrate that the system is able to
infer the data needed to render subjects well enough to allow for
the rendering of compelling and high-fidelity avatars. In the supple-
mental material we provide additional single-view reconstructions
with our method using a large public data set [Ma et al. 2015].

Figs. 9 and 10 demonstrate that we obtain comparable results
using a single image that is captured from different viewpoints
and different lighting conditions, respectively. As can be seen in
Figs. 9, the missing region such as the side of the cheek is plausibly
completed with our texture completion method, with appropriate
natural symmetry, and is consistent with the rest of the skin. De-
spite the varying lighting colors, the amount of specularity, and the
contrast in the images due to shadowing, the reconstructed textures
display a consistent skin quality matching the subject’s identity
(Fig. 10). These results demonstrate that our approach can recover

in
p
u
t

o
u
tp
u
t

Fig. 10. Consistency of the output obtained using input images of the same subject
captured under different lighting conditions.

input ours w/o flipIizuka et al. ours w/ flip

Fig. 11. Comparison with [Iizuka et al. 2017] and our network, both with and without
the feature flipping layer.

plausible and consistent output despite large variations in the input
images, such as vastly differing viewpoints or extreme changes to
the lighting environment.

We provide additional experiments in which we alter conditions
such as the input view angles, lighting conditions, and expressions
in the supplemental material. For more results, please watch the
supplementary video.

Comparison. In Fig. 11, we compare our approach to [Iizuka et al.
2017]. Severe occlusions resulting in large missing regions in the
input texture cause their method to fail to faithfully recover the
entire diffuse albedo map. Our method, in contrast, is able to infer
plausible and coherent data to fill the missing regions, resulting
in a much more natural albedo map that is suitable for rendering
a digital avatar. We provide results using our described approach
both with and without the aforementioned feature flipping strategy,
demonstrating the importance of this technique in producing output
images that are both complete and natural.

In Fig. 12, we compare our approach to several alternatives on a
variety of input subjects captured under different conditions. We
show the results obtained by simply reconstructing the captured
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input texture PCA Visio-lization Saito et al. oursinput image

Fig. 12. Comparison with PCA, Visio-lization [Mohammed et al. 2009], and a state-
of-the-art diffuse albedo inference method [Saito et al. 2017].

Fig. 13. Comparison of diffuse albedo inference with a data-driven intrinsic decom-
position method [Li et al. 2014] (produced by original authors).

texture using the PCA coefficients obtained from the 3D face fitting
process [Thies et al. 2016a] used to extract raw texture that is pro-
vided as input to our system; the results obtained using [Mohammed
et al. 2009]; and the result of applying [Saito et al. 2017]. We show
both the entire recovered diffuse texture as well as a close-up of a
region of the texture. This clearly demonstrates our approach’s abil-
ity to faithfully recover fine-scale details corresponding to the input
image, resulting in more coherent and plausible facial textures than
these alternative approaches. Figs. 13, 14 and 15 provide additional
comparisons with the results obtained using our approach and those
obtained using several recently developed facial capture techniques.
As seen in the figures, our method produces significantly better
skin texture (Fig. 13), sharp details (Fig. 14), and preserves distinct,
person-specific details such as freckles (Fig. 15).

input Tewari et al. ours

Fig. 14. Comparison of diffuse albedo inference with an unsupervised face alignment
method [Tewari et al. 2017b], in which skin textures are represented by a linear basis.

Fig. 15. Comparison of diffuse albedo inference with an unsupervised intrinsic
decomposition method [Shu et al. 2017].

ground truth PCA Visio-lization Saito et al. Ours

Fig. 16. Comparison with PCA, Visio-lization [Mohammed et al. 2009], and a state-
of-the-art diffuse albedo inference method [Saito et al. 2017] using Light Stage ground
truth data.

We also provide quantitative comparisons of the fidelity of our
diffuse albedo inference with that obtained using these techniques.
As seen in Table 2, our method produces albedo maps that are closer
to the ground truth than any of these alternatives (see Fig. 16 for a
qualitative comparison). In Fig. 17, we show rendering results using
the data inferred with our approach, and compare with renderings
generated using the high-fidelity data acquired directly from the
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Fig. 17. Ground truth comparison using Light Stage (LS) data.

method PSNR RSME
[Thies et al. 2016a] 17.6354 0.1369
[Saito et al. 2017] 15.6308 0.1767

[Mohammed et al. 2009] 18.34 0.1271
ours 19.333 0.1102

Table 2. Quantitative comparison our diffuse albedo inference with several alternative
methods, measured using the PSNR and the root-mean-square error (RMSE).

stage diffuse specular, disp
inference 8 ms 8 ms
completion 6 ms 6 ms
refinement 3 ms 3 ms

super-resolution 300 ms 300 ms
Table 3. Runtime performance for each component of our system.

multi-view stereo system used to generate our training data. The
renderings with our inferred reflectance data applied to the ground
truth base mesh from the Light Stage suggest that our method
can capture all the reflectance data necessary to render a high-
fidelity avatar. The last column shows the result using the base
mesh obtained with our method. The final rendering of our single-
view technique indicates comparable quality to that obtained with
a Light Stage capture device.

