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Abstract

Extracting range data through active optical triangulation requires robust stripe
edge detection w. r. t. the emitted pattern. On the other hand, due to ambiguous
subpattern in the projection caused by the limitations of the windowed uniqueness
property, corresponding a pattern consisting of multiple stripes, in attempts to
reduce the number of input images, often leads to mislabeling. Moreover, high
frequency shape and shading variations in the scanned object introduce significant
noise in the resulting range map. We propose several extensions and an imple-
mentation of a subpixel-accurate shape acquisition system using color structured
light. Assuming that stripes have a certain width, our edge detection criterion is
achieved by restricting the number of consecutive edge pixels and exploiting the
positive metric for multi-spectral edge detection. We fix the multi-pass dynamic
programmed labeling by considering a background plane behind the object and
masking it during the triangulation. The subpixel accuracy from one single input
image can be obtained by approximating the gradient of the square local contrast
with a piecewise linear curve. Finally, we present a noise reduction technique
on the range map through meshing followed by a parametrized face orientation
culling. Experimental results have demonstrated major improvements in terms of
robustness against acquisition noise, shading variations and complex shapes in the
multi-pass dynamic programming approach originally proposed by Zhang et al.
[ZCS02].

Keywords

Photogrammetry, 3D scanning, range acquisition, structured light system, sub-
stripe accuracy, optical triangulation, reverse engineering.
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Chapter 1

Introduction

Scanned object

Sampled point
Scene: unknown area

Known area

Camera
Projector

Figure 1.1: A scheme of an optical triangulation in a 2D plane. We differ
between known and unknown area, whereas the known area comprise the
calibrated projector and camera, and the unknown area is the scene with
the target object. Knowing the camera’s and projector’s line of sight, we
can extract the position of the sampled point in space by intersection.

Being able to reconstruct the shape of an object from a set of images has a tremen-
dous impact on the field of computer graphics. As part of the CAD and entertain-
ment industries, the modeling process of highly complex models, which requires a
huge number of CG modelers and great artistry, could be reduced to a simple auto-
mated scanning process. Animators could benefit from extremely accurate models
instantly acquired from the real world. Low cost range acquisition devices, which
have attracted the manufacturing community, offer the possibility of remotely vi-
sualize NC fabricated products in 3D. They also accelerate the evolution of large
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2 CHAPTER 1. INTRODUCTION

3D online catalogs that are becoming increasingly popular on the Internet. Fur-
thermore, robotics laboratories have proven the importance of such range scanning
systems in terms of robot navigation, object recognition and vision-assisted tools,
such as augmented reality devices.

Since the idea of constructing a 3D fax machine a decade ago, researchers have con-
tinued to examine new applications in order to advance the 3D scanning technology
and to evaluate their findings. Examples include, in the context of the acquisition
of cultural heritage artifacts, the Digital Michelangelo Project of the Stanford Uni-
versity and the University of Washington [LPC+00], The Pieta Project of the IBM
T. J. Watson Research Center [RBMT] and the works of Rocchini et al. at the
ISTI [RCM+01]. All these systems are based on a classical method called the op-
tical triangulation, see Figure 1.1. This approach has undergone numerous drastic
improvements in recent years, due to the ever-evolving and more economical hard-
ware, for instance, better CCD imaging qualities and of course new algorithms.
Figure 1.2 shows a complete overview of different proposed optical shape acquisi-
tion systems.

Optical Shape Acquisition

Passive Active

Stereo

Shape from 
shading

Shape from
silhouettes

Depth from
focus/defocus

Imaging
radar

Triangulation

Active depth
from defocus

Active Stereo

Interferometry

Moire Holography

Figure 1.2: A taxonomy of different optical shape acquisitions from [CS00]

Although a large assortment of commercially available 3D scanning devices can be
employed for our system, we limit ourselves to using devices which are relatively
economical. We also face a limitation on flexibility in terms of the degree of
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freedom to experiment with new approaches. With these considerations in mind,
we decide to restrict the hardware components of our triangulation system to
more affordable consumer-level technology, consisting of an ASK M2 DLP video
projector for the emitter and a Fuji Finepix S2 Pro professional digital camera
for the sensor. The projector produces a specific structured light pattern, in this
case a set of edges, which is then projected onto the target object. The digital
camera acquires the necessary images from a shifted position w. r. t. the emitter.
From the camera’s point of view, the structured light appears to be distorted if
it is not a plane object. Using these images combined with the relative positions
and orientations of the sensor-emitter pair, we are then able to extract the depth
information using optical triangulation. Unlike conventional methods, such as
using unique coherent light beams (lasers), this method of generating structured
light pattern has the advantage of being able to speed up the scanning process by
triangulating multiple ranges at a time. In some cases, it is even possible to reduce
the number of input images to just one, as shown by Zhang [ZCS02], by using high
frequency color encoded patterns and multi-pass dynamic programming to solve
the correspondence problem. If the subsampled ranges reach a certain density,
zooming in on the object over a particular value will begin to cause aliasing effects,
which is manifested as steps. This is due to the pixel-accurate edge detection
in the sensored image which leads to a pixel-accurate triangulation. Typically
subpixel-accurate edge detection requires multiple input images. A remarkable
solution using a sequence of a shifting illumination has been proposed by Curless
and Levoy [CL95], namely the space-time analysis approach. Moreover, using
dynamic-programming for corresponding still yields to mislabeled edges as a result
of undetected edges and the often inappropriate shape of the object.

