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Figure 1: Our method recovers a sequence of high-quality, temporally coherent triangle meshes from any sequence of closed surfaces with
arbitrarily changing topology. We reliably extract correspondences from a level set and track textures backwards through a fluid simulation.

Abstract

We present a method for recovering a temporally coherent, deform-
ing triangle mesh with arbitrarily changing topology from an inco-
herent sequence of static closed surfaces. We solve this problem us-
ing the surface geometry alone, without any prior information like
surface templates or velocity fields. Our system combines a proven
strategy for triangle mesh improvement, a robust multi-resolution
non-rigid registration routine, and a reliable technique for changing
surface mesh topology. We also introduce a novel topological con-
straint enforcement algorithm to ensure that the output and input
always have similar topology. We apply our technique to a series
of diverse input data from video reconstructions, physics simula-
tions, and artistic morphs. The structured output of our algorithm
allows us to efficiently track information like colors and displace-
ment maps, recover velocity information, and solve PDEs on the
mesh as a post process.
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1 Introduction

Robust computational representations of deforming surfaces are
considered indispensable within many scientific and industrial
fields. Medical scientists deduce clues about the human body from
the level sets of time-varying voxel data, physicists extract geo-
metric information from simulations and acquisitions of fluid in-
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terfaces, and computer graphics professionals generate animations
and capture performances in order to entertain audiences. As tools
that generate time-evolving surfaces become increasingly common-
place, it is essential that we, as computer graphics researchers, pro-
vide better tools for the analysis and computational processing of
these forms of animated geometry.

One particular class of evolving surfaces, namely surfaces that
change topology through time, is particularly difficult to deal with.
Because these surfaces are able to bend, split apart, reconnect them-
selves, and disappear through time, it is impossible to make any
convenient assumptions about their shape and connectivity. For this
reason, implicit surfaces such as contoured voxel data and meta-
balls, are extremely popular for representing such time-evolving
surfaces. Unfortunately, these implicit surfaces are poorly suited
for many important geometric tasks, such as mapping how surface
points at one particular time correspond to surface points sometime
later.

In this paper, we provide a general, robust method for tracking cor-
respondence information through time for an arbitrary sequence of
closed input surfaces. We do not require any context clues such
as velocity information or shape priors, and we allow the surfaces
to change topology through time. We solve this problem by com-
bining a robust non-rigid registration algorithm, a reliable method
for computing topology changes in triangle meshes, and a mesh-
improvement routine for guaranteeing numerical accuracy and sta-
bility. The output of our method is a series of temporally coherent
triangle meshes, as well as an event list that tracks how surface ver-
tices correspond through time.

We apply our method to data sets generated by different meth-
ods, such as physics simulations using two separate surfacing al-
gorithms, morphing surfaces generated by implicit surfaces, and
performance capture data reconstructed from videos. We show that
we can reliably extract correspondence information that was absent
from the original geometry, and we utilize this information to sig-
nificantly enhance the input data. Using our algorithm, we are able
to preserve important surface features, apply textures and displace-
ment maps, simulate partial differential equations on the surface,
and even propagate visual information backwards in time. When
applied to dynamic shape reconstruction problems, we are able to
reliably track the input without making any assumptions about how
the data was generated. One can argue that this template-free track-
ing is an important tool for scientific experiments where it is essen-
tial to remove bias from the tools used for information discovery.
The contributions of our work are as follows:
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• We provide the first comprehensive framework for tracking a
series of closed surfaces where topology can change.

• Our algorithm is able to greatly enhance existing datasets with
valuable temporal correspondence information. Some exam-
ples include displacement mapping of fluid simulations and
texture mapping of level set morphs.

• We introduce a novel topology-aware wave simulation algo-
rithm for enhancing the appearance of existing liquid simula-
tions while significantly reducing the noise present in similar
approaches.

• Because our method robustly extracts surface information
from input data alone, we provide a reliable way to automat-
ically track markerless performance capture data without the
need for a template.

2 Related Work

Our work is closest to a recent publication of Stam and
Schmidt [2011]. They showed that, by examining the input param-
eters for an implicit surface algorithm, one can derive the surface
velocity to create motion blur and more coherent surface anima-
tions. By integrating surface velocity through time, they presented
a method to approximate point-to-point correspondences which can
be used to track texture information. This inspirational work in-
troduced some exciting applications for tracking correspondences
through complicated deformations, and we believe that it brought
the community a significant step closer to solving the general prob-
lem of tracking a topology-evolving surface. Our method is dif-
ferent from theirs in a number of ways. Firstly, we wish to solve
the more general problem of tracking an arbitrary input surface se-
quence, so we do not assume that we know the parameters behind
the surface dynamics. Secondly, their correspondence information
is only as accurate as their velocity integration, so it is prone to
numerical drift. Our method uses a nonlinear shape matching op-
timization to minimize this drift, and the difference is particularly
apparent in the presence of large rotations.

To the best of our knowledge, our method is the first to provide
a solution to the problem of registration combined with topology
change. For the remainder of this section, we divide the work most
related to ours into two camps: those related to deformable shape
matching and registration, and those related to surface evolution
with topology changes.

Deformable Shape Matching and Registration. The field of
dynamic geometry processing is actively involved with the problem
of extracting correspondences between inconsistent time-varying
meshes [Chang et al. 2010]. Dense and accurate correspondences
are critical for temporal shape analysis and surface tracking, mak-
ing applications such as marker-free human performance capture
and shape reconstruction from streams of incomplete 3D data pos-
sible. We will focus our discussion on methods that take sequences
of meshes or point clouds as input.

