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Abstract

We present a complete integrated system for live facial puppetry that enables high-resolution real-time facial
expression tracking with transfer to another person’s face. The system utilizes a real-time structured light scanner
that provides dense 3D data and texture. A generic template mesh, fitted to a rigid reconstruction of the actor’s
face, is tracked offline in a training stage through a set of expression sequences. These sequences are used to build
a person-specific linear face model that is subsequently used for online face tracking and expression transfer. Even
with just a single rigid pose of the target face, convincing real-time facial animations are achievable. The actor
becomes a puppeteer with complete and accurate control over a digital face.

1. Introduction

Convincing facial expressions are essential to captivate the
audience in stage performances, live-action movies, and
computer-animated films. Producing compelling facial ani-
mations for digital characters is a time-consuming and chal-
lenging task, requiring costly production setups and highly
trained artists. The current industry standard in facial perfor-
mance capture relies on a large number of markers to enable
dense and accurate geometry tracking of facial expressions.
The captured data is usually employed to animate a digitized
model of the actor’s own face or transfer the motion to a dif-
ferent one. While recently released feature films such as The
Curious Case of Benjamin Button demonstrated that flawless
re-targetting of facial expressions can be achieved, film di-
rectors are often confronted with long turn-around times as
mapping such a performance to a digital model is a complex
process that relies heavily on manual assistance.

We propose a system for live puppetry that allows trans-
ferring an actor’s facial expressions onto a digital 3D char-
acter in real-time. A simple, low-cost active stereo scanner
is used to capture the actor’s performance without requiring
markers or specialized tracking hardware. A full 3D model
of the actor’s face is tracked at high spatial and temporal
resolution, facilitating the accurate representation of face
geometry and expression dynamics. Real-time performance
is achieved through extensive pre-processing and a careful
design of the online tracking algorithm to enable efficient
GPU implementations. Pre-processing includes robust and
accurate facial tracking for offline 3D model building and
the construction of a simplified facial expression space from
a large set of recorded facial expressions. For online cap-
ture, we simplify the tracking algorithm to its essentials and

Figure 1: Accurate 3D facial expressions can be animated
and transferred in real-time from a tracked actor (top) to a
different face (bottom).

exploit the reduced dimensionality of the facial expression
model. Real-time transfer of facial expressions onto a differ-
ent face is achieved by a linear model based on preprocessed
deformation transfer [SP04]. This allows plausible live ani-
mations of different characters, even when only a single rigid
model of the target face is available. For example, ancient
Roman statues can be brought to live (Figure 10).

Markerless live puppetry enables a wide range of new ap-
plications. In movie production, our system complements
existing off-line systems by providing immediate real-time
feedback for studying complex face dynamics. Directors get
to see a quick 3D preview of a face performance, including
emotional and perceptual aspects such as the effect of the in-
tended makeup (see Figure 1). In interactive settings such as
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Figure 2: Our system is composed of three main parts: Personalized template building, facial expression recording, and live
facial puppetry. All components rely on input from a real-time structured light scanner. During template building a generic
template is fit to the reconstructed 3D model of the actor’s face. Dynamic facial expressions of the actor are then recorded and
tracked using non-rigid registration. A person-specific facial expression model is constructed from the tracked sequences. The
model is used for online tracking and expression transfer, allowing the actor to enact different persons in real-time.

TV shows or computer games, live performances of digital
characters become possible with direct control by the actor.

We put particular emphasis on the robustness of our track-
ing algorithm to enable processing of extended sequences
of facial expressions. This allows building a reduced ex-
pression model that accurately captures the dynamics of the
actor’s face. Our method makes use of a generic template
mesh to provide a geometric prior for surface reconstruc-
tion and to obtain consistent correspondences across the en-
tire expression sequence. Besides specifying a few feature
points for the initial non-rigid alignment of the template to
the scanned actor’s face, no manual intervention is required
anywhere in our live puppetry pipeline. The automatic pro-
cessing pipeline in combination with a minimal hardware
setup for markerless 3D acquisition is essential for the prac-
tical relevance of our system that can easily be deployed in
different application scenarios.