To solve these problems, we propose a few modifications of the color encoded
multi-pass dynamic programming approach. More specifically, we are seeking to
design a structured light system that is able to reach subpixel accuracy using
one single input image, increase the robustness against mislabeling and achieve
better edge detection. We present this technical report as follows. In section 2,
we formulate the complete architecture of our acquisition system as a pipeline,
where each stage depends on the previous one. Section 3 gives an overview of the
structure of the implemented experimental software environment. In section 4, we
briefly show some results of our color encoded triangulation system and discuss
some remaining problems. Finally, a summary and propositions for future work is
suggested in section 5.



Chapter 2

A Shape Reconstruction
Architecture

The pre-requisites to the design of a structured light system are an in-depth formal
specification of the problem and a well-defined intention. Recall the stages required
for a complete scanning process. We need primarily to obtain the camera and video
projector extrinsic parameters (orientations and positions in space), as well as the
intrinsic parameters, such as the focal length, before any triangulation can be
performed. A noticeable solution to this non-trivial calibration problem has been
proposed by Zhang [Zha00]. The next step is the range acquisition stage, followed
by the registration process which merges the set of range maps together. To finally
obtain the mesh of the object, we need to reconstruct a surface from the point-
cloud as well as extract view dependent textures in order to effectively visualize
material properties. This technical report focuses on the task of range acquisition
using a video projector and a digital camera to obtain subpixel accurate range
maps, assuming a calibrated emitter-sensor pair.

2.1 Problem Statement

The problem should be stated as illustrated in figure 2.1. The process of trian-
gulation can be modeled by a function f . We input a projected pattern image p,
the emitter-sensor parameters θ and an unknown object x to the function, such
that f := fθ,p(x). In the ideal case, f outputs an image i, which is acquired by
the digital camera, i. e. fθ,p(x) = i. We extract the shape of the unknown input
x from this partially known function and from its output.While f−1 refers to an
ideal reverse engineering process, we can only afford to find an approximation of it:
x = f̃−1

θ,p (i). This is because the image i has noise and its CCD resolution is limited
(subsampling). Moreover the triangulation function f depends on environmental

4
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p θ ĩ

fp,θ(x)

p θ ĩ′

f̃−1
p,θ (̃i′)

x x’

Figure 2.1: A model of the problem statement. On the left, f represents
the scene transformation, which distorts the pattern p according to the un-
known object x and outputs ĩ. On the right, f̃−1 determines our acquisition
procedure to recover x′.

factors, such as ambient light, which are also assumed to be unknown. This results
in additional sources of errors. We therefore consider the noised image ĩ.

To get around these difficulties, we must design carefully an appropriate pattern,
which can be clearly distinguished from the object’s shape and texture. The ac-
quired image ĩ must be pre-processed to remove high frequency noise. In addition,
it must be color corrected and the object must be extracted from the background
and purged from pixels under shadows. From this repaired image ĩ′, we perform an
edge-detection to locate the distorted stripe edges of the pattern p on the object
x. The multi-pass dynamic programming algorithm labels each detected edge of
ĩ′ with its corresponding projected edge of p. As the edges of ĩ′ are detected on
a CCD, we need to reposition them to obtain subpixel accuracy. This is done by
approximating the gradient of the square local contrast of each edge transition
by a piecewise linear function. From this set of labeled stripe edges, we compute
the optical triangulation on each of them. Finally, we post-process the obtained
range map via meshing and face orientation culling to obtain an approximated
discretization of the object x′. Figure 2.2 describes this proposed architecture in
form of a pipeline.
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Figure 2.2: An overview of the shape reconstruction architecture.

2.2 De Bruijn Illumination Pattern

Figure 2.3: A De Bruijn pattern illuminated object.

To accelerate the acquisition process, as mentioned previously, we project multiple
edges on the object in a single step. This allows us to triangulate multiple detected
edges from one single image. Problems arise when the projected edge is to be
distinguished from the object. The object’s texture and shape might provoke
undesired shadings which can falsify the edge-detection. Moreover, to be able to
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triangulate, the considered projected edge must be labeled with the right detected
edge. This requirement forces us to encode each edge uniquely. In the case of using
only one captured image, we are restricted on using color encoding. For robustness
against textures of the object, we limit the use of colors to the extreme values of
each RGB channel 0 and 1. Unfortunately, this will create only 8 different encoding
possibilities, which means only 8 different stripes can be used. To overcome this,
we project color stripes and consider the color transitions as edges. In addition,
the latter allows us to encode the decreasing −1 for each channel. These three
possible values in three channels encodes 27 values but as (0, 0, 0) is equivalent to
no transition at all, we subtract 1 from it. For large objects, these 26 possible edge
values can be repeated to achieve higher resolution. Assuming that the ensuing
correspondence algorithm is computed using a dynamic programming approach,
the order of the sequence will be taken into account. A single connected surface will
have more priority than scattered ones. But a simple repetition of the sequence
will also lead to ambiguity. We therefore need to find a sequence with a good
windowed uniqueness property, which is a sequence with small subsequences of
unique consecutive stripe edges. A large window size will provoke the possibility
of many repetitions within the window, which is not desired. Any subpattern
larger than or equal to the size of the window is assured to be unique within the
entire stripe edge sequence.

po

p1

q9

Figure 2.4: A example of the De Bruijn stripe pattern. p0 and p1 are
stripes and q9 is an edge, encoded by the transition between p9 and p10.

