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Figure 1: Our system takes as input a reference photo (a), a few user strokes (b) and a database of example hairstyles (c) to model the 3D
target hairstyle (e). The retrieved examples that best match the user strokes are highlighted with the corresponding colors in (c) which are
combined consistently as shown in (d). Original image courtesy of Yung-Yuan Kao.

Abstract

Human hair presents highly convoluted structures and spans an
extraordinarily wide range of hairstyles, which is essential for
the digitization of compelling virtual avatars but also one of the
most challenging to create. Cutting-edge hair modeling techniques
typically rely on expensive capture devices and significant manual
labor. We introduce a novel data-driven framework that can digitize
complete and highly complex 3D hairstyles from a single-view
photograph. We first construct a large database of manually crafted
hair models from several online repositories. Given a reference
photo of the target hairstyle and a few user strokes as guidance,
we automatically search for multiple best matching examples
from the database and combine them consistently into a single
hairstyle to form the large-scale structure of the hair model. We
then synthesize the final hair strands by jointly optimizing for
the projected 2D similarity to the reference photo, the physical
plausibility of each strand, as well as the local orientation coherency
between neighboring strands. We demonstrate the effectiveness and
robustness of our method on a variety of hairstyles and challenging
images, and compare our system with state-of-the-art hair modeling
algorithms.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and object
representations;
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1 Introduction

With the dramatic performance increase of today’s graphics tech-
nologies, visual details of digital humans in games, online virtual
worlds, and virtual reality applications are becoming significantly
more demanding, reaching nearly the quality and realism seen
in film production. While compelling animations and renderings
are now possible in realtime, the digitization of lifelike virtual
avatars is still reserved to professional production studios, involving
complex hardware equipment and talented digital artists. With the
aim of scaling production and bringing 3D character creation to
consumers, significant research has been dedicated to the automatic
digitization of human faces [Blanz and Vetter 1999], bodies [Zhou
et al. 2010] , and hands [Wang and Popović 2009] from a single
input image or video. These 3D reconstruction methods typically
rely on low dimensional parametric models that encode statistical
shape variations of a population.

An essential but often overlooked problem is the modeling of
human hair, which is challenged by the highly intricate structure of
intertwined strands and the wide variation of hairstyles. Unlike
anatomically compatible shapes such as faces and bodies, it is
unclear how to represent or construct a unified parametric model for
hair due to the vast diversity in topological structures and local
details. Nevertheless, several 3D hair capture techniques have
recently demonstrated the successful reconstruction of challenging
hairstyles [Paris et al. 2008; Luo et al. 2013], but they typically rely
on complex capture settings. Although single-view hair modeling
methods [Chai et al. 2012; Chai et al. 2013] have been introduced
lately for image-based rendering and editing tasks, they are only
capable of handling very coarse and smooth hairstyles.

Recent advances in data-driven modeling have shown that many
ill-posed single-view reconstruction problems can be addressed by
leveraging geometric priors from a large collection of 3D shapes
(e.g., for hand tracking [Wang and Popović 2009], pose estimation



[Shotton et al. 2011], and scan completion [Shen et al. 2012]).
The main challenge of data-driven methods generally consists of
maximizing the coverage of all input cases while keeping the
solution space of the database tractable since acquiring, storing,
and searching the database becomes more expensive as the database
size increases. A common strategy is to decompose each example
into components which can be recombined into new examples at
runtime. While Shen et al. [2012] have demonstrated the power
of such methodology on the problem of scan completion of man-
made objects that are composed of individual components (e.g., seat,
arms and legs of chairs), it is generally unclear how to decompose a
hairstyle into semantically meaningful and discernible parts since
hair structures can be cut, split and grouped in almost arbitrary ways.

In this work, we present a system that creates a high quality 3D
hair model from a single input reference photo using a database of
full 3D hairstyles and a few user strokes. Our hairstyle database is
obtained by collecting more than 300 hairstyles which are created
manually and publicly available on some online game communities
[Electronic Arts 2014; Newsea 2014]. We propose a coarse-to-fine
modeling strategy and adopt a hierarchical two-level representation
to accurately model the target hairstyle.