2. Related Work

Due to the huge amount of research in facial modeling and
animation, we only discuss previous work most relevant to
our online system and refer to [PW96] and [DN07] for a
broader perspective. Facial animation has been driven by
different approaches, in general using parametric [Par82,
CM93], physics-based [TD90, SSRMF06], and linear mod-
els [Par72, BV99, VBPP05].

Linear Face Models. Linear models represent faces by a
small set of linear components. Blendshape models store a
set of key facial expressions that can be combined to create
a new expression [Par72, PSS99, Chu04, JTDP03]. Statisti-
cal models represent a face using a mean shape and a set
of basis vectors that capture the variability of the training

data [Sir87,BV99,KMG04,VBPP05,LCXS07]. This allows
modeling of a full population, while blendshape models are
only suitable for an individual person. Global dependencies
between different face parts arising in linear models are gen-
erally handled by segmenting the face into independent sub-
regions [BV99, JTDP03].

Performance Capture. Performance-driven facial anima-
tion uses the performance of an actor to animate dig-
ital characters and has been developed since the early
80s [PB81]. Marker-based facial motion capture [Wil90,
CXH03,DCFN06,LCXS07,BLB∗08,MJC∗08] is frequently
used in commercial movie projects [Hav06] due to the high
quality of the tracking. Drawbacks are substantial manual
assistance and high calibration and setup overhead. Methods
for offline facial expression tracking in 2D video have been
proposed by several authors [PSS99, BBPV03, VBPP05].
Hiwada and co-workers [HMN03] developed a real-time
face tracking system based on a morphable model, while
Chai and colleagues [CXH03] use feature tracking com-
bined with a motion capture database for online tracking.
To the best of our knowledge, our system is the first real-
time markerless facial expression tracking system using ac-
curate 3D range data. [KMG04] developed a system to
record and transfer speech related facial dynamics using a
full 3D pipeline. However, their system has no real-time ca-
pability and requires some markers for the recording. Sim-
ilarly, [ZSCS04] present an automatic offline face tracking
method on 3D range data. The resulting facial expression
sequences are then used in an interactive face modeling and
animation application [ZSCS04, FKY08]. We enhance their
method for offline face tracking and use the facial expres-
sion data for online tracking and expression transfer. While
all the above methods use a template model, techniques ex-

c© The Eurographics Association 2009.



Weise, Li, Van Gool, Pauly / Face/Off: Live Facial Puppetry

ist that do not require any prior model and are able to re-
cover non-rigid shape models from single view 2D image
sequences [BHB00]. Although only a rough shape can be
reconstructed, features such as eyes and mouth can be reli-
ably tracked.

Expression Transfer. Noh and Neumann [NN01] intro-
duced expression cloning to transfer the geometric defor-
mation of a source 3D face model onto a target face. Sum-
ner and Popovic [SP04] developed a generalization of this
method suitable for any type of 3D triangle mesh. More
closely related to our method, [CXH03] perform expression
cloning directly on the deformation basis vectors of their lin-
ear model. Thus expression transfer is independent of the
complexity of the underlying mesh. A different approach
is taken by [PSS99, Chu04, ZLG∗06] who explicitly apply
tracked blendshape weights for expression transfer. The lat-
ter one does not require example poses of the source. [CB05]
extended the method to reproduce expressive facial anima-
tion by extracting information from the expression axis of
speech performance. Similarly, [DCFN06] map a set of mo-
tion capture frames to a set of manually tuned blendshape
models and use radial basis function regression to map new
motion capture data to the blendshape weights. In contrast,
Vlasic and colleagues [VBPP05] use multi-linear models to
both track faces in 2D video and transfer expression param-
eters between different subjects.

