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Figure 1: Our system takes as input a few images (a) and employs a database of simulated example strands (b) to discover structurally plausible configurations
from the reconstructed cover strands (c) for final strand synthesis (d). Our method robustly fits example strands to the cover strands which are computed from
unprocessed outlier affected input data (e) to generate compelling reconstruction results (f). In contrast, the state-of-the-art method of [Luo et al. 2013a] fails in
the presence of strong outliers (g).

Abstract

We introduce a data-driven hair capture framework based on example
strands generated through hair simulation. Our method can robustly
reconstruct faithful 3D hair models from unprocessed input point
clouds with large amounts of outliers. Current state-of-the-art
techniques use geometrically-inspired heuristics to derive global
hair strand structures, which can yield implausible hair strands for
hairstyles involving large occlusions, multiple layers, or wisps of
varying lengths. We address this problem using a voting-based fitting
algorithm to discover structurally plausible configurations among the
locally grown hair segments from a database of simulated examples.
To generate these examples, we exhaustively sample the simulation
configurations within the feasible parameter space constrained by
the current input hairstyle. The number of necessary simulations can
be further reduced by leveraging symmetry and constrained initial
conditions. The final hairstyle can then be structurally represented
by a limited number of examples. To handle constrained hairstyles
such as a ponytail of which realistic simulations are more difficult,
we allow the user to sketch a few strokes to generate strand examples
through an intuitive interface. Our approach focuses on robustness
and generality. Since our method is structurally plausible by
construction, we ensure an improved control during hair digitization
and avoid implausible hair synthesis for a wide range of hairstyles.
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1 Introduction

Just like in real life, hairstyles are essential elements for any digital
character, reflecting personality, fashion, as well as one’s cultural and
social background. The generation of compelling 3D hair models in
film or game production usually takes several weeks of manual work
by a digital artist, involving the use of sophisticated hair modeling
tools and procedural scripting. The task becomes even more tedious
when capturing digital doubles, since the hair has to accurately
match real references from photographs.

Unlike the 3D acquisition of objects with smooth surfaces (e.g.,
faces and bodies) which can usually take advantage of generic shape
priors to regularize the reconstruction, it is generally very difficult
to find a generic shape prior for hair because of the wide range of
possible hairstyles. Specialized hair capture techniques are required
due to extremely fine, intricate, and self-occluding structures.

Recently, graphics researchers have explored a variety of input
sources for high-fidelity hair digitization ranging from multi-view
stereo [Beeler et al. 2012], thermal imaging [Lay Herrera et al.
2012], depth-of-field [Jakob et al. 2009] to structured light [Paris
et al. 2008]. Most of these approaches focus on matching the visual
appearance through direct strand growing in a diffused orientation
field and work well for sufficiently short and simple hair. For highly
convoluted hairstyles, Luo et al. [2013a] lately demonstrated the
importance of incorporating structural priors during the reconstruc-
tion process. Despite the effectiveness and accuracy, it depends
on a good initial point cloud from multi-view stereo and uses a
bottom-up strategy to connect local ribbons into wisps through
purely geometry-inspired heuristics. Consequently, implausible
hair strands that travel across different close wisps can still appear
(Figure 10). Moreover, the approach relies on a careful manual
clean-up procedure, involving tedious per-image hair segmentation
and outlier removal after the initial point cloud reconstruction (see
Figure 3). On average, segmenting the hair takes around 5 minutes
per photograph, assisted with GrabCut [Rother et al. 2004], resulting
in hours of work for a single hair reconstruction. Furthermore,
Patch-based Multi-View Stereo (PMVS) [Furukawa and Ponce 2010]
still produces a large mount of outliers due to ambiguous feature
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Figure 2: The overview of our system. From a set of input images, we first reconstruct a point cloud as well as a 3D orientation field followed by a local
growing step that generates the cover strands. We then generate a database of example strands through hair simulation constrained by the input hairstyle. We
use this database to discover clustered strands from the cover with structurally plausible configurations via strand fitting and finally we synthesize realistic
strands from these clustered strands.

correspondences between the input images. A manual 3D outlier
point removal procedure takes up to 30 minutes per hair example.
A fully automatic end-to-end solution, from the capture session to
the generation of a hair for proper simulation, has therefore not yet
been proposed.