Our task can be formally described as follows. Let P be a pattern of colored stripes
sequence projected onto the object. P represents a tuple of colors:

P = (p0, p1, . . . , pN)

As we are using the transitions to encode the edges, P yields to a sequence:

Q = (q0, q1, . . . , qN−1)

Each element qj = (qr
j , q

g
j , g

b
j) has for each of its 3 color channels 3 possible values

−1, 0 and 1, as mentioned before. For instance, the edge between magenta pj+1 =
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(1, 0, 1) and yellow pj = (1, 1, 0) would become qj = (0, 1,−1). To simplify matters,
we refer q to be any qj value and qc to be any of (qr, qg, qb). It is clear that any pj

and pj+1 have to differ in at least one of their 3 channels so that qj could become
a valid edge. To construct such a sequence P , we choose an initial value p0 of P
and inductively compute the XOR operation on pj with one element of the following
set {(0, 0, 1), (0, 1, 0), . . . , (0, 1, 1), (1, 1, 1)} to obtain the pj+1 elements. We now
return to the binary coding. The XOR operator has the property of flipping bit
values of one operand if the other one is equal to 1. For example, if pj = (1, 0, 0),
we compute pjXOR (0, 1, 0). This operation flips the green channel value of pj and
we obtain (1, 1, 0), which then defines the value of pj+1. Finding a sequence P such
that Q has a good windowed uniqueness property of window size n is the same as
choosing a sequence of XOR operands of size n that are unique within the whole
sequence. Such a sequence can be obtained with the De Bruijn sequences from the
field of combinatorics. A k-ary De Bruijn sequence of order n defines a circular
sequence

D = (d0, d1, . . . , dkn−1) .

Any subsequence of D of length n or greater is assured to appear once. k represents
the number of possible values dj can hold, in this case 7. We then generate one of 7n

possible sequences D of size n. The sequence (p0, ..., p7n) can now be generated from
an initial color p0, which is an element of {(0, 0, 0), ..., (1, 1, 1)}, and by iterating
through the inductive operation

pj+1 = pj XOR dj .

This implies that a maximum length of 7n for the sequence P can be reached
with a fixed window size n. As noted by Zhang [ZCS02], (1, 1, 0) and (1, 1, 1) are
removed from the De Bruijn sequence D because of strong crosstalk errors which
resulted during color correction later in the acquisition process. Nevertheless, it is
sufficient to work with k = 5 and a window size up to n = 3 to reach a sequence
P of 125 stripes. We have explained how to generate P such that Q is suitable
in terms of windowed uniqueness using a De Bruijn sequence D. To generate D,
we used algorithm 2.1 available online [Rus00], which is precomputed for different
values of n as our projector resolution is limited.

2.3 Input Image Clean Up

Before we start the edge detection, we assume that the images we are dealing with
are noisy. Such noise is due to subsampling, unfavorable lighting circumstances,
object textures, camera CCD capturing noise and especially the low pixel density
of the projector’s LCD grid as shown in figure 2.5. Moreover, the shape of the
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function condition(p)
if (n mod p = 0)
for j = 1 to p
print(a[j])

function generate(t,k)
if (t>n)
condition(p)

else
generate(t+1)
for j = a[t-p]+1 to k-1
a[t] = j

procedure deBruijn(n,k)
a[0] := 0
generate(1,1)

Algorithm 2.1: De Bruijn sequence generator.

Figure 2.5: The low pixel density is visible in the close up of the capture.
The spaces between the projector’s LCD grid yield to dark lines. This can
confuse the stripe edge detection.

object might be self-occluded and the color of the projected pattern might not
correspond exactly to the acquired one. All these factors make consistent edge
detection difficult, especially when setting a threshold for a pixel to be recognized
as an edge. For this reason, we propose the use of three stages to purge the im-
ages. The first stage is responsible for eliminating the pixels that are visible to
the sensor and are hidden by the emitter which are manifested as shadows. In
the same manner, we detect the background areas and ignore them for subsequent
considerations. This has the advantage of speeding up subsequent scanline pro-
cesses as well as minimizing wrong detections in invalid areas. The second stage
takes care of the color crosstalk phenomenon, which is often due to uncalibrated
colors projected by the emitter and acquired by the sensor as well as to the surface
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that modifies the projected color spectrum in unknown ways. For this problem,
we use an approximated model proposed by Caspi et al. [CKS98], assuming that
the scene reflectance is constant in each color channel and the emitter-sensor cou-
pling matrix are nearly the identity. An optional final step can be applied if the
acquired image remains too noisy for further processing. Assuming an additive
white gaussian noise over the image, we filter out the high frequency noise with a
simple approximated low-pass filter, resulting in a slightly smoothed image. This
noise reduction pass should be used carefully as excessive smoothing can make the
stripe edge detection even more difficult.

2.3.1 Background and Pixels Under Shadow Masking

Figure 2.6: Before (left) and after (right) background and pixels under
shadow purging. The masked areas are visualized in gray.