3. System Overview

Our facial puppetry system allows live control of an arbitrary
target face by simply acting in front of a real-time struc-
tured light scanner projecting phase shift patterns. Geometry
and texture are both captured at 25 fps. All necessary details
of the scanning system can be found in [WLG07]. The ac-
tor’s face is tracked online and facial expressions are trans-
ferred to the puppet in real-time. As illustrated in Figure 2,
our system consists of three main components: Personalized
template building, facial expression recording, and live fa-
cial puppetry. These components are described in more de-
tail in Sections 5. 6, and 7, respectively. The key to online
performance is to first record a set of facial expressions of
the actor that are processed offline, and then build a simpli-
fied facial expression model specific to the actor for efficient
online tracking and expression transfer. For template build-
ing, non-rigid registration is used to deform a generic tem-
plate mesh to the 3D reconstruction of the actor’s face. This
personalized template is then tracked offline through a set
of expression sequences. We take advantage of face specific
constraints to make the tracking accurate and robust. The
recorded expression sequences are used to build a simplified
representation of the facial expression space using principal
component analysis (PCA). The reduced set of parameters
of the model enables efficient online tracking of the facial
expressions. We propose a simple yet effective method for
real-time expression transfer onto an arbitrary target face:
We build a linear face model of the target face that uses the

Figure 3: The membrane model for vertex displacements
(right) allows for more natural deformations than directly
minimizing vertex displacement differences (left). The differ-
ence is particularly visible in the corners of the mouth.

same parameters as the actor’s facial expression model, re-
ducing expression transfer to parameter transfer. To build the
linear model we use deformation transfer [SP04] on the fa-
cial expression sequences of the actor and then find the opti-
mal linear facial expression space for the target.

4. Deformable Face Model

Building the personalized template and recording facial ex-
pressions both require a non-rigid registration method to de-
form a face mesh to the given input geometry. Non-rigid
registration methods typically formulate deformable regis-
tration as an optimization problem consisting of a mesh
smoothness term and several data fitting terms [ACP03,
ARV07, LSP08]. We represent deformations with displace-
ment vectors di = ṽi − vi for each mesh vertex vi ∈ V
and deformed mesh vertex ṽi ∈ Ṽ . Deformation smoothness
is achieved by minimizing a membrane energy Ememb =
∑i∈V ‖∆di‖2 on the displacement vectors, using the stan-
dard cotangent discretization of the Laplace-Beltrami oper-
ator ∆ (see [BS08]). The resulting linear deformation model
is suitable for handling a wide range of facial deformations,
while still enabling efficient processing of extended scan se-
quences. We prefer the membrane model over minimizing
vertex displacement differences as in [ZSCS04], since the
former results in more natural deformations as illustrated in
Figure 3. Our experiments showed that these differences are
particularly noticeable when incorporating dense and sparse
constraints simultaneously in the optimization.

When personalizing the template (Section 5) we
employ dense closest-point, and point-to-plane con-
straints [MGPG04], as well as manually selected sparse
geometric constraints each formulated as energy terms for
data fitting. For the automated expression recording, a com-
bination of sparse and dense optical flow texture con-
straints [HS81] replaces the manually selected correspon-
dences (Section 6). In both cases, face deformations are
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computed by minimizing a weighted sum of the different
linearized energy terms described below. The resulting over-
determined linear system is sparse and can be solved effi-
ciently via Cholesky decomposition [SG04].

5. Personalized Template Building

We generate an actor-specific template M by deforming a
generic template meshMneutral to the rigid reconstruction
of the actor’s face (see Figures 2 and 4). Besides enabling
a hole-free reconstruction and a consistent parameterization,
using the same generic template has the additional benefit
that we obtain full correspondence between the faces of the
different characters.

Rigid Reconstruction. The face model is built by having
the actor turn his head in front of the scanner with a neu-
tral expression and as rigidly as possible. The sequence of
scans is combined using on-line rigid registration similar
to [RHHL02] to obtain a dense point cloud P of the com-
plete face model. Approximately 200 scans are registered
and merged for each face.