Most methods that establish full surface correspondences through
time rely on an existing template model or construct it in a separate
step. With a fixed topology and known geometric state, template
models are popular because they simplify the problem of recon-
structing geometry and motion. The techniques introduced in [Mi-
tra et al. 2007; Süßmuth et al. 2008] aggregate scan sequences into
a 4D space-time surface to build a more complete template. In addi-
tion to being limited to fairly small deformations, both methods do
not allow the input data to change topology. The statistical frame-
work introduced by Wand et al. [2007] and later improved in [Wand
et al. 2009] estimates a globally consistent template model with a

Figure 2: Our framework allows us to synthesize high-frequency
details using a separate wave simulation (right) on top of a lower
resolution pre-simulated fluid surface (left).

fixed topology. While also being restricted to slowly-varying sur-
face deformations, their methods can identify topology variations in
the scans. On the other hand, the framework presented in [Li et al.
2009] does use a rough approximation of a template as a prior, pre-
venting wrong topology computations, but focuses on handling de-
formations that are significantly larger than previous methods using
a robust non-rigid registration algorithm. While highly disruptive
motions are explicitly treated in the system of Tevs et al. [2012],
largely incomplete acquisitions can still damage the template ex-
traction.

Although correspondences are desirable for many geometric anal-
ysis and manipulation purposes, a few state-of-the-art reconstruc-
tion methods skip the requirement of extracting a template model
but aim at simply filling incomplete capture data. The technique
presented in [Sharf et al. 2008] is able to produce a watertight sur-
face sequence from extremely noisy input scans using a volumet-
ric incompressible flow prior but suffers from significant flicker-
ing in the reconstruction. In the context of fluid capture, Wang
et al. [2009] demonstrated a framework to fill holes in partially
captured liquid surfaces using a physically guided model. Their
method achieves time-coherent reconstructions of dynamic surfaces
but is restricted to fluid simulations since frame-to-frame corre-
spondences are guided by a simulated velocity field. Recently, Li
et al. [2012] demonstrated a shape completion framework for tem-
porally coherent hole filling of incomplete and flickering-affected
scans of human performances. Their method makes minimal as-
sumptions about the surface deformation by establishing correspon-
dences within a small time window and avoid the extraction of glob-
ally consistent correspondences through time.

The proposed technique is able to establish full correspondences
across time-series of input meshes and is not limited to a fixed
topology like template-based methods. Our method is grounded
on a general purpose non-rigid registration algorithm similar to [Li
et al. 2009; Li et al. 2012] and can therefore be applied widely,
ranging from fluid surface dynamics, human body performances,
and arbitrary shape morphings.

Surface Evolution with Topology Changes. Several methods
exist for tracking topology-changing surfaces through time with the
aid of prescribed motions or velocity fields. Level set methods [Os-
her and Fedkiw 2003] and particle level set methods [Enright et al.
2002] are popular techniques for representing a dynamic implicit
surface. These methods consider the zero level set of a voxelized
signed distance function, and they integrate velocity information in
order to move the function. This integration displaces the zero set
of the function, resulting in a moving surface. Müller [2009] used
a strategy of repeatedly re-sampling an evolving Lagrangian trian-
gle mesh in order to provide fast surface tracking for fluid surfaces.
Semi-Lagrangian contouring [Bargteil et al. 2006a] also utilizes La-
grangian information in the form of extracted surface geometry in
order to improve surface tracking. These methods can be used to
propagate surface information through time, but they cannot reli-



Figure 3: A morphing example where surface textures are tracked.
Unlike existing techniques, our method does not exhibit ghosting
artifacts.

ably track surface correspondences over large deformations without
diffusion because of their strategy of continual re-sampling. Simi-
lar to our method, Dinh et al. [Dinh et al. 2005] also tracks texture
information on a topology-changing surface. Their method requires
the solution of a PDE over space-time, which limits its application
to low resolution surfaces over a short amount of time. Our method
treats each time step independently, so it is able to handle highly
detailed input.

The surface evolvers most similar to ours are mesh-based surface
tracking methods [Du et al. 2006; Wojtan et al. 2010; Brochu et al.
2010]. The idea behind these techniques is to evolve a triangle mesh
according to a velocity field, which allows for better preservation
of geometric features and correspondence information than an im-
plicit surface. These mesh-based methods go hand-in-hand with ro-
bust numerical methods for changing mesh topology [Brochu and
Bridson 2009; Wojtan et al. 2009; Campen and Kobbelt 2010; Za-
harescu et al. 2007; Pons and Boissonnat 2007]. Within our frame-
work, we use a method similar to Wojtan et al. [2009] for changing
mesh topology, because of its speed and versatility (Further details
are explained in §4.3).

While each of these works on surface evolution certainly helped
inspire ours, we would like to remind the reader that our method
solves a significantly different problem of tracking without any ve-
locity information. In this light, we do not perceive our method as a
competitor to existing fluid simulation techniques, but as a power-
ful enhancement tool — it allows a user to convert the output from
any simulation type into a temporally coherent deforming mesh se-
quence. Our tracked surfaces are a great improvement over implicit
surfaces in the information they provide, the details they preserve,
and the useful applications that they aid.