We develop a robust and general

Figure 3: Initial point cloud recon-
structed from multi-view stereo with
outliers.

hair reconstruction framework
that guarantees structural plau-
sibility by construction using
a database of strand examples
obtained through simulation.
While our method is designed
for unconstrained hairstyles, we
also allow user-sketched hair
strands as database examples for
some simple constrained styles
(e.g., ponytail) which involve
boundary constraints in addition

to non-trivial inter-strand collisions and friction. During the
reconstruction, we use our example strands in the database as
structural references to ensure structural plausibility in the presence
of large amount of outliers and occlusions in the input (Figure 1).
To motivate, our database can constrain the range of possible
strand lengths in the reconstruction, since this property is inherently
difficult to estimate and enforce, especially for layered hairstyles
with many crossing wisps.

For unconstrained hair, we generate structurally plausible strand
examples through hair simulation based on the Super-Helices model
introduced by Bertails et al. [2006]. To constrain the database within
a manageable size, we reduce the simulation configuration space
by a symmetry principle and constraints to the initial conditions, as
well as a selection scheme for the natural parameters (e.g., stiffness
and curliness) through the subsequent strand fitting step.

The strand fitting step discovers structurally plausible configurations
of locally grown strand segments by a robust voting scheme to select
matched examples while enforcing the roots of examples to lie close
to the scalp. The best configurations are then extracted through
mean-shift clustering. We then use these structural configurations to
connect local strand segments into wisps in a top-down fashion for
final hair strand synthesis.

Notice that the examples in our database do not need to match

the input exactly since we only use them as a structural references
in subsequent steps. As a result, one key insight of our research
is that plausible structural configurations can be encoded using a
limited number of examples in a database (three orders of magnitude
less than the total number of synthesized hair) to describe complex
hairstyles that contain tens of thousands of strands with varying
lengths and shapes.

While the fitting accuracy of our technique is on par with the state-
of-the-art in 3D hair capture, our proposed method focuses on
robustness and generality. Our system robustly generates structurally
plausible hair from unprocessed point cloud input and handles a wide
range of hairstyles. Due to the limited level of manual work required
(if any, up to a few minutes for a novice user), we argue that our data-
driven hair capture framework is suitable for efficient replication of
complex hairstyles from the real world and can also be interesting for
applications beyond digital production, such as virtual web content
creation for cosmetic brands.

Contributions.

• A general top-down framework for robust 3D hair capture
through a database of example strands. For unconstrained
hair, only a limited set of examples based on a crude physical
strand simulation is required. To handle constrained hair, our
framework allows a few 2D user-sketched strokes.

• An efficient method to generate databases of example strands
via physical simulation as priors of structural reference for
hair reconstruction. We leverage symmetry and constrained
initial conditions to significantly reduce the necessary number
of simulation configurations.

• A robust fitting algorithm inspired by the Hough transform to
discover structurally plausible hair configurations. Our method
does not require any clean-up on the captured input data and
can directly produce faithful hair models.

2 Related Work

Hair capture. Existing hair capture systems use various methods
to acquire the orientation field and geometry for the exterior hair
layer and rely on proper strand synthesis schemes to generate the
final strands. Paris et al. [2004] introduced a method to estimate 3D



hair orientations from the hair’s highlights under varying lighting and
synthesize full strands from the scalp along these orientations. Wei et
al. [2005] proposed a technique to compute 3D hair orientations from
multi-view images by optimizing the orientation consistency across
the views. Paris et al. [2008] developed an active acquisition system
to accurately triangulate hair strand positions from projected light
beams as well as a diffusion scheme to interpolate the orientation
field for final strand synthesis. Jakob et al. [2009] demonstrated
the possibility of using the shallow depth-of-field of a moving
macro lens to localize in-focused hair strands from multiple views.
Their system successfully captures strand-level geometry of loosely
coupled hair assemblies. Chai et al. [2012] introduced a method
to create approximate 3D strands from a single image that match
the inter-strand occlusions and the fitted head model. This system
has been recently extended to handle single video input to create
hair animations [Chai et al. 2013], but is limited to relatively simple
hairstyles. Beeler et al. [2012] introduced a multi-view stereo system
to reconstruct short facial hair by strand-level matching. Their
system uses a refinement step to improve strand connections and
remove outliers. Herrera et al. [2012] pioneered a hair capture
system using thermal imaging device. While impressive results were
shown, their method is not suitable for hair strands that grow far
away from the head. Luo et al. [2012; 2013b] developed several
methods to reconstruct approximated surface-to-hair volume based
on multi-view orientation fields. Recently, Luo et al. [2013a]
proposed a structure-aware hair capture method that incorporates
highly effective structural priors during the reconstruction process.
The proposed system successfully handles highly convoluted wispy
hairstyle as well as other non-trivial ones. Concurrent to our work,
Echevarria et al. [2014] presented a method for physical reproduction
of personalized figurines. Instead of reconstructing highly-detailed
individual hair strands, they look for a printable 3D surface with
stylized color and geometric details.