Template Fitting. We use manually labeled reference
points r j ∈ P for initial rigid ICP registration of the generic
template and the reconstructed face model (Figure 4). The
reference points also provide sparse correspondence con-
straints in a subsequent non-rigid registration that deforms
the template Mneutral towards P to obtain M using the
sparse energy term Eref = ∑ j

∥∥ṽ j− r j
∥∥2

2. Our manually de-
termined correspondences are mostly concentrated in re-
gions such as eyes, lips, and nose, but a few points are se-
lected in featureless areas such as the forehead and chin to
match the overall shape geometry. A total number of 24 ref-
erence points were sufficient for all our examples.

To warp the remaining vertices vi ∈Mneutral toward P ,
we add a dense fitting term based point-to-plane minimiza-
tion with a small point-to-point regularization as described
in [MGPG04]:

Efit =
N

∑
i=1

wi(|n>ci (ṽi− ci)|2 +0.1‖ṽi− ci‖2
2). (1)

The closest point on the input scan from ṽi is denoted by ci ∈
P with corresponding surface normal nci . We prune all clos-
est point pairs with incompatible normals [RL01] or distance
larger than 10 mm by setting the corresponding weights to
wi = 0 and wi = 1 otherwise. Combining correspondence
term and fitting term with the membrane model yields the
total energy function Etot = Efit +αrefEref +αmembEmemb.
The weights αmemb = 100 and αref = 100 are gradually
reduced until αmemb = 5 and αref = 1. For all our exam-
ples we use the same scheduling for the energy weights (see
also [LSP08]).

Texture Reconstruction. The diffuse texture map for the
personalized face template is retrieved from the online rigid
registration stage by averaging the textures of all input scans

Figure 4: Personalized template building: 24 manually la-
beled reference points are used for the rigid registration
(left) and subsequent iterative non-rigid alignment (middle,
right). Colors in the top left image indicate PCA segments.

used for rigid reconstruction. The scan textures are the
recorded video frames and have a resolution of 780× 580
pixels. We use the projector’s light source position to com-
pensate for lighting variations assuming a dominantly dif-
fuse reflectance model. Similarly, we remove points that are
likely to be specular based on the half angle. The resulting
texture map is oversmoothed, but sufficient for the tracking
stage and has a resolution of 1024×768.

6. Facial Expression Recording

To generate the facial expression model we ask the actor to
enact the different dynamic expressions that he plans to use
for the puppetry. In the examples shown in our accompany-
ing video, the actors perform a total of 26 facial expression
sequences including the basic expressions (happy, sad, an-
gry, surprised, disgusted, fear) with closed and open mouth
as well as a few supplemental expressions (agitation, blow-
ing, long spoken sentence, etc.). The personalized template
M is then tracked through the entire scan sequence. For
each input frame we use rigid ICP registration to compensate
for global head motion yielding a rigid motion (R, t). The
generic non-rigid registration method described above then
captures face deformations by adding to each rigidly aligned
vertex v̄i = Rvi + t the displacement vector di = ṽi − v̄i.
Note that a rigid head compensation is essential for robust
tracking, since our globally elastic deformation model is a
linear approximation of a non-linear shell deformation and
thus cannot handle large rotations accurately [BS08]. Be-
cause of high temporal coherence between the scans, pro-
jective closest-point correspondences are used to compute ci
for Equation 1. In addition, we set wi in Efit to zero if ci
maps to a hole. Besides the dense geometric term Efit and
smoothness energy Ememb, we introduce a number of face
specific additions, including dense and sparse optical flow
texture constraints to improve accuracy and robustness of the
tracking. Most notably, we explicitly track the mouth, chin,
and eyelids.
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Figure 5: Lip segmentation considerably improves the
tracking results for the mouth region. The contrast enhance-
ment due to lip classification can be seen on the right.