At the coarse scale, we first retrieve the example hairstyles from
the database which best match the 2D user strokes. These strokes
outline the representative structures in the target hairstyle which are
necessary for revealing the full hair connectivity and topology, often
occluded in single-view images. We then combine the retrieved
examples into a 3D orientation field by considering both the user
strokes and local orientation consistency in a Markov Random Field
(MRF) framework. We use the combined 3D orientation field to
produce the structure of the target hairstyle by growing strands from
the scalp of a fitted 3D head model. At the fine scale, we first deform
the combined hair strands to match the 2D orientations of the target
hairstyle. To produce physically plausible hair strands during the
refinement, one possibility is to simulate the strands. However,
while inferring simulation parameters has been demonstrated on 3D
data [Derouet-Jourdan et al. 2013], those variables are extremely
difficult to estimate from 2D input. Since hair strands can be
represented by piecewise helices [Bertails et al. 2006], we adopt
the method proposed by Cherin et al. [2014] to fit piecewise 3D
helix curves to the 2D projections of the target hair strands. Finally
we refine the output strands by jointly optimizing the similarity to
these fitted helices as well as the orientation consistency between
neighboring strands.

We demonstrate the effectiveness and robustness of our approach
through a variety of examples (Section 6). We also compare our
method with state-of-the-art hair modeling techniques (Figure 8). In
summary, our main contributions are:

• The first hair modeling system based on a database of complete
hairstyles which is capable of creating high quality 3D hair
models from a single image with minimal user input.

• A hair structure assembly algorithm that can combine multiple
hairstyles into a consistent one to match a target hairstyle.

• A hair strand synthesis method to refine a coarse 3D hairstyle
by matching the projected 2D local orientation of the target
hairstyle with physically plausible strands.

2 Previous Work

Hair digitization. The modeling of human hair has been ex-
tensively explored in graphics research offering a wide range of
sophisticated and intuitive design tools [Kim and Neumann 2002;
Choe and Ko 2005; Ward et al. 2007; Yuksel et al. 2009; Weng
et al. 2013]. More recently, 3D hair capture techniques have

been introduced to digitize physical hair through optical sensing.
In general, these methods are often associated with expensive
hardware equipment, controlled capture settings, and tedious manual
segmentation tasks [Paris et al. 2008; Jakob et al. 2009; Lay Herrera
et al. 2012; Luo et al. 2013; Echevarria et al. 2014; Xu et al.
2014b]. To fully eliminate the manual segmentation process,
Hu et al. [2014a] developed a hair capture technique based on
simulated hair strands which enables the automatic segmentation of
hair regions and the synthesis of physically plausible hair models.
This method is only suitable for unconstrained hairstyles and
also require a costly multi-view stereo system. Their follow-up
work [Hu et al. 2014b] uses only a single RGB-D sensor (Kinect)
as acquisition hardware and addresses the problem of constrained
hairstyle digitization such as braids using a database of procedurally
generated examples. Our method only requires a single reference
photo and a few 2D strokes as input, and is thus more cost-effective,
deployable, and user-friendly. Existing sketch-based hair modeling
techniques [Wither et al. 2007; Fu et al. 2007; Yu et al. 2014] are
purely manual design tools since they do not take any reference
photographs as direct input to the algorithms. State-of-the-art image-
based hair modeling methods [Chai et al. 2012; Chai et al. 2013] can
handle a single-view image but require high-quality photographs
with complete hair strands and a frontal face as input. Our approach
of using a hairstyle database can handle challenging hair photographs
that are largely occluded, as well as these with different head poses.

Single-view reconstruction. Several algorithms have been pro-
posed to estimate facial models [Blanz and Vetter 1999], hands
[Wang and Popović 2009], and hair appearance [Bonneel et al.
2009] from a single-view input image or video. To address this
ill-conditioned problem, most of these methods rely on a reduced
parametric models that encode the shape/appearance variations of the
specific target phenomenon to achieve a reasonable model estimation.
Unfortunately, such representation is difficult to obtain for hair due
to the vast diversity in the structure and the style.

Modeling from a large database. Following the seminal work
of [Funkhouser et al. 2004], several important advances on data-
driven modeling have been introduced in recent years [Chaudhuri
et al. 2011; Xu et al. 2011; Xu et al. 2012; Kalogerakis et al. 2012;
Shen et al. 2012; Kholgade et al. 2014]. The use of an existing
shape database can significantly speed up the modeling process
compared to building a new shape from scratch. For example,
Kalogerakis et al. [2012] have proposed a method to synthesize
new shapes by assembling individual parts from a shape repository.
We adopt a similar model assembly-based approach to the problem
of hair digitization. Unlike many existing data-driven techniques,
our approach does not require pre-segmentation of examples in the
database, which is difficult to achieve for most hairstyles due to their
continuous shape distribution and indiscernible components.