Performance. Table 3 shows the runtime performance of each
stage of our pipeline.

9 CONCLUSION
We have demonstrated the feasibility of inferring high-resolution
reflectance and geometry maps using a single unconstrained im-
age of the captured subject. Not only are these maps high-fidelity
and sufficient for rendering compelling and realistic avatars, but
they contain the fine details essential for preserving the likeness of
the captured subject (such as pores, moles, and facial hair). This is
possible in large part due to our use of high-quality ground truth
3D scans and the corresponding input images. This allows for the
training of networks specially designed for the inference, texture
completion and detail refinement tasks necessary to generate the
data for rendering these avatars. By decomposing this problem into
smaller tasks that are addressed using specific variations of the
network architecture and training procedure, we are able to obtain

high-resolution textures containing all the data needed to render
characters with reflectance and fine-scale geometry matching the
target subject. This output is comparable in quality to that obtained
by [Saito et al. 2017], but is obtained in only a fraction of the time
(several seconds rather than several minutes). Unlike the aforemen-
tioned approach, the output includes all the mesoscopic geometric
and illumination-independent reflectance data required to produce
realistic renderings under novel lighting conditions. Furthermore,
our approach maintains high-resolution details in the reflectance
of the input image, rather than changing the entire image to match
the statistics of those in our training database, but still produces
globally coherent textures. To render realistic faces, the inferred
textures should not have perfect symmetry, which would result in
uncanny renderings, but need to have local variations comparable
to those seen in real faces. Our technique of flipping and concatenat-
ing convolutional features encoded in the latent space of our model
allows us to perform texture completion in a manner that respects
the natural degree of symmetry seen in the human face.

Limitations. Despite these findings, our approach has several lim-
itations. While it is able to quickly infer high-fidelity details given a
sufficiently high-resolution input image, it cannot infer these details
if the input image is of very low quality or resolution, unlike the
more computationally intensive transfer-based technique of [Saito
et al. 2017]. Furthermore, while it can recover details such as facial
stubble, which can be represented as fine details in the reflectance
and geometry maps, it cannot recover other larger variations in
facial appearances, such as very dense and long facial hair. Further-
more, other features that do not correspond to semantic features
of the human face, such as glasses, cannot be recovered and may
interfere with the fitting process used to recover the base mesh and
corresponding texture map from the input image. As our ability to
recover the input facial texture is limited by our ability to recover the
base mesh and camera parameters using a photometric-consistency
optimization, very challenging conditions in the input images, such
as extreme lighting conditions or largely non-frontal viewpoints,
may cause failures in this stage. In addition, strong dynamic expres-
sions can introduce transient wrinkles that may lead to inconsistent
reflectance and geometry maps for a given subject compared to
those that would be obtained using an image with a more neutral fa-
cial expression. (Figure 18 contains example output produced under
some of the aforementioned conditions). Very specific and unique
features, such as scars, will not be recovered as accurately as when
using a more cumbersome and computationally intensive approach
relying on multi-view stereo capture of each new subject.

Future Work. In addition to addressing the aforementioned lim-
itations, we believe that there are many avenues of future work
in the domain of high-quality facial capture in unconstrained sce-
narios that could build upon our approach and make use of our
high-quality facial scan database. We plan to expand our database
to cover dynamic facial details, such as those caused by strong facial
expressions. Extending our approach to recover dynamic fine-scale
facial details from multiple input images, such as those taken in a
short video or a sequence of still images, is another promising area of
exploration. This would allow for the recovery of additional details
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Fig. 18. Limitations. Ourmethod produces artifacts in the presence of strong shadows
(lower right) and non-skin objects due to segmentation failures (upper left). Also volu-
metric beards are not faithfully reconstructed (upper right). Strong dynamic wrinkles
(lower left) may cause artifacts in the inferred displacement maps.

when some of the input images suffer from issues such as low reso-
lution or extreme occlusions. It may also allow for a more accurate
reconstruction of the base mesh, thereby allowing for even more
accurate renderings of digital avatars using the inferred textures.
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