We choose to perform the complete acquisition process of the image in a completely
dark room. This reduces the intervention from light sources other than the projec-
tor light. Moreover, this makes it much easier to extract the relevant objects from
its background as well as purging the pixels in shadow. Firstly, we observe that the
shadowed pixels and the background are the dark areas in the image. To be more
precise with the definition of dark, we normalize each pixel to detect ”dark” areas
in a relative way. A white light projection is done for this purpose by sending the
corresponding plain white image to the video projector. Let p(u, v) be the pixel of
the white image projected camera acquisition at position (u, v). Considering the
brightness of the image, we desaturate the pixels p to obtain a grayscale value. We
then compute by scanlining the image, the brightest pixel pmax and darkest pixel
pmin. We are then able to normalize each p(u, v) to obtain

pn(u, v) =
(p(u, v)− pmin(u, v))

(pmax(u, v)− pmin(u, v))
.
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A parametrizable hard threshold is then applied to the normalized image to remove
the ”dark” areas from the image. In practice, setting all pn under 0.25 as dark has
shown to be a quite suitable value. We save this bitmask of ”dark” areas and use
it to distinguish between relevant and non relevant pixels. The scanlining process
thus speeds up with the amount of unconsidered pixels.

2.3.2 Color Cross-talk Correction

Figure 2.7: Before (upper and lower left) and after (right) color cross-talk
correction. We obtain an image with pure colors, by normalizing the stripe
capture with the white light capture. The black (ambient) light illumination
was not necessary as the capture was completely black. We also note the
disappearance of the colored textures after color correction.

As part of the illumination pattern, multiple colored stripes are projected simulta-
neously onto the object. It is therefore necessary to identify the correct color from
the acquisition to be able to label it subsequently. Unfortunately, the acquired
color usually differs from the projected one, because of unknown material reflec-
tion properties (albedo), the uncalibrated colorimetry of the projector-camera pair
and an over complex lighting environment. The color crosstalk has to be corrected
in order to overcome this problem. Although the object is assumed having a non
neutral color surface (i. e. textures are possible), we restrict ourselves to identify-
ing only pure colors, which are those given by 0 or 1 in each RGB channel to be
more reliable. We use the projector-camera coupling model described in [CKS98]
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by Caspi et al, which relies on the camera and projector properties. While they
used a classical LCD based projector, we experimented with the DLP (digital light
processing) based projector ASK M2. Instead of splitting the white source into
the three RGB beams and by modulating with LCD arrays separately as for the
LCD technology, the DLP based projector uses, in our case, a single DMD (Digi-
tal Micromirror Device) to substitute the LCD arrays. White light is filtered out
by a fast spinning filter wheel so that we can obtain a red, green and blue beam
separately in a loop. These beams are projected onto the micro-mirrors, which
are controlled by the input image. By setting an appropriate shutter speed, our
acquisition device is then able to blend these rapidly alternating switches between
the color channels. This time-multiplexed technique ends up to be the same as
the classical wavelength-multiplexed output beam of the projector, as the camera
CCD receives the signals from all three channels. Because of this, we are able to
reformulate the camera-projector coupling model in the same manner as for LCD
based projectors.

We choose a reference point on the colored pattern image which is decomposed into
the three channels red, green and blue. Let (r, g, b) be its pure color with r, g, b ∈
{0, 1}. Recall that r,g and b are input values of the projector. The illumination
in the red channel at the reference point is given by I t

R(λ) · P (r), with I t
R(λ)

the normalized projected red beam spectrum, P (r),P (g) and P (b) are monotone
non-linear factors (due to color cross-talk) and λ the considered wavelength in the
color spectrum. A beam spectrum is normalized so as to correspond to a light
spectrum for which the maximum value of 1 is reached, for example λ = 590 nm
for the red beam case. The same beam spectrum functions I t

G(λ) and I t
B(λ) apply

for those in the remaining channels. The illumination in each channel are summed
up during the acquisition by alternating through all the three colors (caused by
spinning wheel of the DLP), which yields to the following illumination function:

I t(λ) = P (r) · I t
R(λ) + P (g) · I t

G(λ) + P (b) · I t
B(λ) .

Assuming no presence of mutual illumination or fluorescence in the object s surface,
a linear relation of the projected illumination light and the light reflected from the
object would be

Ir(λ) = I t · ki .

ki is a constant factor within a channel. ki has to be considered differently in each
channel because of different reflection properties (albedo) of surfaces. Ir(λ) is the
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light acquired by the camera’s CCD array. Finally, the response of a pixel on the
CCD array would be formulated as the tuple (R,G,B), where

R =

∫ ∞

0

fR(λ) · Ir(λ) dλ

B =

∫ ∞

0

fB(λ) · Ir(λ) dλ

G =

∫ ∞

0

fG(λ) · Ir(λ) dλ

fR(λ), fG(λ) and fB(λ) are the spectral responses of the camera filter in each
channel. Thus, we can bring the equations in all three channels, by taking into
account an ambient environment illumination, to an equation system in matrix
form as follows: R

G

B

 = A ·K ·

 P (r)

P (g)

P (b)

 + c , (2.1)

with illumination acquisition matrix (projector-camera coupling matrix)

A =


∫

fR(λ) I t
R(λ)dλ

∫
fR(λ) I t

G(λ)dλ
∫

fR(λ) I t
B(λ)dλ∫

fB(λ) I t
R(λ)dλ

∫
fB(λ) I t

G(λ)dλ
∫

fB(λ) I t
B(λ)dλ∫

fG(λ) I t
R(λ)dλ

∫
fG(λ) I t

G(λ)dλ
∫

fG(λ) I t
B(λ)dλ


and albedo matrix

K =

 kR 0 0

0 kG 0

0 0 kB


and ambient illumination vector

c =

 R0

G0

B0

 .