Sketch-based modeling. Intuitive 2D sketches are popular user-
interfaces for prototyping designs and scalable content creation. We
refer the readers to [Olsen et al. 2009] for a comprehensive survey of
earlier work about sketch-based modeling interfaces. Some recent
work has been applied to the modeling of photo compositions
[Chen et al. 2009], quad meshes [Takayama et al. 2013], indoor
scenes [Xu et al. 2013], 3D curve networks [Xu et al. 2014a], and
part assemblies [Huang et al. 2014]. Recently Cherin et al. [2014]
proposed a method to fit a single 2D sketch with a piecewise 3D helix
curve. Our algorithm for the modeling of individual strand shape
(Section 5) is inspired from this technique but also incorporates the
interaction of neighboring hair strands.
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Figure 2: Preprocessing of an example hairstyle. From left to
right: (a) the original mesh (downloaded from online repositories
and roughly aligned with a given head model); (b) hair strands
by uniformly sampling the original mesh; (c) the final example by
growing hair strands from the scalp.

3 Database Construction

We construct a database of hairstyles spanning a wide range of
overall shapes and different local details by collecting 343 examples
from several repositories available online [Electronic Arts 2014;
Newsea 2014]. Most of these hairstyles are manually created by
various artists and gamers. The original data of each hairstyle is
specified as a set of triangle meshes, while each mesh represents a
wisp of hair strands with consistent orientation and length.

Since many of the original hairstyle models are created under
different poses, we manually transform the global pose of each
hairstyle to roughly align them with a fixed standard head model
by translating, rotating and/or scaling. To convert the mesh into
hair strands for later computation, we first uniformly sample all the
meshes in the hairstyle following the local orientation and obtain
a set of hair strands, where each strand is represented as a set of
equally spaced sample points. Next we build a 3D orientation field
from the hair strands using the method of Wang et al. [2009] and
smoothly diffuse the field into the entire 3D volume as proposed
by Paris et al. [2008]. Guided by the diffused 3D orientation field,
we grow hair strands from 10000 uniformly distributed roots on
the scalp and consider these strands as an example hairstyle E in
the database D. See Figure 2 for a concrete example. We finally
augment the database by flipping each example w.r.t. the plane
of reflection symmetry of the head model and obtain a database
containing 686 examples in total.

Notations. Throughout this paper we use the italic font to denote
a scalar or a single entity (e.g., a sample point s on a hair strand),
the bold font for a vector (e.g., a position p in 3D space), and the
calligraphic font for a set (e.g., the database D as a set of hairstyles,
a hairstyle H as a set of strands, and a strand S as a set of samples).

4 Modeling Large-Scale Structure

Given a reference photograph of the 3D target hairstyle, we first
determine a transformation matrix T to align the standard head
model with the head pose in the photo. For photographs of frontal
faces, the transformation matrix can be automatically computed
based on the detection of a set of 2D facial feature points [Baltrusaitis
et al. 2013]. For other photos we manually align the head to
estimate the transformation matrix approximately based on visual
observation.

Next, we let the user draw a few 2D strokes over the reference photo
to guide the modeling of the large-scale structure. For each stroke,
we search for the best matching example hairstyle in the database

(a) (b) (c)

Figure 3: Retrieving and combining multiple hairstyles. From left
to right: (a) user strokes with the latest one shown with red; (b) the
best matching example hairstyle retrieved from the database based
on the red stroke; (c) the combined hairstyle at the current step, with
each hair sample colorized according to the label of the grid which
contains the sample point.

(Section 4.1). We then combine all the retrieved example hairstyles
together to form a consistent large-scale structure of the 3D target
hairstyle (Section 4.2). In addition, we provide some optional editing
operations to refine the modeling result of the large-scale structure
(Section 4.3).