3 Problem Statement

This paper is concerned with the problem of taking a series of
closed surfaces through time as input, and then replacing these
surfaces with a sequence of temporally coherent deforming trian-
gle mesh. We wish to allow these input surfaces to have arbitrary
shapes and topology, and these shapes and topology are allowed to
change significantly from one surface to the next. Because such
data can come from a range of diverse sources in practice, we can-
not assume any specific domain knowledge, nor can we assume that
we are given additional information such as velocity fields. While
surface tracking and registration is a widely studied problem, we
are unaware of any tracking methods that are both robust to large
deformations and arbitrarily complicated topology changes while
retaining correspondence information. This is unfortunate, because
frequent topology changes result from many common sources such
as fluid dynamics, morphing, and erroneous scanned data.

To adequately solve this problem, we must define what it means

Figure 4: Our method can turn a temporally incoherent mesh se-
quence (upper left) into a coherent one (upper right). We use this
tracked mesh to add displacement maps as a post-process without
having to re-simulate any physics.

for two shapes to correspond in the presence of topology changes
and find the most appropriate mapping between consecutive pairs
of input surfaces. This correspondence information should grace-
fully propagate through changes in surface topology. We require
our method to handle arbitrarily large plastic deformations through
time while keeping the computation tractable.

4 Method

Our algorithm consists of several interwoven operations: mesh
improvement (§4.1), non-rigid alignment (§4.2), and topological
change (§4.3). The mesh improvement operation ensures that our
output mesh M retains high-quality triangles while only minimally
re-sampling geometry. The non-rigid alignment step ensures that
M actually conforms to the desired shapes through time, and the
topology change step ensures that the topology of M conforms to
that of the desired input shapes {Sn}Nn=1 in each frame. We show
that these three operations alone are enough to generate smoothly
deforming meshes with high-quality geometry. However, in or-
der to utilize these deforming meshes to their full extent, we also
record correspondence information along the way (§4.4). Finally,
we explain how to use the recorded correspondence information to
efficiently propagate information forwards and backwards through
time as a post-process (§4.6).

4.1 Mesh Improvement

A detailed surface mesh with well-shaped triangles is essential for
a wide variety of beneficial computations. In addition to enhancing
numerical stability in our non-rigid registration solver (§4.2) as well
as the geometric intersection code in our topology change routine
(§4.3), a triangle mesh free from degeneracies is necessary for such
basic operations as interpolation, ray tracing, and collision detec-
tion. As we explain later in §5, the guaranteed mesh quality from
our algorithm allows us to densely sample complex textures, gen-
erate displacement maps which are less prone to self-intersections,
and solve partial differential equations on a deforming mesh using
a finite element method.

In our framework, we follow the mesh improvement procedures
outlined in the survey by Wojtan et al. [2011]. When edges be-
come too long, we split them in half by adding a new vertex at the
midpoint. When edges become too short, or when triangle interior
angles or dihedral angles become too small, we perform an edge
collapse by replacing an edge with a single vertex. Although we



Figure 6: Our mesh is augmented with a deformation graph for ro-
bust coarse-level non-rigid registration. We use geodesic distances
to construct the graph in order to avoid edge connections between
surfaces close in Euclidean space but far along geodesics.

did not implement them in our framework, edge flips are also an-
other excellent mesh re-sampling operation.

When improving a dynamically-deforming mesh, the main chal-
lenge is to find the right balance between high-quality triangles
and excessive vertex re-sampling. Though we are free to customize
these mesh improvement parameters however we like, we used sim-
ilar parameters for all of the examples in this paper. We used a
minimum interior angle of 10 degrees, a minimum dihedral angle
of 45 degrees, and a maximum:minimum edge length ratio of 4:1.
For a more in depth discussion on choosing parameters for these
operations, please see [Wojtan et al. 2011].

4.2 Non-Rigid Alignment

Our goal is to establish correspondences between a source M and a
target Sn. If we assume that the two shapes have the same topology,
we can solve this problem by warping M onto Sn while minimizing
surface distances and shape distortion. In general, this assumption
does not hold, but we may still use non-rigid registration to align the
shapes. By simultaneously maximizing geometric similarity and
rigidity, surface regions on M that are compatible with those on
Sn will be aligned, providing dense correspondences within these
regions.

We adapt the state-of-the-art bi-resolution registration framework
by Li et al. [2009] for non-rigid alignment. Their method is split
into two parts to maximize robustness and efficiency: a non-linear
optimization that takes care of coarse alignment, and a linearized
optimization that aligns fine-scale details. We describe these parts
in the following two sections.

Coarse Non-Linear Alignment. Li et al. [2009]’s non-rigid iter-
ative closest point algorithm alternates between estimating corre-
spondences from M to Sn, and non-rigid deformation of M that
allows correspondences to slide along Sn. Rigidity of the defor-
mation model is relaxed whenever convergence is detected to avoid
local minima.

Deformation is achieved using a coarse deformation graph that is
constructed by uniformly sub-sampling M such that the distance
between deformation graph nodes is four times larger than the aver-
age edge length of M. Instead of computing displacements for each
vertex of M, we solve for an affine transformation (Ai,bi) for
each graph node. The graph node transformations are transferred to
the remaining vertices via linear blend skinning. Letting N (i) de-
note the k = 4 graph nodes nearest to xi, we describe the motion of
xi by a linear combination of the computed graph node transforma-
tions. Each j ∈ N (i) is weighted as wij = (1− d(xi,xj)/dmax)

2

and normalized such that
∑

j∈N (i) wij = 1. Here, d(·, ·) denotes
geodesic distance and dmax is the distance to the (k + 1)th nearest
graph node. The choice of using geodesic distances was made to en-
sure that a vertex is not influenced by graph nodes that are close in
Euclidean distance but far along geodesics. This is important, e.g.
in case of a breaking wave whose tip might be close to the surface
in Euclidean but not geodesic distance. Instead of using the same
connectivity as the original triangle mesh, a graph edge is formed
whenever there exists a vertex in M influenced by two graph nodes.