Our task now is to recover the correct (r, g, b) vector from the acquired biased
(R,G,B) color vector. (R0, G0, B0) can be recovered under black light illumination,
which acts as the ambient environment illumination. P is as mentioned before a
monotone non-linear function, hence invertible. P is usually computed using a
look-up table, that is pre-computed as part of an offline colorimetric calibration.
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To simplify matters, we can avoid the computation of A, K and P by performing
an online calibration and by assuming a perfectly color calibrated projector. A
projector is considered color calibrated when P is the identity, which means that
the instruction color perfectly matches the output illumination at the considered
wavelengths. This is done as follows:

We compute a white illumination using a white pattern

(P (r), P (g), P (b)) = (r, g, b) = (1, 1, 1) = e .

This yields to the following CCD color response RW

GW

BW

 = A ·K · e + c . (2.2)

We obtain the following result from the equations 2.1 and 2.2: r

g

b

 =


R−R0

RW−R0

G−G0

GW−G0

B−B0

BW−B0

 .

The recovery of the input (r, g, b) assuming a perfect projector side colorimetric
calibration turns out to be a simple normalization using a white pattern light
(maximum light) and an ambient black pattern light (minimum light).

In contrast to Zhang et al. [ZCS02], we have chosen not to compute this stage
off-line in our experiments due to the loss of robustness against surface texture and
for the sake of simplicity. However, the drawback of requiring 2 more images has
to be taken into account, namely the white light projected image and the black
light projected image. As we previously used the white light projected image to
perform the background and pixels under shadow elimination and assuming the
weak influence of the ambient light generated by a black illumination, we can
reduce the scanning process to two images. The black projected image would be
replaced by an image with all pixel values equal 0 in all channels. We leave it up
to the developer to decide whether or not to compute the colorimetry calibration
off-line in the final implementation.

2.3.3 Optional Low-pass Filtering

As we are using uncompressed raw data from the camera, the quality of the ac-
quired image is usually good enough for the edge detection pass. However, the
scanned object might still contain high-frequency and high-contrast areas due to
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its possible complex shape and surface texture although it has already been relaxed
through color correction. This leads to local contrasts which result in wrongly iden-
tified edges. We assume that each pixel is affected by an additive white gaussian
noise (AWGN), as it is supposed to be statistically independent for each pixel.
Thus, the pixel rows of the image are typically modeled as a stationary process.
This noise manifests itself as non-zero amplitudes at higher frequencies in the power
spectrum of the Fourier domain of the considered image signal. In this particular
case, we simplify the image processing by restricting ourselves to 1-dimensional
image signals, i. e. the rows of the image, if and only if the projected stripes are
perfectly vertical. If only vertical stripes w. r. t. the camera’s point of view are
projected, then only vertical edges should be detected. This detection is done sep-
arately in each color channel via a horizontal scanline process so that we are able to
perform multi-spectral edge detection further. To reduce the noise by lowering the
undesired high frequency amplitudes, we experimented with different filter kernels
which are ideally suited for discrete signal processing and easy to implement. Let

F (w) =

∫ ∞

−∞
f(t) e−i w t dt

be the Fourier Transform of the image signal f(t) and H(w) be the low-pass filter
which reduces the undesired high amplitudes when multiplied by F (w). We obtain
a cleaned up G(w) = F (w) · H(w) in the Fourier domain. We also know that g(t),
which is the inverse Fourier transform of G(w), is obtained by convolving f(t) and
h(t), with f(t) being the horizontal 1-dimensional image signal and h(t) being the
filter in the space domain, which is also called the impulse response in systems
theory. We obtain:

g(t) = f ⊗ h(t) =

∫ ∞

−∞
f(s) h(t− s)ds .

Because we are using CCD captured pixel arrays, we approximate the considered
functions in space domain by a subsampled discrete signal. f(t), h(t) and g(t)
becomes f(n), h(n) and g(n) respectively. The implementation of the discrete
convolution is straightforward by computing

g(n) =
max∑

m=min

f(n) h(m− n)

min is the lowest n with h(n) 6= 0 and max is the highest n with h(n) 6= 0. Different
filter kernels h(n) have been tested. In practice, the rather small normalized kernel

h =
1

4
[1 2 1] =


1/4 , n = −1

1/2 , n = 0

1/4 , n = 1

0 , else
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was able to reduce most local noise and keep the stripe edges visible enough for
the following edge detection stage.