4.1 Example Retrieval

For many reference photos, it is difficult or nearly impossible to
automatically extract the complete structure of hair strands due
to the complexity of the hairstyles, self-occlusions between hair
strands, and the conditions under which the photos were taken. As
a result, we ask the user to draw several 2D strokes {U} based
on his/her observation of the reference photograph. Each stroke is
required to be from the root to the tip following the orientation of
hair strands in the photograph. We consider these user strokes as
essential structures of the target hairstyle projected onto the image
plane, which are necessary to reveal the full hair connectivity and
topology.

To measure the difference between a 2D user stroke U and a 3D
hair strand S, we project the strand onto the image plane using
the transformation matrix T mentioned above. We find the closest
sample sj on the projected strand for each sample si on the user
stroke U and compute the difference as:

D
�U ,S� =

X

si2U

min

sj2S
|p(si)� p(sj)| (1)

where |p(si) � p(sj)| is the distance between the positions of si
and sj on the image plane.

We define the difference between a user stroke U and an example
hairstyle E in the database by simply searching for the hair strand
S of the hairstyle that minimizes the stroke-strand difference as
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Figure 4: Editing the structure of a hairstyle with a cutting tool.
From left to right: (a) reference photo; (b) manually extracted binary
mask; (c) the hair structure before editing; (d) the hair structure
after editing. Original image courtesy of Eu Hairdresser.

defined in Equation 1:

D
�U , E� = D

�U , {Si}
�
= min

Si2E
D
�U ,Si

�
(2)

For each user stroke Ui, we search for the best matching example
hairstyle Ei from the database D which minimizes the stroke-
hairstyle difference defined in Equation 2. We also store the
best matching hair strand Si 2 Ei which minimizes the stroke-
strand difference among all the strands in Ei for the computation in
Section 4.2.

Discussion. We have tried several different metrics for the
retrieval of the best matching example, including an alternative
way based on local curvatures. We have found that the simple form
in Equation 1 to be highly effective and sufficiently robust since we
focus on large-scale structures rather than local shape details during
this retrieval step.

4.2 Hairstyle Combination

After the example retrieval step as described above, our next goal
is to combine these retrieved hairstyles into a consistent large-scale
structure representing the target hairstyle. The combined hairstyle
should follow the guidance of the user strokes {Ui} and maintain
local consistency while the retrieved example hairstyles {Ei} may
be significantly different from each other. Due to the diversity of the
retrieved hairstyles {Ei}, it is usually difficult to directly combine
or blend different hair strands together. As a result, we build a 3D
orientation field Fi for each retrieved hairstyle Ei [Wang et al. 2009],
and perform the combination over the grids of these fields.

We formulate the task as a multi-label assignment problem. Specifi-
cally, we consider each retrieved example hairstyle Ei together with
the best matching hair strand Si 2 Ei as a label li, and try to assign
the optimal label for each grid g in the 3D space by minimizing the
following energy function:

E
�{gi}, {li}

�
=

X

i

Ed

�
gi, li

�
+

X

i,gj2N (gi)

Es

�
gi, gj , li, lj

�
(3)

where the first term is a fitness term to ensure that the combined
orientation field follows the guidance of the user strokes, and is
computed as the minimum distance between the grid center and the
best matching strand Sli corresponding to the label li:

Ed

�
gi, li

�
= min

sj2Sli

|p(gi)� p(sj)| (4)

where p(gi) and p(sj) are the positions of the grid center gi and
the sample sj respectively. The second term in Equation 3 is a

(a) (b) (c) (d)

Figure 5: Illustration of 2D deformation. From left to right: (a)
reference photo; (b) 2D orientation map; (c) four hair strands before
deformation; (d) the corresponding hair strands after deformation
(100 iterations). Original image courtesy of Gokhan Altintas.

smoothness term to ensure that every pair of adjacent grids (i.e., gj
belongs to the neighborhood N (gi) of gi) are assigned to labels
with consistent local orientations:

Es

�
gi, gj , li, lj

�
=

8
><

>:

0 if li = lj

5 elif li, lj compatible

100 otherwise

(5)

In Equation 5, we consider two different labels li and lj to be
compatible for two adjacent grids gi and gj , if and only if the
corresponding orientation fields have similar local orientations oi =

Fi(gi) and oj = Fj(gj), i.e., the dot product between oi and oj is
larger than a threshold ⌧ = 0.7.