When estimating correspondences, the original formulation
matches vertices on M with the closest point on Sn. We instead
choose to project a vertex xi onto Sn in the direction of the sur-
face normal to obtain ci. We have found that this heuristic is sig-
nificantly better at picking correspondences during large non-rigid
deformations, especially where surfaces spread out into thin sheets.
To avoid inconsistent alignments, we prune correspondences where
the surface normals at xi and ci are more than 60 degrees apart, or
where ci is more than three times further from xi than the closest
point on Sn.

To solve for the affine transformation, we minimize an energy func-
tional that consists of a fitting and some regularization terms. The
fitting energy measures how far M is from Sn according to the
correspondences found above.

Efit =
∑
i∈V

(αpoint‖xi − ci‖2 + αplane〈ni,xi − ci〉2)

Here, V is the set of deformation graph nodes, ci denotes the point
on Sn mapped from xi and ni denotes the surface normal at ci.
The parameters αpoint and αplane determine the relative importance of
the corresponding point-to-point and point-to-plane energy terms.
We use αpoint = 0.1 and αplane = 1 in all our examples. The larger
weight for the point-to-plane term allows the correspondences to
slide along Sn when solving for the deformation, leveraging the
coupling between correspondence and deformation optimization.

A second term maximizes the rigidity of the affine transforma-
tion, thus minimizing distortion and scaling. This is accomplished
by measuring how far Ai is from a true rotation matrix. Letting
ai1,ai2,ai3 be the columns of Ai, we obtain

Erigid =
∑
i∈V

(〈ai1,ai2〉2 + 〈ai1,ai3〉2 + 〈ai2,ai3〉2

+ (1− ‖ai1‖)2 + (1− ‖ai2‖)2 + (1− ‖ai3‖)2)

A final term ensures smoothness between edge connected nodes.

Esmooth =
∑
i∈V

∑
j∈N (i)

‖Ai(xj − xi) + xi + bi − (xj + bj)‖2

The total energy Etotal = αfitEfit + αreg(Erigid + 0.1Esmooth) is min-
imized using a standard Gauss-Newton solver based on Cholesky
decomposition. We alternate between correspondence estimation
and surface deformation until convergence, and gradually relax the
regularization by dividing αreg by 10. For each Sn we initialize the
optimization with αfit = 0.1 and αreg = 1000.

Fine-Scale Linear Alignment. While the coarse level optimiza-
tion makes sure that large deformations between M and Sn are re-
covered, a second warping step uses a more efficient (but rotation-
sensitive) linear mesh deformation technique to capture high-
frequency geometric details in Sn. For each vertex of M, we trace
an undirected ray in the normal direction and find the closest inter-
section point ci on Sn.



Forward Texture Propagation

Backward Texture Propagation

Figure 5: These animations show how we can use our algorithm to propagate a texture both forwards and backwards through time. In the
bottom animation, the fluid simulation naturally splashes around as it settles into a checker texture.

The optimization uses a point-to-point fitting term Efit =∑
i∈V ‖xi−ci‖2 and solves for the displacement of each vertex by

minimizing the difference between adjacent vertex displacements
using Ereg =

∑
(i,j)∈E |di − dj |

2.

To avoid self intersections, we prune correspondences that are fur-
ther than a threshold σ = 0.1 given a scene bounding box diagonal
of 1. Finally, we synthesize fine-scale details from the target on the
pre-aligned mesh by minimizingEtot = Efit +Ereg using an efficient
conjugate gradient solver. Despite the robustness of the proposed
non-rigid registration approach, we do not guarantee that every tar-
get surface region will have a corresponding source point. Such
cases require a change in topology.

4.3 Topological Change

This paper considers a more general class of input deformations
than most previous methods — we aim to track surfaces that are
not only highly deformable, but that may change topology arbitrar-
ily through time. For example, we allow new surface components
to appear from nowhere in the middle of an animation, and we ex-
pect that entirely disparate surface regions may suddenly merge to-
gether. In order to accurately track such extreme behavior in the in-
put data, we build new tools to constrain the topology of our mesh
to that of an arbitrary closed input surface.

We base our topology change method on that of Wojtan et al. [2009]
with subdivision stitching [2010] as explained in their SIGGRAPH
course [2011]. The method takes as input a triangle mesh M and
voxelizes its signed distance function φM onto a volumetric grid.
A cubic cell in the volumetric grid is classified as topologically
complex if the intersection of M with the cell is more complex
than what can be represented by a marching cubes reconstruction of
φM inside the cell. Topologically complex cells are candidates for
re-sampling, and triangles of M inside such cells will be replaced
by marching cubes triangles reconstructed from φM. This strategy
forces M to change such that its topology matches that of φM, ef-
fectively making sure that M changes topology in the event that it
intersects itself. See Wojtan et al. [2011] for a detailed exposition.

We chose to use this method primarily because of its flexibility and

robustness. We would like the surface to change topology not only
when the mesh intersects itself, but also whenever the input geome-
try happens to change its own topology. Furthermore, because this
method is independent of surface velocity, it adds another layer of
robustness to our algorithm; in the event that our registration routine
produces inaccurate displacement information, the topology algo-
rithm will correct the final shape by drawing new surface geometry
directly from Sn.