Hair simulation. A large category of hair simulation methods
generates the motion of hair as an aggregated medium to reduce
computational complexity such as with fluid continuum [Hadap
and Magnenat-Thalmann 2001]. Techniques more relevant to
our strand database generation are strand-level simulations based
on strand dynamics. Many mechanical strand models have been
investigated in the past. Selle et al. [2008] proposed a simple mass-
spring model for efficient and robust hair simulation. The discrete
elastic rods by [Bergou et al. 2008] provides an efficient simulation
framework based on explicit centerline representation with reduced
coordinates. Super-Helices [Bertails et al. 2006] use a piecewise
helical discretization for the Cosserat rod model and allow efficient
simulation with very few elements. We use this model to generate
our simulated examples in the database because it is efficient and
provides compelling natural hair simulation [Bertails et al. 2005].

Hair modeling. A general survey on existing hair modeling
techniques can be found in [Ward et al. 2006]. Here, we only
enumerate the most relevant ones. One class of hair modeling
methods use physical simulation to generate hair strands such as
[Bertails et al. 2005]. To better control the final shape of the hair,
researchers also investigated other physically-inspired methods, e.g.
vector fields [Yu 2001; Hadap and Magnenat-Thalmann 2000] and
statistical wisp model [Choe and Ko 2005]. Sketch-based methods
provide intuitive and convenient tools for hair modeling. Fu et al.
[2007] demonstrated a sketch-based interface to build a vector field
that generates the final hair strands. Wither et al. [2007] proposed
a method to estimate hair simulation parameters from user strokes.
Another category of hair modeling technique provides direct editing
tools on hair geometry. These geometry-based methods use various
structured models to facilitate controllable hair modeling. Kim and

Neumann [2002] employed a generalized cylinder hierarchy for
multi-resolution hair editing. Ward et al. [2003] introduced a level-
of-detail hair representation to ease hair modeling on different scales.
Yuksel et al. [2009] demonstrated hair meshes to model complex
hairstyles through topological operations on the polygonal meshes
that drive the hairstyle. Wang et al. [2009] proposed a method to
synthesize new hairstyles from input examples inspired by texture
synthesis methods.

Model-based and example-based reconstruction. By know-
ing the scanned object in advance, devised parametric and procedu-
rally generated models can be used for superior fitting control and
robustness. Impressive reconstruction results can be achieved on a
variety of objects such as trees [Livny et al. 2010], architectures [Nan
et al. 2010], man-made objects [Li et al. 2010] and foliage [Bradley
et al. 2013]. Example-based approaches leverages a set of related
examples to improve the reconstruction from input data, typically
of inferior quality. Convincing results have been demonstrated on
part-based models [Shen et al. 2012], in-door furnitures [Shao et al.
2012] and models with only single image reference [Xu et al. 2011].

3 Overview

Our full pipeline is shown in Figure 2. Similar to [Beeler et al. 2012;
Luo et al. 2013a], we use a multi-view stereo capture system for
the input data. From the input photographs, we compute a rough
initial 3D point cloud of the hair via Patch-based Multi-View Stereo
(PMVS) algorithm [Furukawa and Ponce 2010]. For each point
we compute the local 3D hair orientation field by maximizing the
projected orientation consistency across the 2D orientation maps
of each image. We use the 3D orientation field to generate a set of
cover strands that are grown bidirectionally from each point as in
Luo et al. [2013a]. The initial cover strands are mostly short and
disconnected due to occlusions and missing data (Figure 4).