The energy function defined in Equation 3 can be minimized via
the graph-cuts algorithm as described in Delong et al. [2012]. After
computing the optimal label for each grid, we obtain a combined
orientation field Fc where the local orientation is specified according
to the assigned label for each grid. We then grow the hair strands
from the combined orientation field Fc to obtain the combined
hairstyle Hc as the large-scale structure of the target hairstyle. See
Figure 3 for an illustration about combining multiple hairstyles.

Discussion. Instead of combining multiple hairstyles through
intermediate 3D grids, an alternative way is to directly select hair
strands from those retrieved hairstyles by considering the unified set
of hair roots as the domain to perform the combination. However,
we have found that it is difficult for this approach to ensure local
consistency across the entire 3D volume except around the hair roots.

4.3 Structure Editing

Once we obtain the combined hairstyle Hc, we can optionally
perform editing operations on the large-scale structure. In particular,
we have implemented a cutting tool to manipulate the contour of Hc

and introduce some random variations to the length of hair strands
in Hc, following the method introduced by Chai et al. [2013]. See
Figure 4 for an example of editing the contour with a 2D mask which
is manually prepared from the reference photo.

5 Modeling Strand Shapes

After obtaining the large-scale structure Hc of the target hairstyle,
we refine the shape of each individual strand in Hc such that (1)
the projected 2D local details of the modeling result are as close as
possible to the reference photo (Section 5.1); (2) the shapes of the
3D strands are physically plausible (Section 5.2); and (3) the global
structure of the hairstyle is preserved while maintaining the local
coherency between neighboring strands (Section 5.3).
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Figure 6: Fit with piecewise helix curves. From left to right: (a)
hair strand before fitting; (b) the fitted piecewise helix curve with
each segment visualized using a different color; (c) & (d) another
view of (a) & (b).

5.1 2D Orientations

We compute a 2D orientation map M from the reference photo using
the method described by Luo et al. [2013]. Then we deform each
hair strand S 2 Hc based on the 2D orientation map as well as
the visibility of each hair strand in the view of the reference photo.
We consider a hair strand as visible if and only if its root is visible
from current point of view. We found this simple heuristic to work
well in practice for all of our examples. Our key idea to enforce the
similarity of 2D orientations is to gradually deform each visible hair
strand with 100 iterations so that for each sample si on the strand S ,
the projected local orientation o(si) = p(si+1)� p(si) is as close
as possible to the local orientation M(si) on the 2D map.

In each iteration, every hair strand S is projected onto the image
plane based on the viewpoint of the photograph. We then deform
the strand S according to the 2D orientation map by minimizing the
following energy:

E
�{p(si)}

�
=

X

i

|p(si)� ¯

p(si)|2 + ↵1|o(si)�M(si)�|2

+ ↵2|p(si�1)� 2p(si) + p(si+1)|2
(6)

where p(si) is the projected 2D position of sample si, ¯p(si) the
initial position of sample si before the deformation, si�1 and si+1

the predecessor and successor of si on the same strand, and � the
average length between two adjacent samples on the strand. The
constants ↵1 and ↵2 are specified to control the relative weights of
the orientation and curvature terms with respect to the first position
term. We set ↵1 = 10 and ↵2 = 10 for all the results in our paper.
We solve the linear system about all the sample positions {p(si)}
to minimize Equation 6 and obtain the deformed shape of strand S.
See Figure 5 for an illustration about the deformation.

5.2 Depth estimation

The reference photo does not provide any depth information for the
hair strands, and the 3D strand shapes after the deformation step
described above may not be physically plausible. In theory, when
there is no external force like gravity or friction, the 3D shape of
each hair strand will be a helix whose curvature and torsion are
constants. However, in reality most of the hair strands are influenced
by the global gravity and hair-hair interactions. Furthermore, the
curvature of the helix does not remain invariant under 2D projections.
As a result, it is impossible to accurately depict the curvature and
torsion values solely from the 2D projection of a hair strand.

Inspired by the fact that a hair strand can be modeled as piecewise
helices [Bertails et al. 2006], to estimate the depth information of

(a) (b) (c) (d)

Figure 7: Linear blending skinning for a cluster of hair strands.
From left to right: (a) the deformed center strand Sd; (b) strands
in the same cluster before deformation with the center strand Sc

highlighted in blue; (c) the naı̈ve deformation result by directly
transferring the per-sample offset; (d) our deformation result via
linear blend skinning.

a given strand S, we fit its projected 2D shape Sp on the image
plane with a piecewise helix curve Sf , using the method proposed
by Cherin et al. [2014] (see Figure 6). To determine the position of
the fitted strand shape in the global coordinate system, we translate
the piecewise helix curve Sf to align the first sample to the original
position before the fitting.