Dense Optical Flow Constraints. Optical flow is used to
enhance template tracking by establishing inter-frame corre-
spondences from video data. Instead of using an independent
optical flow procedure as in [ZSCS04], we directly include
the optical flow constraints into the optimization, similar to
model-based tracking methods [DM00]. We thus avoid solv-
ing the difficult 2D optical flow problem and integrate the
constraints directly into the 3D optimization:

Eopt =
N

∑
i=1

hi

(
∇g>t,i Π

(
ṽt+1

i − ṽt
i

)
+gt+1,i−gt,i

)
(2)

where gt,i = gt(Π(ṽt
i)) is the image intensity at the projected

image space position Π(ṽt
i) of 3D vertex ṽt

i at time t. Vertices
at object boundaries and occlusions that pose problems in 2D
optical flow are detected by projecting the template into both
the camera and projector space and checking each vertex for
visibility. We set the per vertex weight to hi = 1 if visible
and hi = 0 otherwise. To ensure linearity in the optical flow
energy Eopt we use a weak perspective camera model that
we define as

Π(xi) =
f
z̄i

[
1 0 0
0 1 0

]
(Rcam xi + tcam), (3)

where z̄i is the fixed depth of the current template vertex
ṽi, f the focal length, and (Rcam, tcam) the extrinsic camera
parameters.

Optical flow is applied in a hierarchical fashion using a 3
level Gaussian pyramid, where low resolution video frames
are processed first to allow for larger deformations. In each
optimization step, we re-project all visible vertices to the im-
age plane and recalculate the spatial image gradient ∇gt,i
using a standard Sobel filter, and the temporal derivative of
the image intensity using forward differences.

Mouth Tracking. Optical flow is calculated sequentially

Figure 6: Fast motion can lead to registration failure (left).
Explicit rigid tracking of the chin significantly improves the
robustness and convergence of the non-rigid registration al-
gorithm (right). The chin region is marked in green and
needs only be determined once on the generic template face.

and assumes that vertex positions in the previous frame are
correct. This inevitably leads to drift, which is particularly
noticeable in the mouth region as this part of the face typi-
cally deforms the most. We employ soft classification based
on binary LDA [Fis36] to enhance the contrast between lips
and skin. The normalized RGB space is used for illumina-
tion invariance. Soft classification is applied both to the scan
video frame gt and the rendering of the textured template g∗t
leading to two gray level images with strong contrast ĝt and
ĝ∗t , respectively (Figure 5). Optical flow constraints between
the template and the scan are then applied for the mouth re-
gion, in addition to the scan-to-scan optical flow constraints:

E∗opt = ∑
j∈VM

h j

(
∇ĝ∗>t, j Π

(
ṽt+1

j − ṽt
j

)
+ ĝt+1, j− ĝ∗t, j

)
(4)

where VM is the set of vertices of manually segmented
mouth and lips regions in the generic face template.

Thus mouth segmentation not only improves optical flow
but also prevents drift as it is employed between scan and
template texture which does not vary over time. The Fisher
LDA is trained automatically on the template texture as both
skin and lip vertices have been manually marked on the tem-
plate mesh, which only needs to be performed once.

Chin Alignment. The chin often exhibits fast and abrupt
motion, e.g., when speaking, and hence the deformable reg-
istration method can fail to track the chin correctly (Fig-
ure 6). However, the chin typically exhibits little deforma-
tion, which we exploit in an independent rigid registration
for the chin part to better initialize the correspondence search
for both geometry and texture. As a result, fast chin motion
can be tracked very robustly.

Eyelid Tracking. Eyelids move very quickly and eye blinks
appear often just for a single frame. Neither optical flow
nor closest point search give the appropriate constraints in
that case (Figure 7). However, the locations of the eye cor-
ners can be determined by a rigid transformation of the face.
Assuming a parabolic shape of the eyelid on the eyeball,
we can explicitly search for the best eyelid alignment us-
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Figure 7: Eyelid tracking enables the system to track eye
blinks correctly. Without explicit eyelid tracking the system
fails to track the closing of the eyes.

ing texture correlation. The resulting correspondences are
included into the optimization using a specific fitting term
Eeye of closest-point constraints, similar to Efit. A full statis-
tical model [HIWZ05] was not required in our experiments,
but could be easily incorporated into the framework.