The example strands in the database are then generated through
physical simulation based on Super-Helices [Bertails et al. 2005].
We simulate static hair strands under gravity and different boundary
constraints (Section 4). Note that we do not aim to exactly reproduce
the input hairstyle through simulation but rather use the example
strands as structural references to discover plausible structural
configurations among the cover strands. We exhaustively sample
all possible simulation configurations within a pre-defined feasible
parameter space constrained by the current input hairstyle. The
final number of necessary simulations can be significantly reduced
by leveraging symmetry principles and constraining the initial
conditions. An optimal set of examples is then selected through
an iterative scheme based on their fitting errors to the cover strands.

Next, we present a strand fitting scheme inspired by the Hough
transform to simultaneously cluster and connect the cover strands
into structurally plausible wisps based on the simulated examples
(Section 5), instead of using separate steps of clustering and wisps
connection as in Luo et al. [2013a]. We formulate a transformation
space and ask each cover strand to cast votes for their matched
example strands whose roots are constrained to the scalp model. The
scalp model itself is obtained by fitting a 3D head model to the input
point cloud [Li et al. 2013]. The matched examples are revealed as
clustered modes in the transformation space and we use mean-shift
clustering to extract these modes in an iterative fashion (Figure 6).
The matched examples are then used to effectively discover the
structural connections of fragmented cover strands from which we
construct wisps to synthesize the final strands (Section 6).
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Figure 4: Preprocessing steps. From a set of input images (a), our system
first reconstructs a point cloud with a 3D orientation field (b). Cover strands
are then grown to cover the entire point cloud based on the 3D orientation
field (c).

4 Strand Simulation

Our goal in this section is to generate a database of strand examples
{S

e

} for the subsequent strand fitting step (Section 5). We use the
Super-Helices model [Bertails et al. 2005] to simulate static hair
strands constrained by the scalp under gravity. With Super-Helices,
a strand is modeled as a Cosserat rod, which is characterized by the
following kinematics equation:
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integrated by the technique described in Bertails et al. [2006].

To simulate a static rod, one way is to minimize the potential energy.
The potential energy E of a rod is given by:
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, we first approximate the cross sections of the hair
strands to be circular, despite the fact that the real hair strand’s
cross section varies among ethnic groups with up to 20% change in
eccentricity. With this approximation, E

e

can be written as:

E
e

= k

Z
L

0

(
1

(s)� 

0

1

)2 + (
2

(s)� 

0

2

)2 +A(⌧(s)� ⌧

0)2ds,

where L is the strand length; 0

1

,

0

2

, and ⌧0 are the natural curvatures
and torsion of a hairstyle; k is the stiffness and we choose A = 0.6
since the Poisson ratio is constant across human hair.
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Figure 5: The simulation setup. We use Super-Helices to simulate a natural
hair strand which consists of a few piecewise helical segments (a). We use
cylindrical (b) and spherical (c) boundary constraints for realistic simulation
of strands with different lengths. A simulated database is shown in (d).

Finally, collision energy E
c

can be modeled by elastic repelling
force:

E
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where D is set to 0.1 and �` is the amount of penetration of
the rod from the colliding point on the scalp. Note that all the
constants (A,B,D) above are derived from real physical quantities
(see Appendix B in [Bertails et al. 2006]).

Therefore, given the boundary constraints, the simulation is deter-
mined by the initial conditions {m
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0, and strand
stiffness k. Since an exhaustive enumeration of the full simulation
configuration space for a given hairstyle is intractable, one of our
key insights is that we can leverage symmetry and constrained
initial conditions to significantly reduce the number of simulation
configurations. These simulated examples are used as rough
structural references to ensure plausible hair structures on the cover
strands for the final strand synthesis (Section 6).

To reduce the number of simulation configurations, we first simplify
the boundary constraints. We approximate the scalp as a sphere
so that simulations are equivalent on the same latitude as shown
in Figure 5. However, for long hairstyles, other body parts (e.g.,
shoulders, neck, back) will affect the boundary constraints. Thus,
we extrude the sphere model downwards to form a cylindrical shape
to approximate these cases as shown in Figure 5b.

We further simplify our simulation setup by fixing r(0) on the top
of the boundary model (Figure 5). In particular, simulating a strand
from the top also covers the configurations that start from any middle
point to the tip, using the material frame at the starting point as the
initial condition. We also fix the angle ✓ between the normal of the
top point and t(0) to 80 degrees since hair strands are not growing
in parallel to the scalp (Figure 5).