5.3 3D Shapes

To apply the estimated depth information to the entire hairstyle,
we first group all the hair strands into 300 clusters via k-means
clustering based on the root positions and strand shapes as in Wang
et al. [2009]. For each cluster, we apply the helix fitting algorithm
described above to the center strand Sc and get the fitted piecewise
helix curve Sf . To combine the local details of Sf with the overall
structure of Sc, we align Sf with Sc using 40 iterations of non-rigid
ICP [Li et al. 2009] and obtain a deformed strand Sd.

Next, we deform the other strands in the same cluster as Sc

consistently. One possible way is to directly transfer the per-sample
offset between Sc and Sd to each strand in the cluster. But this
naı̈ve approach cannot generate coherent deformation result, since
it does not take into account the global pose of the strand cluster.
Consequently, we adopt a linear blend skinning approach [Lewis
et al. 2000] to transfer the deformation between Sc and Sd to other
strands. Specifically, we consider Sc as the rest pose shape and Sd

as the deformed shape. We use each segment between two adjacent
samples on both Sc and Sd as a bone. For each bone Bc in Sc,
we compute the twist-free material frame [Bergou et al. 2008], and
measure the transformation between Bc and the corresponding bone
Bd in Sd within the material frame. For each sample s on other
strands in the same cluster, we search for the four closest bones of
Sc and compute the skinning weights based on the distances. Then
we blend the transformations of those bones linearly according to the
weights and apply the blended transformation to get the deformed
position for s. See Figure 7 for a comparison of deformation results
between a naı̈ve offset transfer method (Figure 7c) and the linear
blend skinning technique (Figure 7d).

Discussion. [Chai et al. 2014] also used a skinning model to
interpolate the motion of a full set of hair strands from simulated
guide strands. They estimated the skinning weights from sequences
of precomputed simulation data by solving a constrained least-
squares problem which ensures the interpolation match the training
data closely. In our case of modeling static hair shapes, we find it
sufficient to estimate skinning weights based on spatial distances.
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Figure 8: Comparison with state-of-the-art sketch-based hair
modeling method. From left to right: (a) reference photos; (b)
results by [Chai et al. 2013]; (c) our results. From top to bottom,
original images courtesy of Chris Zerbes and Georg Sander.

(a)

(b)

(c)

Figure 9: Comparison with 3D hair capture. From left to right: (a)
reference photo; (b) the reconstruction result of [Hu et al. 2014a]
based on capturing the target hairstyle from 50 different views; (c)
our result from the single view of (a).

6 Results

Hairstyles. To demonstrate the generality and effectiveness of our
method, we experiment with a variety of examples from single-view
photographs, as shown in Figure 1 and 13. Specifically, we can
handle different overall shapes (including both long and short hair
strands), different curliness (ranging from straight strands to very
curly ones) and different head poses (including frontal, profile and
back views). Thanks to the hairstyle database, we can generate
modeling results with complete hair structures even when the input
photos are cropped and largely incomplete (Figure 1, the second
row in Figure 13). The user only needs to provide a few 2D strokes
using the input photo as reference. Our method then automatically
generates plausible 3D hair strands of the target hairstyle.

Comparisons. We compare our approach with the state-of-the-art
sketch-based single-view hair modeling method [Chai et al. 2013].
Their method relies on information provided by the input photo
and some heuristics for depth estimation which only work well for
images from the frontal view. As a result, their method cannot
handle challenging cases when the hair/head are partially missing
(e.g., Figure 1) or the photos are not taken from the frontal view
(e.g., the last three rows in Figure 13). By leveraging the prior
knowledge of our 3D hairstyle database, we are able to generate a
reasonable and complete structure of the target hairstyle even when
the reference photo is incomplete. Furthermore, our strand synthesis
algorithm based on piecewise helix fitting and linear blend skinning
can produce more natural and faithful 3D strand shapes compared to
existing techniques as shown in Figure 8.

Figure 10: Modeling results for the same reference photos from
reduced numbers of strokes. From left to right: the user strokes;
colored visualization of the hairstyle combination result; final hair
strands from two different views.