Border constraints. The structured light scanner observes
the geometry only from a single viewpoint. The sides of the
face are mostly hidden and thus underconstrained in the op-
timization. For stability we fix the border vertices to the po-
sitions as determined by rigid registration.

Iterative Optimization. To improve convergence in the
facial expression recording, we schedule M = 5 optimiza-
tion steps for each input scan by recalculating closest points
and using a coarse-to-fine video frame resolutions. After
rigid alignment, we perform three steps of optimization
with increasing resolution in the Gaussian pyramid for es-
timating image gradients and two optimization at the high-
est resolution. Each optimization step minimizes the to-
tal energy Etot = Efit + αoptEopt + α

∗
optE

∗
opt + αeyeEeye +

αmembEmemb with constant energy weights αopt = 5,
α
∗
opt = 100, αeye = 0.5, and αmemb = 10.

7. Live Facial Puppetry

7.1. Online Face Tracking

Face tracking using the deformable face model is very accu-
rate and robust, but computationally too expensive for online
performance. Even though all constraints are linear and the
resulting least-squares problem is sparse, solving the opti-
mization requires approximately 2 seconds per iteration and
5 iterations per frame since the left hand side of a sparse
but large linear system need to be updated in each step.
In order to achieve real-time performance we employ PCA
dimensionality reduction in facial expression space similar
to [BV99]. We also manually segment the face into several
subparts to break global dependencies. In our case this is
the mouth and chin region, and symmetrically each eye and
forehead (Figure 4).

The effectiveness of PCA depends on the quantity, qual-
ity, and linearity of the underlying data. Linearity has been
demonstrated in previous PCA-based face models [Sir87,

Figure 8: A small subset of the roughly 250 expressions
used for the generation of the PCA expression model for a
specific actor.

BV99, VBPP05]. One important advantage of our system is
that we can easily generate a large number of high-quality
training samples by recording a continuous sequence of fa-
cial expression tracked using our offline registration method
(Figure 8). This allows us to accurately sample the dynamic
expression space of the actor, which is essential for live pup-
petry. As opposed to previous methods based on linear di-
mension reduction, our approach uses dense batches of scans
for the recording of each sequence.

Online Registration. PCA represents the expression space
by a mean face and a set of K components. At run-time, the
system registers the facial expression by searching for the K
coefficients that best match the data.

In principle, all the constraints used in offline face track-
ing can be included in the optimization. We found that due
to the much lower dimensionality of the problem, projec-
tive closest-point correspondence search with point-plane
constraints is usually sufficient to faithfully capture the dy-
namics of the face. However, we include rigid chin track-
ing to improve stability. We currently use K = 32 PCA
components divided appropriately between the three face
segments, which proved to be sufficient for representing
more than 98% of the variability of the training data. More
components did not add any significant benefit in track-
ing quality. We avoid discontinuities at the segment bor-
ders by pulling the solution towards the mean of the PCA
model [BV99]. Online registration is achieved by optimiz-
ing Etot = Efit +0.1∑

K
i=1 ‖ki‖2

2 where ki are the PCA coeffi-
cients replacing the previous optimization variables di.

All algorithms except the rigid registration are imple-
mented on the GPU using shading languages and CUDA.
With all these optimizations in place, our system achieves
15 frames per second, which includes the calculation of the
structured light scanning system, rigid registration, chin reg-
istration, PCA-based deformation, and display.
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Figure 9: Bringing a smile onto another face with real-time
expression transfer. The tracked face is shown in magenta,
the respective transfer onto the other faces is shown in green.

7.2. Expression Transfer

Online face tracking allows the actor to control an accurate
digital representation of his own face. Expression transfer
additionally enables mapping expressions onto another per-
son’s face in real-time. The actor becomes a puppeteer.