With r(0) and t(0) fixed, we enumerate the last degree-of-freedom
in the initial conditions by rotating the material frame around t(0)
by � 2 [0, 2⇡) (Figure 5). To enumerate the strand length L, we
uniformly sample L within the range of 100 ⇠ 400mm for all our
datasets. Since the initial material frame rotates around t(0), only
one of 0
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it useful to set ⌧0 within �0.03 ⇠ 0.03mm

�1. For most of the
natural hairstyles, we set ⌧0 = 0 to enforce zero natural twisting
according to [Bertails et al. 2006].

We generate the final hair databases by varying natural curvature 
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within the range of [0.01, 0.06] with intervals of 0.01, and stiffness



k within the range of [1.0, 2.0] with intervals of 0.5, based on the
Young’s modulus of natural hair [Bertails et al. 2006], resulting in
a total number of 6 ⇥ 3 = 18 databases. Each database contains
multiple strands by sampling � and L on their feasible range. While
in the worst case, we would iterate over each database to determine
its fitness (Section 5), most databases can be excluded since they
are significantly different than the target hairstyle (e.g., the bottom
two hairstyles in Figure 15), resulting in much lower actual running
times. In practice, we only need to select 1 ⇠ 5 databases for each
input hairstyle. Another possible way for parameter selection is to
develop a scheme similar to [Wither et al. 2007] which estimates
natural curvatures and stiffness from 2D user sketches.

5 Strand Fitting

Given a set of cover strands {S
c

} grown from the captured point
cloud and orientation field (Figure 4), we first collect candidate
rigid transformations {T} that are obtained by fitting those cover
strands with example strands from the database {S

e

}. In our case,
a transformation has 7 components T = {t
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and I the index of the example strand in the database. The Euler
angles are measured in radians and are multiplied by a factor of 10
to balance the weight of rotation vector with respect to translation
vector. We incorporate the index values into the the transformation
space for a unified treatment of extracting the matched example
strands, which are the representatives of a cluster. We scale those
index values by a factor of 100 as a sufficiently large value, so that
the votes from different example strands will not affect each other
and will be clustered separately.

We consider each pair of strands {S
c

, S

e

} and compute the optimal
transformation to align S

e

with S

c

. Specifically, we minimize the
matching cost via Iterative Closest Point (ICP) algorithm with point-
to-point constraints [Besl and McKay 1992]:
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under the rigid translation and rotation specified by T. We consider
a transformation T as a valid vote to be collected, if and only if the
matching cost defined by Equation 3 satisfies the following criterion:
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where TE is a user specified threshold and n(S
c

) the number of
samples in the strand S

c

. The threshold TE controls the tolerance
of average matching error between two strands, which essentially
determines how many strands can be grouped into a single cluster.
We fix this parameter to be 10mm for all of our datasets.

We estimate the hair root position using a RANSAC approach
[Fischler and Bolles 1981]. More concretely, we first find the
nearest point on the scalp for each cover strand, and randomly pick 5
nearby points within a radius of 20mm on the scalp as the potential
roots. For each potential root, we attach it to the cover strand as an
additional sample and run ICP for 30 iterations with each example
strand to collect candidate transformations.

The collected transformations lie in a 7-dimensional parameter space.
Intuitively, under the same or similar transformation, parallel cover
strands which are close to each other can be aligned to the same
part of a matched example strand. On the other hand, consistently
oriented strands, that can be connected/merged into a single strand,
would be aligned to different parts of the same example strand. As
a result, the votes between cover strands and a matched example

(a) Examples (b) Cover strands
(c) Votes

Figure 6: Illustration of strand fitting. With a database of two examples
(a), two groups of cover strands (b) exhibit different behaviors in the votes
(c), depending on the fitness of each example to those strands: the votes
for fit examples are concentrated in clusters while the votes for unmatched
examples are scattered and decentralized. The votes are projected onto the
plane of their first two principal components for each example. The green
dots (pointed out by the black arrows) show the cluster centers found by
mean-shift.

form a cluster in parameter space, while the votes between cover
strands and non-matching examples are scattered (see Figure 6). We
then perform mean-shift clustering to extract the most dominant
clusters of candidate transformations in parameter space. While
a similar approach has been proposed for symmetry detection of
3D shapes [Mitra et al. 2006], we instead group parallel strands
together and simultaneously connect consistent strands. We propose
to compute the local density ⇢ of each transformation T as a scaled
sum of kernel functions K centered at T:
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where � is the kernel radius measured in the parameter space (we set
� = 5 for all the datasets used in the paper), and the scaling factor
C(T) is computed as the number of samples on the example strand
that have been matched to certain samples on the cover strands. We
choose the following kernel function as suggested by Comaniciu et
al. [2002]:

K(x) =

⇢
1� x

2

, if 0  x < 1

0, otherwise
(6)

The mean-shift clustering process is performed iteratively. Each time
we extract the most dominant cluster mode which maximizes the
kernel function in Equation 5 with the corresponding transformation
T. We apply the rigid translation and rotation to the example
strand using T, and reveal all the cover strands {S

c

} that satisfy the
matching criterion defined by Equation 4. All those cover strands
belong to the same cluster and the structure information is provided
by the transformed example strand. We then remove all the votes
which originate from those cover strands, and continue the clustering
process until all the votes have been removed or enough number of
clusters have been found.

6 Strand Synthesis

We synthesize final strands by independently considering each
cluster extracted in the strand fitting stage as described in Section 5.
Within each cluster, the corresponding cover strands {S

c

} serve as
captured local features of the underlying hairstyle, while the matched
example strand S

e

provides the structural reference.

Similar to the synthesis algorithm described in [Luo et al. 2013a],
we first group the cover strands {S

c

} within the same cluster into
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Figure 7: Ribbon connection and strand synthesis. (a) Matched example
strand is highlighted in red, cover strands in the same cluster are highlighted
in blue. (b) Cover strands are grouped into multiple ribbons. (c) We connect
two ribbons based on the correspondence between the example strand and
the ribbons. Here the segment of samples in the example strand which are
not matched to any samples of the ribbon centers are highlighted in red. (d)
Final output strands.

multiple ribbons, where each ribbon is a flat surface fragment
composed of close and nearly parallel strands. Then we connect
the ribbons to form wisps and synthesize output strands from
those wisps. The major difference between Luo et al. [2013a]
and our strand synthesis approach is that, instead of using some
heuristics like local circle fitting which cannot ensure global
structural plausibility, we use the structure information provided
by the example strand to connect those ribbons.

Ribbon Connection. We first build the correspondence between
the example strand and the center strands of all the ribbons within
a single cluster. For each sample on a center strand, we first find
the closest sample on the example strand. A ribbon is considered
to be matched to the segment [i

min

, i

max

] of the example strand,
when i

min

and i

max

are the minimum and maximum indices of the
closest samples. We then divide those ribbons into several subsets
while ensuring that (1) each ribbon belongs to at least one subset;
(2) the matched segments within the same subset do not overlap;
(3) the total length of the matched segments within each segment
is maximized by including as many ribbons as possible. For the
ribbons in each subset, we resample them by linearly interpolating
original sample positions, so that they have the same ribbon width
w as the maximum width before resampling, and the ribbon length
l equals to (i

max

� i

min

+ 1). Finally we sort those ribbons in the
same subset based on the indices of matched segments, and connect
them one by one to get a wisp of width w. The wisp length l is the
same as the example strand (see Figure 7).

For the samples {s} in the example strand which are matched to
certain samples on the ribbon centers, we use the resampled ribbon
positions for the wisp. For those segments of successive samples
{s

i

} in the example strand which are not matched to any samples
of the ribbon centers, we determine their new positions {p(s

i

)} in
the wisp by minimizing the following energy for each segment of
length N :
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Figure 8: Our capture setup.

where p̃(s
i

) is the original position of sample s

i

in the example
strand and ↵ a user specified weight (we use ↵ = 5 for all the
results throughout the paper). For the second term in Equation 7,
we extend the segment by predefining p(s

0

) and p(s
N+1

) to be
the two positions of the ribbon samples adjacent to this segment, if
either one of the two samples s

0

and s

N+1

exists. This term ensures
that the unmatched segments of the example strand can be smoothly
deformed into a new segment for ribbon connections. The final
output strands are synthesized from the wisps using the method of
Luo et al.[2013a].

7 Results

We test the performance of our hair capture framework on different
data sets which have different multi-view stereo configurations:

• Set A includes the Figures 1 and 9 and was captured using
66 synchronized Canon EOS Rebel T3i cameras (864⇥ 1296
pixels, focal length of 30 mm). The capture setting is shown
in Figure 8 and all subjects were real people.