To do this, we generalize the idea of Wojtan et al.; instead of con-
straining the topology of the input mesh to match that of its own
signed distance function, we constrain the input mesh to match
the topology of any voxelized implicit surface. We simply vox-
elize an arbitrary implicit surface Θ, and replace the signed dis-
tance function φM in the original with our new function Θ. The
algorithm then compares the topology of the mesh M to the topol-
ogy of Θ, and replaces M’s triangles with triangles from the ex-
tracted isosurface of Θ wherever M and Θ have a different local
topology. We can refer to this generalized topology change rou-
tine as ConstrainTopology(M,Θ). Using this terminology, the
original algorithm of Wojtan et al. can be executed by calling
ConstrainTopology(M, φM).

Within our deformation framework, we use this generalized topol-
ogy change algorithm in two ways: first to ensure that the de-
forming mesh changes topology if it intersects itself, and sec-
ond, to ensure that the deforming mesh has the same topology as
the target input data. These actions can be computed by calling
ConstrainTopology(M, φM) and ConstrainTopology(M, φSn),
respectively, where Sn is the target mesh from the input data. We
will specify the exact order in which to call these functions in sec-
tion §4.5.

4.4 Recording Correspondence Information

Throughout the computation of our deforming mesh M, we want
to track how its correspondences evolve through time. The previ-
ously mentioned mesh modification routines can cause significant
changes in correspondence information, and we must track how
these changes occur.



The mesh deformation algorithm described in §4.2 is Lagrangian in
nature, so it moves individual vertices to their new locations at each
frame in the animation sequence. Consequently, the vast majority
of vertex locations in our mesh at a given frame number correspond
exactly to the location of that same vertex at earlier and later frame
numbers. For these vertices, information about their corresponding
position at different points in the sequence is implicit; vertex i in
frame number n− 1 corresponds exactly with i in frame n.

The only vertices which do not have this trivial correspondence with
vertices in different frames are the few vertices which were created
or destroyed due to re-sampling. Within our framework, the only
way to create new vertices is via topological change (§4.3) or edge
and triangle subdivision (§4.1). The only way for us to destroy ver-
tices is via topological change (§4.3) or edge collapse (§4.1). Note
that some other potential mesh improvement procedures like mesh
fairing [Jiao 2007; Brochu and Bridson 2009; Stam and Schmidt
2011] improve triangle quality at the expense of re-sampling cor-
respondence information by diffusing it along the surface. For this
reason, we did not use such fairing procedures in §4.1.

For each transition between two frames, we track these re-sampling
events (edge subdivision, triangle subdivision, edge collapse, topol-
ogy change) in what we call an event list. The event list stores de-
tailed information about each re-sampling event, and it is sorted by
the order in which the re-sampling events took place. Each event
in the list records information of the form (Vin,Vout, f(Vin), b(Vout)),
where Vin is a set of the input vertices, Vout is a set of the output
vertices, f(Vin) is a function that assigns information to Vout as a
function of Vin, in case we want to propagate information forwards.
Similarly, b(Vout) is a function that assigns information to Vin as a
function of Vout, in case we want to propagate information back-
wards.

When we subdivide an edge (i, j) between two vertices i, j, a new
vertex k is created on the line connecting i and j. In this case,
the event list records ({i, j}, {i, j, k}, k 7→ (i, α, j, 1 − α),Ø),
where α denotes the barycentric coordinate of k. Notice that we
omit the trivial correspondences i 7→ (i, 1) and j 7→ (j, 1). Simi-
larly, when we subdivide a triangle (i, j, k) by adding a new vertex l
somewhere inside the triangle, we record ({i, j, k}, {i, j, k, l}, l 7→
(i, αi, j, αj , k, αk),Ø). As before, αi, αj , αk denote barycentric
coordinates. Finally, when we collapse an edge (i, j) and replace
the two endpoints i, j by a new vertex k at the barycenter of i and
j, we record ({i, j}, {k}, k 7→ (i, 0.5, j, 0.5), {i 7→ (k, 1), j 7→
(k, 1)}).

When a topological change occurs, surfaces can split wide open
and entire patches of new geometry can be created. For each patch
of new geometry after the topology change, we propagate informa-
tion from the vertices on the boundary of the patch inward, using a
breadth-first graph marching algorithm (similar to Yu et al. [2012]).
Though several propagation strategies are valid at this point (dur-
ing the marching algorithm, each new vertex could simply copy
information from its nearest neighbor, it could distribute informa-
tion evenly throughout the patch, e.g. by solving an elliptic PDE,
etc.), we chose a strategy of each vertex taking the average of the in-
formation from its visited neighbors during the breadth-first march.
For each new vertex that is created, our event list records the list
of boundary vertices, the new vertex, and the linear combination
of boundary vertices that results from this marching and averaging.
There is no backward correspondence assignment for these vertices.

Lastly, vertices can be deleted in a topological merge. We treat such
operations the same way that we treat new vertices that result from
a topology change, but in reverse: before the patch of vertices is de-
stroyed, we march inward from the boundary of the patch of deleted
vertices and propagate information using the same averaged vertex

1: Mesh M = LoadTargetMesh(S1)
2: ImproveMesh(M)
3: for frame n = 2→ N do
4: LoadTargetMesh(Sn)
5: CoarseNonRigidAlignment(M, Sn)
6: FineLinearAlignment(M, Sn)
7: ImproveMesh(M)
8: φM := CalculateSignedDistance(M)
9: ConstrainTopology(M, φM)

10: φSn := CalculateSignedDistance(Sn)
11: ConstrainTopology(M, φSn)
12: ImproveMesh(M)
13: SaveEventListToDisk(n)
14: SaveMeshToDisk(M)
15: end for

Algorithm 1: Pseudocode for our mesh-tracking algorithm.

scheme. For each vertex that is deleted, our event list records the
list of boundary vertices, the new vertex, a null forward operation,
and the linear combination of boundary vertices that results from
the marching and averaging operation.