2.4 Color Edge Detection

To be able to extract range data through optical triangulation, the rays of the
projected stripes and the rays reflected from the object to the camera must be
known in order to compute the corresponding intersection, which is the localization
of the triangulated point in 3-space. As the projected stripe pattern image is given,
we only need to determine the rays reflected from the object to the sensor. These
rays pass through the camera’s CCD array and its central point. We must therefore
locate the ray’s intersection with the camera’s CCD, which is the same as finding
the pixels where a stripe transition occurs. Again, we assume that the vertical
oriented stripes w. r. t. the camera form the edges we are looking for. This implies
that only a 1-dimensional edge detection in the rows of the image is required.
To be consistent with our previously generated De Bruijn pattern, we have to
detect edges in colored images, which need an additional consideration of the local
contrast in all three channels.

2.4.1 Multi-spectral Definition of Edges

For edge detection to be as consistent and as accurate as possible, it is crucial
to have a formal definition of edges in multi-spectral images. If, for example, a
colored image is converted into grayscale (same as the intensity channel of the HSI
color model), no edges will be detected between a pure red stripe and a pure blue
stripe if their light intensities are equal. A survey by Novak and Shafer has shown
that 10 percent of the edges are left undetected using this method. In our case,
this is even worse after color normalization. One way to overcome this problem
will be to find the edges in all three color channels independently and combine the
results using a logical OR operator in the same reference point, as mentioned by
Koschan in [Kos95]. Using this method is problematic for edges, that are detected
in more than one color channel and they don’t occur at the same position. To be
more rigorous, we choose to use Cumani’s definition of an edge [Cum91]in color
images, which has proven to be a good choice shown in many colored edge detection
studies. In contrast to the general Cumani’s approach, our special case allows us
to work with, easier to handle, 1-dimensional tri-band image signals. A directional
gradient analysis can therefore be neglected.

Let the row of a 3-band image of length N be a function

f : {0, . . . , N − 1} ⇒ [0, 1]× [0, 1]× [0, 1]

n 7→ F = (fr(n), fg(n), fb(n))
.
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To ensure a more robust detection against high frequency noise, we first smooth
the image by convolving with a simple averaging

1

2
[1 1] (2.3)

filter kernel. In discrete signal processing, it is common to approximate infinites-
imal length to the neighboring pixel distance, which is a displacement of length
one pixel. We obtain the following discrete derivative of F in its only direction n:

4 F (n) := F (n + 1)− F (n) =

 fr(n + 1)− fr(n)

fg(n + 1)− fg(n)

fb(n + 1)− fb(n)


=

 fr ⊗ [1 − 1] (n)

fg ⊗ [1 − 1] (n)

fb ⊗ [1 − 1] (n)

 .

Convolving with 1
2
[1 1] followed by [1 − 1] is equivalent to convolving directly

with 1
2
[1 0 − 1], which is also known as the Prewitt kernel. Intuitively, an edge

seems to be a local contrast in light intensity or a drastic color variation or both
together. Using the Euclidean metric, we are able to measure these two properties
as a movement in a 3-space with (R,G,B) as basis vectors. This implies that the
definition of the square local contrast of F at n is the squared norm of 4 F

S(n) = 4 F · 4 F = 4 fr(n)2 + 4 fg(n)2 + 4 fb(n)2 .

This yields to S(n) = df(n)2 in the monochromatic case, which is also a valid
definition. Finally, we define an edge point in a multi-spectral image as a point,
for which the square local contrast S(n) exhibits a local maximum at the pixel
n. In connection with zero-crossing methods, a stationary contrast edge point of
a tri-band image is a pixel n where the derivative of the local square contrast
S(n) is zero. To ensure a local maximum of the contrast, we must check if the
zero-crossing is transversal or not. We note that only maxima can occur as we are
deriving a norm. The edge is then detected at the pixel n for which the derivative
of S(n)

4 S(n) = S(n + 1)− S(n) (2.4)

has a transversal zero-crossing and if, S(n) and S(n+1) exceed a certain threshold.
This can be verified rapidly by checking if

|S(n) + S(n + 1)| = |S(n)|+ |S(n + 1)| (2.5)
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as both sides are equal if and only if the signs of S(n) and S(n + 1) are equal.
We observe that the 1

2
factor is useless and can be omitted in 2.3. At this point

we are able to detect an edge in a multi-spectral image at pixel accuracy, using a
single hard threshold. To be able to detect edges that are caused by single channel
variations, we must choose a threshold, that is smaller than 1. We also note that,
in addition to thresholding, the transversal zero-crossing check permits reduce
wrongly detected noise pixels, that occurs even when there is no local maximum.
This is often caused by a small contrast, which appears in more than one channel
at a given position, near a real stripe edge.

R

G

B

fr

fg

fb

4

4

4

∑
·2

4

S(n) 4 S(n)

Figure 2.8: An illustration of the 1 dim. edge detection process. In this
example, we observe the ideal case of a black to magenta transition. A
transversal zero-crossing occurs at the gradient of the square local contrast
of the input signal.