• Set B is shown in Figure 15 (top three rows) and used 45 Canon
EOS 550D cameras (864 ⇥ 1296 pixels, focal length of 50
mm) to capture static wigs.

• Set C, illustrated in Figure 15 (bottom), contains the wig from
the motorized gantry setting of [Luo et al. 2013a] where 50
shots around the hair were taken (936 ⇥ 1404 pixels and 50
mm lens).

As demonstrated in Figure 1f, our method effectively reconstructs
complex and curly hairstyles (Set A) on fully unprocessed input point
clouds with many outliers and the presence of surface geometries
from the face and body, while the method of Luo et al. [2013a]
breaks, as shown in Figure 1g.

The first two rows of Figure 15, show examples of wigs that
contain many crossing wisps and hair strands of varying lengths.
The multiple layers of occluding hair also increase the difficulty
of estimating connections. We show that using a database with
simulated strands is effective in discovering the connections of
fragmented hair wisps and producing structurally plausible hair
configurations during hair synthesis. The third row in Figure 15
shows an example with straight hair where a database with minimal
number of example strands is sufficient to encode global properties
of the hair structure.

As shown on the challenging example of Set C (Figure 15, bottom),
our method produces results that are visually as compelling as
the current state-of-the-art with faithfully reconstructed ringlet
structures.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Reconstruction results using examples from user strokes. From
an input photo (a) of a constrained hairstyle, the user can draw strokes (b) for
a set of plausible strands. Our system creates 3D strand examples (c) from
these strokes to fit the input cover strands as shown in (d) and (g) without
and with outliers respectively. The strand fitting step discovers clustered
strands (e) / (h) which we use to synthesize final strands (f) / (i).

Reference photo [Luo et al. 2013a] Our result

Figure 10: Comparison between [Luo et al. 2013a] and our reconstruction
result in terms of structural plausibility.

To further demonstrate the generality of our solution, we show in
Figure 9 that simple constrained hairstyles (e.g., ponytail) can be
digitized when we replace the simulated database with examples
from user sketches. The user only needs to draw a few strokes on the
input photo to depict plausible structure of the underlying hairstyle

[Bradley et al. 2013] Our result

Figure 11: Comparison between direct fitting based on RANSAC [Bradley
et al. 2013] and our voting-based fitting method. The direct fitting method is
often stuck in local minima and finds sub-optimal matched example.

(see Figure 9b), which can be done in minutes. We then re-project
those 2D strokes back to the surface of the captured point cloud and
smooth the strands using Equation 7 with an additional positional
term to get a database of 3D examples (see Figure 9c). Notice
that strands from user sketches, simulation, or other sources can be
combined to form a more powerful prior, but were not required in
any of our examples.

Comparison. We compare our method with the state-of-the-art
hair capture technique of [Luo et al. 2013a]. As illustrated in
Figure 10, our method is often better at discovering correct inter-
wisp connections than the bottom-up approach of Luo et al. [2013a].

We also compare our fitting algorithm based on mean-shift clustering
(Section 5) with a direct fitting approach based on RANSAC, as
described in Bradley et al. [2013]. While their method is designed
for foliage reconstruction, we adopt its matching strategy to hair
data, as shown in Figure 11. We initialize each example strand
with random rigid transformations and perform ICP to find the best
alignment to the point cloud. We found that the aligned example
strands using the smallest ICP fitting error are often local minima
(Figure 11, left) as opposed to our voting approach (Figure 11, right).

Evaluation. We evaluate the robustness of our reconstruction
algorithm using databases of decreasing sizes as well as of different
simulation parameters. In Figure 12, we reduce the samples of �
within [0, 2⇡) by factors of two, given each strand length L, resulting
in databases with 256, 128 and 64 examples. In Figure 13, we use
two different databases with k = 2.0 and k = 1.5 respectively to
reconstruct the same hairstyle. We also evaluate the robustness of
our algorithm against outliers in the input as shown in Figures 1
and 9. Our method can faithfully recover almost all hair structures
with little visual difference to the cleaned-up results without outliers.

Simulation. To simulate our resulting hairstyles, individual fibers
were first converted into piecewise helices (with 8 helical arcs each)
using the floating tangents algorithm [Derouet-Jourdan et al. 2013]
that served to initialize the rest shape of an assembly of super-
helices [Bertails et al. 2006]. The resulting physical hair model was
then animated under wind forces using Daviet et al.’s simulation
solver [Daviet et al. 2011] for computing hair-hair and hair-body
frictional contacts.