Deformation Transfer. Sumner and Popovic [SP04] intro-
duced a general method for mapping the deformation of a
source mesh S onto an arbitrary target mesh T that we adapt
to our setting. The deformation is expressed by the non-
translational component of the affine transformation, i.e.,
the deformation gradients between a source mesh in its rest
pose S and deformed state S̃. The deformation gradients are
then transfered to T by enforcing mesh connectivity via lin-
ear least-squares optimization. Since the template mesh pro-
vides correspondences, we can directly determine the defor-
mation gradients between a face in neutral pose Sneutral and
each captured expression Si. Thus, only a single target pose
in neutral position Tneutral is required to determine all cor-
responding target expressions Ti.

In our experiments we found that deformation transfer
from one face to another yields very plausible face anima-
tions (Figure 9), giving the impression that the target face
has the mimics of the actor. We note that we are not con-
sidering the problem of animating a different character with
a non-human face. In that case models based on blend-

Figure 10: Bringing an ancient Roman statue to live. The
actor (magenta) can control the face of Caesar (green) that
has been extracted from a laser scan of the statue.

shapes [Chu04] seem more appropriate as deformations in
the source and target face may not correlate geometrically.

Linear Deformation Basis. Unfortunately, deformation
transfer on the high resolution template mesh (25 K ver-
tices) is too inefficient for real-time performance. To en-
able live puppetry, we generate a linear subspace that op-
timally spans the space of deformation transfer. For this pur-
pose we compute the PCA bases of all S̄ = [S1 . . .Sn] and
find the least squares optimal linear basis for the target face
T̄ = [T1 . . .Tn] that is driven by the same coefficients W as
the actor’s PCA model. Thus, expression transfer is reduced
to applying the coefficients of the actor PCA model to a lin-
ear model of the target shape.

Assume the training shapes of the actor can be expressed
by the linear combination of PCA basis vectors S̃i: S1

. . .
Sn

=

 w11 . . . w1k
. . .

wn1 . . . wnk

 S̃1
. . .

S̃k

 (5)

We look for the linear basis
[
T̃1 . . . T̃k

]>
that best generates

the target shapes [T1 . . .Tn]> using the same weights: T1
. . .
Tn

=

 w11 . . . w1k
. . .

wn1 . . . wnk

 T̃1
. . .

T̃k

 (6)

We solve this linear least-squares problem using nor-
mal equations, where W is determined by simple pro-
jection of Si onto the PCA bases S̃i and

[
T̃1 . . . T̃k

]> =
[W>W]−1W> T̄. The resulting basis vectors of the linear
model are not orthogonal, but this is irrelevant for transfer.
The training samples are already available from the offline
facial expression tracking, and thus all expressions that are
captured by the PCA model can also be transfered to the
target face. For segmented PCA, each segment is transfered
independently.
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8. Results and Evaluation

Our system achieves accurate 3D facial tracking and real-
time reconstruction at 15 fps of a complete textured 3D
model of the scanned actor. In addition, we can transfer ex-
pressions of the actor at the same rate onto different face ge-
ometries. All computations were performed on an Intel Core
Duo 3.0 Ghz with 2 GB RAM and a GeForce 280 GTX.

We demonstrate the performance of our approach with
two male actors (Caucasian and Asian) and one female ac-
tress (Caucasian) as shown in Figure 9. Live puppetry is
conducted between each actor and with two additional tar-
get models, a 3-D scanned ancient statue of Caesar (Fig-
ure 10) and a digitally sculpted face of the asian actor to
impersonate the Joker (Figure 1). For both supplemental tar-
get meshes, no dynamic models were available. Building the
personalized template requires rigid reconstruction of the ac-
tor’s face and interactive reference point selection in order
to warp the generic template onto the reconstruction. This
whole process takes approximately 5 minutes. For each actor
we capture 26 different facial expressions (another 5 min-
utes) as described in Section 6 resulting in approximately
2000 frames. We track the deformation of the personalized
template over all input frames (10 seconds per scan) and
sample 200 shapes at regular intervals. These are then used
to compute the reduced PCA bases which requires additional
5 minutes. The extracted 200 face meshes are also used for
deformation transfer on an arbitrary target model to gener-
ate the entire set of target expressions (about 30 minutes).
All results are obtained with a fixed set of parameters and no
manual intervention as described in the previous sections.
Once set up, the online system can run indefinitely for ex-
tended live puppetry performances. Figure 12 shows an eval-
uation of the accuracy of the online tracking algorithm for a
typical sequence with considerable facial deformations. The
maximum error between the online registered template and
the noisy scans mostly vary between 2 and 4 mm, while the
root-mean-square error lies below 0.5 mm.