2.4.2 Consecutive Edge Pixels Restriction

The edge detection is a decisive stage in the acquisition process, especially when
labeling based on colored stripe transitions is heavily dependent on the local con-
trast of the edge point. A wrongly detected edge will have a different contrast
which might confuse the dynamic programming approach of the labeling. More-
over, a wrongly localized edge will also yield to an erroneous optical triangulation.
The previous semi-automatic edge detection, which has been deduced from a more
general framework, might not suffice for our application. It detects shading con-
trasts as well as color transition contrasts, which isn’t always desired because our
main task is to extract the stripe transitions edges and not all edges. Using the
fact that stripes have, in most cases, a certain width on the captured image, we
temporarily buffer consecutive detected edges during the scanlining process until a
certain number of consecutive pixels M has been reached. The buffer only contains
the edge with the maximum contrast of the consecutive detected edges. If no edge
is detected before M is reached, we choose the buffer content to be our detected
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Figure 2.9: While on the left, a simple color edge detection (using Cumani’s
definition of colored edge) has been performed, we observe a noticeable im-
provement in terms of stripe edge detection by restricting 5 consecutive edge
pixel (M = 5).

edge and restart the procedure. Thus, we are able to use context knowledge about
the stripe width to modify our previous definition of local contrast for this par-
ticular application. We define M as the number of consecutive edges (in pixels)
restriction, which is an additional parameter. In practice, we set M to be slightly
smaller than the average stripe width on the acquired image so that the advantage
of detecting the correct edges outweighs the drawbacks of not detecting any edges.
The procedure is described in algorithm 2.2:

procedure edgeDetection(imageRow,threshold,M)
lastPosition = 0
edgeCandidate = empty
for x = 0 to imageRowLength-1
s(x) = squareLocalContrast(x)
if (transversalZerocrossing(s(x)) AND s(x) > threshold)
if (edgeCandidate isEmpty OR x < lastPosition+M)
if (edgeCandidate isEmpty OR detectedEdge has greater contrast than
edgeCandidate)
edgeCandidate = detectedEdge(x)
lastPosition = x

else
return edgeCandidate
edgeCandidate = empty

end for

Algorithm 2.2: Color edge detector using consecutive pixels restriction.

We note that M is always > 1, which means that two edge pixels must at least
be separated by 2 pixels. This is due to our previous convolution of the image
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with 1
2
[1 1] and because the square local contrast is always positive. It is therefore

possible to always achieve better results than the edge detection without the con-
secutive pixels restriction by setting M = 2, while assuring correctness. W.l.o.g.
we consider a single color channel (monochromatic case). For M = 1: two edges are
separated by 1 pixel. Assuming that we have detected two consecutive edges using
the 1-dimensional Prewitt kernel, the gradient of the square local contrast must
have consecutively decreasing and increasing contrast values to produce two con-
secutive transversal zero-crossing, which is impossible as the square local contrast,
being positive, can only yield to decreasing transversal zero-crossings. In other
words, the derivative of a positive increasing and decreasing signal only yields to a
decreasing transversal zero-crossings and this is not feasible within 3 pixels (which
is the increasing and decreasing sequence), containing the single pixel between two
detected edges.

2.5 Edge Correspondence

The labeling process is responsible for the re-identification of the projected edges
from the observed image, which is distorted as we are projecting multiple edges
at one go, to accelerate the acquisition process. In our case, in connection with
the use of De Bruijn colored stripes pattern, we must be able to tell which de-
tected edge, represented by a stripe transition, corresponds to a projected edge.
A wrongly labeled projected and captured edge pair will consequently produce an
erroneous triangulated range. The method based on multi-pass dynamic program-
ming proposed by [ZCS02] is very well suited for solving the problem of labeling
multiple color-encoded edges, especially in the case of holes and self-occlusions in
the scanned surface, which yields to undetected edges. However, it has shown some
weakness as the extreme edges of our projected pattern are wrongly or simply not
detected. Although the dynamic programming approach tends to generate a single
connected surface rather than a scattered one, we often observe mislabeled edges at
the object s boundary. Based on this, we propose a modified usage of the suggested
corresponding by considering a background plane behind the object and masking
it during the triangulation, processed in a later stage. Thus, we are able to fix the
wrongly labeled edges around the boundary of the object, as demonstrated by our
results, figure 4.9 to 4.12.

2.5.1 Multiple Hypothesis Code Matching

Obtaining the correspondence between the edges in the projected pattern and the
detected edges in the acquired image is equivalent to determining the correspon-
dence between the rows of the projected pattern and the rows of the captured
image. Thus, our problem is now reduced to a 1 dimensional labeling problem.
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LCD or DMD CCD

CameraProjector

Target Object

qjk

qjk+1
eik

eik+1

Figure 2.10: Top view of the optical triangulation with the stripe and
capture enumeration.

Using the multi-stripe technique, our challenge is to distinguish between the edges
w. r. t. their color encoding and their order. Ambiguity can occur due to the lim-
ited colors available. This is relaxed with the windowed uniqueness property of
the De Bruijn pattern. We use the same notations as in section 2.2 to describe the
projected string of edges Q = (q0, ..., qN−1), which is the same in all rows. After
computing the edge detection in the considered row of the captured image, we
obtain a sequence of color edges:

E = (e0, ..., eM−1)

Using the same notation as before, the color edge

e = (er, eg, eb) ∈ [−1, 1]× [−1, 1]× [−1, 1]

defines the intensity gradients in each channel. These intensity gradients are the
same as local contrasts between two colored stripes, which implies a value be-
tween −1 and 1. Our aim is to pairwise find the corresponding edges between
the sequence Q and E. Thus, the correspondence can be seen as a function with
input (Q, E) and output a pair sequence. Unfortunately, this faces the following
difficulties that can lead to misclassification. The edge detection, that provides
the input sequence E, might not provide sufficiently consistent edge colors, not to
mention wrong ones, due to surface reflectance and shading, device color cross-talk
and sensor noise. Moreover, missing edges, that are not visible from the camera’s
point of view, due to surface occlusions, shadows and surface discontinuities, blurs
the knowledge about the order of the sequence which is necessary for labeling.