We also compare our approach with cutting-edge 3D hair capture
method [Hu et al. 2014a]. As shown in Figure 9, the overall quality
of our output is comparable to theirs, even though our approach
uses much less information as input (a single reference photo as in
Figure 9a versus a dense 3D point cloud obtained from 50 images).
The user strokes for Figure 8 and 9 are shown in the accompanying
video.

Evaluations. To assess the robustness of our method, we produce
several modeling results using different sets of user strokes on the
same reference photo. As shown in Figure 10, our approach can
generate reasonable modeling results even when very few strokes are
provided (compared to the corresponding results in Figure 1 and 13).
Intuitively, the modeling results are faithful when more strokes are
sketched. In Figure 11, we collected different sets of strokes from
three users to guide the modeling process from the same reference
photo of a profile view. The large-scale structures of the modeling
results from different user strokes can be quite different, because
the retrieved example hairstyles can vary significantly. However,
all three results in Figure 11 are visually reasonable solutions and
closely match the local details of the reference photo.

Limitations. Figure 12 shows two failure cases of our current
system. Due to the lack of appropriate examples in the database, we
cannot handle extreme cases such as when the hair in the reference
photo is much longer than all other example hairstyles, or the head
pose is so tilted that the overall shape of the target hairstyle no longer
matches any of those in the database. It is possible to augment the
solution space of the database to cover such cases by adding more
examples. Another potential remedy is to grow and/or simulate these
examples online based on the reference photo.
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Figure 11: Modeling results for the same reference photo using
different sets of user strokes. From left to right: (a) the user strokes;
(b) combined hairstyles visualized from two different views; (c) final
hair strands visualized from two different views.

Implementation and statistics. The parameters mentioned in
earlier sections work for all the cases when we measure 2D variables
in pixels and 3D variables in millimeters. The grid size is set to
be 2 mm for all the intermediate orientation fields, except in the
example retrieval stage we use a larger grid size of 8 mm to support
interactive preview of the hairstyle combination result when the
user draws strokes. Performance-wise, our system takes about 20
minutes to create a single 3D result (with a 3.5GHz Intel Core i7
and 16GB RAM). Our sketch-based example retrieval algorithm
runs interactively and the user usually draws all the strokes within a
few seconds. The hairstyle combination step can be finished within
one minute. Manual segmentation of the hair part from the input
photo takes no more than five minutes (in Adobe Photoshop with the
“Polygonal Lasso” and “Refine Edge” tools). The 2D deformation
step is the most time-consuming part in our pipeline since we
iteratively deform each individual strand which takes about ten
minutes for each result of 10000 strands. The final strand synthesis
step takes about two minutes for the 300 clusters of strands.

7 Conclusion

We introduced a data-driven framework for modeling realistic and
complex 3D hairstyles from a single-view input photograph taken in
the wild. We showed that a database containing complete example
hairstyles can be used to model a wide range of target hairstyles
using a novel assembly-based approach. Our method only requires
a few input user strokes and can handle highly incomplete and low
quality reference photos. We also ensure physically plausible strand
shapes in the output data using a new strand synthesis algorithm
based on piecewise helix fitting and linear blend skinning.

As a data-driven method, the effectiveness of our method is mainly
determined by the richness of our hairstyle database. In particular,
our current system cannot handle constrained hairstyles like braids
[Hu et al. 2014b], due to the lack of related examples in the database
to infer the desired structures. We plan to augment the database with
such examples and to generalize our representation to handle more
complicated cases. Furthermore, the fine scale structures of our
output strands highly depend on the quality of the reference photos.
The ability to extract more accurate and complex 2D features from
photographs can significantly improve the reliability and quality of

Figure 12: Failure cases. Original image courtesy of Devon
Christopher Adams and Maria Morri.

our modeling results.

While our current effort focuses on the geometry of hairstyles,
i.e., the 3D structure and shapes of hair strands, we are interested
in exploring appearance estimation techniques of hair strands,
especially from a single reference photograph. Even though this
work is designed to handle single-view photographs, we believe
our method can be extended to produce a consistent hair model
from multiple-view inputs. Finally, when constructing our database,
we unify all the example hairstyles with a neutral head model. In
reality the scalp shapes from where the hair strands grow can vary
significantly across different people, which is another interesting
future direction is to investigate.
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