4.5 Summary of the Tracking Algorithm

We review the steps of our tracking method in Algorithm 1. Our
method begins by initializing a triangle mesh M to the first frame
of the input mesh sequence {Sn}Nn=1. We then immediately call
our mesh improvement routine (§4.1) to ensure that M consists of
high-quality geometry. Next, we enter the main loop of our algo-
rithm, which visits each of the input meshes Sn in turn. In each
iteration we use our course non-rigid alignment routine (§4.2) to
align the low-resolution features of M as closely as possible with
those of Sn. Once the coarse alignment has terminated, we per-
form a fine-scale linearized alignment in order to ensure that all of
the high-resolution details of M line up with Sn. At this point in
the algorithm, we have deformed our mesh M such that it lines
up with the input data frame Sn. This deformation may cause the
triangles of M to stretch and compress arbitrarily, so we again per-
form a mesh improvement in order to clean up the overly deformed
elements.

Next, we must account for the fact that M may have self-
intersections. We execute the basic topology change algorithm in
§4.3 by first computing a voxelized signed distance function near
the surface of M and then ensuring that M has the same topology
as the zero isosurface of this function. This step mainly cleans up
any large self-intersections in the mesh by merging surface patches
together. Next, we execute a topology change algorithm again, but
this time we constrain M to match the topology of Sn. This step
ensures that we split apart any surfaces in M which stretches over
gaps in Sn, as well as merge any separate regions of M that are
actually merged in Sn. The extra topology constraint additionally
acts as a fail-safe by re-sampling parts of M in the rare event that
the alignment algorithm was unable to find correspondences for all
of M.

At this point in the algorithm, our mesh M can consist of triangles
with arbitrarily poor aspect ratios, because the topological sewing
algorithm only cares about the connectivity of the mesh and not
the condition of the individual mesh elements. We therefore call
our mesh improvement routine once again to ensure that the mesh
is fit for another round of tracking. Note that throughout this entire
algorithm, we document any re-sampling operations that occur (po-
tentially in lines 2, 7, 9, 11, and 12 of Algorithm 1) and add them
to our event list (§4.4). In the final two steps of this loop, we save
our event list and the mesh M itself to disk. We then start the loop
again with the next frame of animation Sn+1.



Raw input meshes from [Li et al. 2012]

Forward tracking (resampled vertices in green)

Reconstruction results of [Tevs et al. 2012]

Figure 7: Top: Input performance capture data has inconsistent
vertices across frames and exhibits topological variations. Mid-
dle: Our method seamlessly handles topology changes and ensures
high-quality triangles. Resampled vertices from our mesh improve-
ment algorithm are marked in green. Bottom: The method of Tevs et
al. (visualized as a point cloud) is prohibitively expensive for long,
detailed mesh sequences and fails to capture the correct motion.

4.6 Propagating Information as a Post-Process

After we have finished tracking the input geometry (after all of the
steps in §4.5 have run until completion), we have a series of tem-
porally coherent animation frames of a mesh M that deforms and
changes topology. Furthermore, we also have a per-frame event list
that describes exactly how correspondences propagate throughout
the animation. We can use this list to pass information like sur-
face texture and surface velocity from one frame to the next. To
pass information forward in time, we run through the event list in
the order that each event took place, and, using the notation from
section 4.4, we pass information to re-sampled vertices using the
function f(Vin). Similarly, we pass information backwards in time
by running backwards through the event list and using b(Vout).

5 Applications

Having detailed our method for obtaining a temporally coherent pa-
rameterization of an arbitrary sequence of closed manifold meshes
(§4), we shift our focus to applications. We show how we can apply
our method to track a broad range of different incoherent surfaces
and how we can exploit extracted correspondence information to
significantly enhance the meshes in a variety of different ways.

Displacement Maps. Displacement maps provide an efficient
way of adding geometric detail to an animation as a post-process,
avoiding costly re-simulation or geometry acquisition. We recover
a temporally coherent mesh sequence from a physically-based Eu-
lerian viscoelastic simulation [Goktekin et al. 2004] with a peri-
odically re-sampling surface tracker similar to [Müller 2009] (Fig-
ure 4). Our method faithfully conforms to the target shape in every

frame with minimal re-sampling.

To showcase our temporally coherent parameterization and high
mesh quality, we apply two different displacement maps to the
mesh sequence. We represent a displacement map as a per-vertex
scalar designating the normal direction displacement of each ver-
tex. Using our data structure (§4.6), we propagate displacements
applied in the first frame to all later frames. Compared to tracking,
propagation is almost instantaneous, taking only a few seconds for
the entire animation. Swapping in a different displacement map is
thus fast and effortless. Compare this to the state of the art without
our method, where an animator instead would have to re-run the
entire simulation to change the geometry.

Color. It is often useful to texture implicit surfaces in produc-
tion [Sumner et al. 2003; Wiebe and Houston 2004]. Because of
the large computational costs of liquid simulation, it is particularly
convenient to add detail to a lower resolution simulation as a post-
process, e.g. by applying foam or deep water textures. Figure 5
shows a splashy liquid scene which comes from a standard Eule-
rian solver using the Level Set Method [Osher and Fedkiw 2003] to
track the free-surface. We track an incoherent sequence of march-
ing cubes reconstructions of the level sets from the simulation.