Parameters and timings. While the capture is instantaneous (one
shot), the entire pipeline runs at about 1 ⇠ 2 hours for each dataset
on a modern machine (2.6 GHz Intel Core i7 with 16 GB RAM).



(a) n = 256 (b) n = 128 (c) n = 64

Figure 12: Comparison of reconstruction results using different
numbers of example strands.

(a) k = 2.0 (b) k = 1.5

Figure 13: Comparison of reconstruction results using databases with
different simulation parameters.

Figure 14: Results of dynamic simulation using our output strands.

The physical simulation takes about 5 minutes for a database of 256
examples. The computation of the hair fitting stage takes 10 ⇠ 40
minutes, depending on the size of the database and cover strands.
See Table 1 for parameters and statistics of all the datasets.

8 Conclusion

We have demonstrated that a data-driven fitting strategy with physics-
driven hair strands can effectively discover plausible structural
configurations of unconstrained but highly complex hairstyles. We
found that only a crude physics simulation is needed to reliably
bridge the connection between fragmented cover strands. Moreover,
very small number of example strands are necessary for the
reconstructions and sufficient to handle a wide range of complex

Dataset
Example

0
1 ⌧0 k

Cover Output
strand # strand # strand #

Fig. 1d 112 0.03 ±0.03 1.0 2973 49k

Fig. 1f 112 0.03 ±0.03 1.0 5860 47k

Fig. 15, 1st 256 0.05 0 1.0 4473 38k

Fig. 15, 2nd 208 0.04 0 2.0 3801 56k

Fig. 15, 3rd 20 0.02 0 1.5 700 46k

Fig. 15, 4th 256 0.06 0 2.0 2624 45k

Fig. 9 38 N/A N/A N/A 2356 74k

Fig. 12b 128 0.05 0 1.0 5860 32k

Fig. 12c 64 0.05 0 1.0 5860 34k

Table 1: Parameter settings and statistics for our results.

hairstyles. Our ponytail example shows that simple constrained
hairstyles can be treated by allowing rough user sketches instead of
a simulation. While we are still far from a fully accurate strand-level
reconstruction and faithful estimate of hair lengths, the results of our
approach is perceptually on par with the state-of-the-art. Because we
impose a stronger global prior on structure, the local wisps may be
more accurately captured using the approach of [Luo et al. 2013a].
Nevertheless, our method facilitates accessibility and deployment as
it is resistant to imperfect and unprocessed input data. In particular,
our approach is capable of producing a wider range of hairstyles
with a more effective control over global structural plausibility than
previous methods.

Limitations. As shown in Section 7, our example-based recon-
struction method can robustly handle a wide range of complex
hairstyles. However, since our simulation method assumes that
the captured hairstyle has uniform natural stiffness and curliness,
we cannot generate realistic simulation for hairstyles that involve
artificial styling processes such as perming and gluing. One possible
future research direction is to extend our current simulation model to
cover hairstyles with varying physical parameters. This also leads to
an investigation on efficient methods to automatically infer realistic
simulation parameters from incomplete cover strands.

Currently, the strand fitting step is the main bottleneck of our frame-
work. Despite the quality of the fitting results, the computations can
take more than an hour even with multi-threading. We would like to
investigate more effective shape analysis and matching algorithms
to accelerate the strand fitting process.

Future Work. Since our solution involves minimal user input, it
allows a massive collection of a wide variety of plausible hairstyles.
Such hair collection can be useful for further explorations of a
possible general database that can cover the space of all possible
hairstyles, potentially improving the performance of data-driven hair
capture techniques and impacting research for hairstyle learning
and classification. We also plan to investigate the use of procedural
priors to capture even more challenging constrained hairstyles such
as braided ones, updos, and afros. Ultimately, we wish to replace our
multi-view stereo capture system with cost-effective and low-impact
sensing devices for deployment to consumer-grade applications.
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Figure 15: Our reconstruction results. For each dataset, we show reference photo, input point cloud with RGB color-encoded 3D orientation field, database
of simulated examples, top 10 clustered strands, our final synthesized result and comparative result from [Luo et al. 2013a].
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