As illustrated in Figures 1 and 9 to 11, expression transfer
achieves plausible facial expressions even though the target
face geometries can differ substantially. Especially the facial
dynamics are convincingly captured, which is best appre-
ciated in the accompanying video. Note that all expression
transfers are created with a single 3D mesh of the target face.
No physical model, animation controls, or additional exam-
ple shapes are used or required to create the animations.

Limitations. Our tracking algorithm is based on the as-
sumption that the acquisition rate is sufficiently high rela-
tive to the motion of the scanned actor. Very fast motion or
large occlusions can lead to acquisition artifacts that yield in-
accurate tracking results. However, as Figure 13 illustrates,
our system quickly recovers from these inaccuracies. Since
online tracking can be achieved real-time, slight matching
inaccuracies between the input scans and the template as il-
lustrated in Figure 12 are visually not apparent.

Figure 11: Real-time expression transfer: The tracked face
is shown in magenta, the transferred expression in green.
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Figure 12: Online tracking accuracy for a sequence of 200 frames of a speaking actor. The graph shows the maximum (MAX)
and root-mean-square (RMS) distance between the input scans and the warped template. On the right we show the comparison
between the scan (a) and corresponding template (b) that differs the most in the entire sequence. Their overlap is shown in (c)
and the distance for each vertex is visualized in (d), where black denotes a hole region. Error measurements are in mm.

extreme pose occlusion pose not captured in training set

Figure 13: The online tracking algorithm robustly handles difficult cases such as poses where the actor faces away from the
camera (left), or occlusions that invalidate parts of the scan (middle). If the actor’s expression is substantially different than
any of the training samples, a plausible, but not necessarily accurate reconstruction is created (right). The gray image on the
screen shows the acquired depth map, the green rendering is the reconstructed expression transferred to a different face.

Our system does not capture all aspects of a real-live fa-
cial performance. For example, we do not explicitly track
eyes, or represent the tongue or teeth of the actor. Similarly,
secondary effects such as hair motion are not modeled in
our system due to the substantial computation overhead that
currently prevents real-time computations in the context of
facial puppetry.

Facial expressions that are not recorded in the pre-
processing step are in general not reproduced accurately in
the online stage (Figure 13 right). This general limitation
of our reduced linear model is mitigated to some extent by
our face segmentation that can handle missing asymmetric
expression. Nevertheless, high-quality results commonly re-
quire more than one hundred reconstructed scans to build an
expression model that covers a wide variety of expressions
suitable for online tracking. Fortunately, a 5-minute record-
ing session per actor is typically sufficient, since the expres-
sion model can be reconstructed offline from a continuous
stream of input scans.

Conclusion and Future Work. Our system is the first
markerless live puppetry system using a real-time 3D scan-
ner. We have demonstrated that high-quality real-time facial
expression capture and transfer is possible without costly
studio infrastructure, face markers, or extensive user assis-
tance. Markerless acquisition, robust tracking and transfer
algorithms, and the simplicity of the hardware setup, are cru-
cial factors that make our tool readily deployable in practi-
cal applications. In future work we plan to enrich our sys-
tem with a number of components that would increase the
realism of the results. Realistic modeling of eyes, tongue,
teeth, and hair, are challenging future tasks, in particular in
the context of real-time puppetry. In addition, we want to in-
vestigate transfer methods that allow live control of substan-
tially different models, such as non-human faces or cartoon
characters.
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