Similar to displacement maps, we propagate colors applied in the
first frame to all later frames. Our accompanying video shows a
checkerboard pattern and a lava texture propagated through time.
Further exploiting our temporal data structure, we propagate col-
ors applied in the last frame backwards in time to the first frame
(Figure 5). This technique allows us to enhance the splashy anima-
tion with an interesting artistic expression where an image is slowly
revealed as the dynamics settle (Figure 1).

Wave simulation. Texture is one way of enhancing a low res-
olution liquid simulation, however, correct computation of light
transport for effects like caustics is easier with real geometry.
Our method is not limited to static displacement maps (mentioned
above), but allows for procedural displacements as well. In par-
ticular we may improve the fidelity of the splashy liquid simulat-
ing mentioned above (Figure 2) by adding a dynamic displacement
map. Because our method yields particularly high-quality surface
triangles with minimal re-sampling, we are able to use the result-
ing mesh to solve partial differential equations. Inspired by recent
fluid animation research [Thürey et al. 2010; Yu et al. 2012], we
augment our surfaces with a time-varying displacement map, com-
puted as the solution to a second order wave equation:

∂2h

∂t2
= c2∇2h. (1)

Here, h is wave displacement in the normal direction,∇2 is the dis-
crete Laplace operator computed with cotangent weights [Botsch
et al. 2010], and c is a user-chosen wave speed. We use our event
list to transfer the state variables (wave heights h and velocities
in the normal direction v) from one frame to the next, and we in-
tegrate the system using symplectic Euler integration with several
sub-cycled time steps per input frame. One may optionally choose
to add artificial damping to the simulation for artistic reasons by
multiplying h by a (1 − ε) factor in each step. No artificial damp-
ing was used in our simulations.

Our wave simulation method is novel in that it retains tight con-
trol over wave energy sources. We only add wave heights pre-
cisely at the locations in space-time where topological changes oc-
cur. This stands in opposition to previous work, which recomputes
wave heights every time step based on surface geometry. The result
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Figure 8: Comparison between our full pipeline and leaving out
individual stages of our surface tracking framework.

of this distinction is that our simulations are much less likely to in-
troduce energy due to numerical errors. Our simulations have a dra-
matically high signal-to-noise ratio – we can clearly see interesting
wave interference patterns persist throughout the entire simulation.

Morph. Another application of our method is transferring col-
ors through morphs that change topology between arbitrary genera
(Figure 3). We use a simple linear blend between signed distance
functions to create the morph, and we subsequently obtain a coher-
ent mesh by tracking it with our framework. We start by propa-
gating color backwards from the final frame, and then we use the
colors which were propagated to the first frame to obtain a base
texture. In this way an artist can see where important feature points
end up on the target shape to aid in creating a more natural morph.
To obtain the morph in Figure 3, we additionally blend between the
two forward and backward propagated colors.

Performance Capture. Performance capture has numerous ap-
plications such as video games and filmmaking. Due to noise
and occlusion, captured data often exhibits non-physical topology
changes. Unlike previous methods, we are able track captured data
with topology changes while obtaining temporally coherent corre-
spondences (Figure 7). We apply a texture in the first frame and
propagate it forward. Regions that are unoccluded throughout the
sequence are tracked faithfully.

6 Evaluation

We performed an extensive series of tests to evaluate our method.
We used the viscoelastic simulation (Figure 4) as a testbed while
we varied parameters, turned off various parts of our code, and
attempted alternative approaches. Please see our accompanying
video for visualizations of these tests.

In Figure 9, we show how our method compares to the naı̈ve ap-

Figure 9: The difference between projection (left) and our non-
rigid registration technique (right). Simple projection causes severe
distortion of the surface, while our registration reliably provides
accurate correspondences.

proach of simply projecting the tracked mesh M onto the input
Sn. Tangential drift is severe even in the case of simple translation.
Next, we compare our method to one without fine-scale registration
(line 6 of Algorithm 1). Since the graph-based registration works
on a coarse scale and only influences vertices in M through linear
blend weights, this modified method is unable to correctly register
small features. Such errors accumulate over time, causing a rough,
lumpy surface that ignores the fine-scale details of the input. Our
full algorithm clearly does not exhibit these problems, showing why
the fine-scale optimization of Section 4.2 is necessary.

Our tests also show that the topology constraint (§4.3, line 11 of
Algorithm 1) is essential for robust tracking. The tests in our video
illustrate how a method without this constraint is unable to cope
with drastic changes in input topology. An obvious example in the
viscoelastic simulation is the sudden introduction of new compo-
nents in later frames — when the topology constraint is turned off,
the non-rigid registration algorithm was unable to recognize these
components without manually creating a template. Another impor-
tant feature of the topology constraint is that it acts as a convenient
failsafe. Should the registration routine fail to fully conform to the
target shape, the topology constraint fills in regions of mismatched
geometry. As a result, our full algorithm is quite robust to poor pa-
rameter choices for the alignment, and poor alignment only leads to
additional re-sampling (as opposed to an unrecoverable failure).

Within a given frame, time complexity of our method is dominated
by coarse non-rigid alignment (§4.2, line 5 of Algorithm 1). Sam-
pling density of the deformation graph is the most critical parameter
to the time complexity of the non-rigid alignment, since it dictates
the number of variables in the non-linear optimization problem.
Sensitivity of our algorithm to different sampling densities is ex-
amined in the supplementary video. In addition to the density used
in Figure 4, we also ran the algorithm with both half- and quarter-
sampling density. The video shows that reduced sampling densities
lead to increased re-sampling, but the result remains similar to our
high-quality tracking. Conveniently, this allows use of a lowered
sampling density to get a fast approximation of the algorithm’s out-
put before committing to solving with a high sampling density.

Another way to reduce the time complexity of our method is to use
sparser input. We experimented with five, ten and twenty-five times
sparser input than the results shown in Figure 4. As seen in the
video, our method is robust to sparse input and produces reasonable
correspondences, even for the example where we use only sixteen
out of the original 400 frames in the input for tracking.

The memory complexity of our algorithm is similarly dominated
by the non-rigid alignment. However, because we only do pairwise
alignment, memory consumption is independent of the length of the
sequence of input data. In other words the space complexity scales
with the number of vertices in M.

We have gathered statistics for all of our application examples. We
summarize these results in Table 1. All measurements were per-



ViscElast Splash Morph PerfCap

Vertices 60k-300k 280k-380k 77k-96k 214k-369k
Frames 400 500 100 111
Frame time 45-153s 105-220s 17-21s 150-174s
Coarse reg. 87-93% 81-89% 67-73% 70-73%
Fine reg. 3-8% 11-18% 19-23% 24-27%

Table 1: Summery of statistics for our application examples. Time
spent on mesh improvement and topology changes is negligible
compared to alignment and is omitted in the table. Timings exclude
file I/O operations.

formed on a standard PC with an Intel i7-2600K processor and 16
GB of memory. We note that our implementation has not been op-
timized for performance and is mostly sequential.

Comparison to other methods. As detailed in section 2, the
method of Stam et al. [2011] is significantly different from ours.
While this is an admittedly biased comparison, we show how our
method performs with their example of three blended blobs rotating
about the origin (see Figure 10). Our algorithm explicitly solves for
the globally most rigid deformation, so we obtain practically per-
fect tracking whereas Stam et al. show slight tangential drift and
color diffusion. We imagine their problem would be exacerbated
with larger time steps, while ours remains accurate.

7 Discussion

Since our tracking approach is sequential and does not rely on
higher level deformation priors, we do not guarantee drift free
tracking. For purposes such as tracking extended performance cap-
ture recordings, dynamic body shape statistics and elastic defor-
mation models could be incorporated to prevent accumulations of
tracking errors. More generally one could exploit the temporal
mesh sequence by combining the result of forwards and backwards
tracking [Kim et al. 2007; Kagaya et al. 2011]. Nevertheless, none
of our examples, including the performance capture example, ex-
hibited any noticeable drift when propagating the texture from the
first frame to the end despite the drastic topology variations and
large deformations in the input data. Therefore, we did not further
investigate these temporal schemes.

Our temporally coherent meshes retain high-quality elements and
low-valence vertices, even in the presence of highly non-rigid de-
formations and topology changes, as can be seen in our supplemen-
tary video. Our bound on triangle and dihedral angles in partic-
ular make sure that high-valence vertices and skinny triangles are
avoided. Since we do not currently implement edge flips, we re-
sample vertices more often than we would otherwise, especially
when the surface is compressing or stretching. As our results show,
this does not turn our to be a big problem in practice, however, we
would like to implement edge flips in the future.

Our method is meant to find surface correspondences through ar-
bitrary deformations while remaining faithful to the input motion.
When given a severely stretched deformation as input, an exactly
tracked set of surface correspondences will inevitably exhibit se-
vere stretching as well. In situations such as this, a minimally dis-
torted mapping through time is actually incorrect behavior as far
as our algorithm is concerned. Our strategy of matching geome-
try while minimizing tangential drift unavoidably causes distortion
when propagating visual data such as texture, as can be seen in e.g.
Figure 5. Our method does, however, allow the user to relax the en-
ergy term that punishes tangential drift, thereby giving some control
over distortion. If specific requirements are sought, such as maxi-
mal conformality of textures, one would have to tailor our method

Figure 10: Stam and Schmidt introduced this shape as a bench-
mark for evaluating the accuracy of an implicit surface tracking al-
gorithm. After one complete rotation, our algorithm’s output (right)
is virtually identical to the analytical solution (left).

for that particular use-case. We view this as an interesting direction
for future work. Texture synthesis [Bargteil et al. 2006b; Kwatra
et al. 2007] is but one possible solution to the challenging problem
of texture stretching.

Because our method is based on shape matching, we are unable to
track surfaces invariant under our energy functions; a surface with
no significant geometric features (like a rotating sphere) will not
be tracked accurately. However, it would be easy to augment our
method with additional priors such as velocity information in order
to handle such featureless cases.

The biggest limitation of our method is the fact that we are currently
limited to closed manifold surfaces due to the algorithm we use for
performing topology changes. This method assumes that for any
arbitrary point in space we must unambiguously decide whether it
is inside or outside the surface.

8 Conclusion

We have presented a novel approach that takes a sequence of arbi-
trary closed surfaces and produces as output a temporally coherent
sequence of meshes augmented with vertex correspondences. The
output of our algorithm is useful for a variety of applications such as
(dynamic) displacement maps, texture propagation, template-free
tracking and morphs. We have also demonstrated the robustness
of the method to parameters as well as input. In the future we
would like to extend the method to handle non-closed surfaces,
as well as explore problem-specific applications of our general-
purpose framework.
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WOJTAN, C., THÜREY, N., GROSS, M., AND TURK, G. 2010.
Physics-inspired topology changes for thin fluid features. ACM
Transactions on Graphics (TOG) 29, 4, 50:1–50:8.
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