A technique, also referred to as the multiple hypotheses evaluation, is used to solve
this problem. Instead of assigning a unique label to the edges in the image, all



22 CHAPTER 2. A SHAPE RECONSTRUCTION ARCHITECTURE

labeling combinations are considered with their corresponding matching probabil-
ity. The objective is then to find the optimal labeling among all the considered
ones with the highest probability of matching. This yields to a classical global
optimization problem. The problem can be formulated as follows:

Let qj be the j-th projected edge in the stripe edge transition Q and ei the i-th
edge in the detected edge sequence E of a structured light pattern row.

Φ = {(j1, i1), ..., (jk, ik), ..., (jP , iP )}

defines the global match hypothesis which depicts the probability of matching. P
is the number of integer pairs contained in Φ. To simplify matters, we set

j1 < j2 < . . . < jP

The integer j should not be confused with qj and i should not be confused with
ei. qj and ei contain their corresponding triple of color edge values and, for the
implementation, the position so that triangulation can be performed on them. To
clarify our notation, (jk, ik) is equivalent to the statement that ei and qj are the
k-th corresponded pair and Φ represents the set of all the corresponded pairs.
Further, we observe that corresponding qj with ei, which is done by Φ, can be
seen as an injective function that maps the set { j} of cardinality N onto { i} of
cardinality M . Φ turns out to be a special case of a relation. It is injective because
each detected edge e can only be affected by at most one projected edge q and it
is a function because each q can only be affected by at most one e. Let

fΦ : { j} × { i} → {0, 1}

(j, i) 7→

{
0 , (j, i) ∈ Φ

1 , (j, i) /∈ Φ

be the characteristic function of the set Φ. Accordingly, fΦ is a reasonable rep-
resentation of Φ and can also be interpreted as a 2D matrix array as illustrated
in 2.11, with columns j ∈ [0, N − 1] and rows i ∈ [0, M − 1]. If a match occurs
between qj and ei, fΦ(j, i) is equal to 1. Eventually, all the 1 elements in the
matrix fΦ can be connected to represent a path from the left to the right in the
array. Φ being injective implies that no more than one 1 element can occur in each
row and column. Our task of finding the optimal global match hypothesis Φ has
been turned to finding an optimal path in a 2D matrix array fΦ.

We recall that our criterion of an optimal match is the match with the most
consistent projected and captured edge pairs. We therefore need to define the
quality of a match in terms of a correspondence consistency. Consistency can be
measured with a scoring function score(qj, ei), which is examined more in detail in
section 2.5.4. The score for the entire match is defined as

σ(Φ) =
P∑

k=1

{ score(qjk
, eik)}
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Figure 2.11: 2D matrix array representation of fΦ. The gray elements
marked 1 represent monotonic paths in this array.

This is reasonable, because each component of the sum can be geometrically inter-
preted as a translation vector in a 1D space which moves further than others if its
score is higher. In this case, an energy based squared sum would be inappropri-
ate because negative scores will also move the vector forward which doesn’t make
sense. Thus, the optimal match is

Φ∗ = arg max
Φ
{σ(Φ)} .

2.5.2 Dynamic Programming For Solving Correspondence

Considering the paths from left to right, a brute force approach to find Φ∗ would be
an overkill as it yields to O(MN) possible matches. To relax this intractability, we
introduce an assumption of depth ordering (monotonicity) which is i1 < . . . < iP .
This assumption is violated when a possible occlusion in the object occurs and
leads to a wrong triangulation or, in most cases, holes in the reconstructed scene.
This problem can be overcome with a multi-pass technique described in section
2.5.3. Let path1 be shorter than path2, both starting at column and row zero.
By assuming monotonicity, the array that forms path1 is always kept within the
array that forms path2. W. l. o. g. we assume that there is only one optimal path
in fΦ. Using this strict ordering assumption, we are able to identify a path by
a subarray, as it must uniquely lie inside it. Typically for dynamic programming
approaches, a substructure of the problem can be observed. In order to find the
final optimal path Φ∗ in fΦ, we need to find an optimal subpath in the subarray of
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fΦ. We note a dependency between the subproblems. Let us formally characterize
the substructure.

Let Gj,i be a subarray of fΦ

Gj,i := [0, j]× [0, i]

and Φ∗
j,i the optimal path in Gj,i.

We define 3 possible configurations, which characterizes the possible directions the
path can go, namely to the right, upper right and up:

1. a match is found, which is interpreted as incrementing the subarray in hor-
izontal and vertical direction as the injectivity of Φ is not violated. The
ideal case would be that this direction is always taken, which is prevented
by occlusions and shadows. This is shown in figure 2.12.

N

M

j-1 j

i

i-1

q

e

projection

capture

Figure 2.12: Φ∗
j,i = {(j, i)t} ∪ Φ∗

j−1,i−1

2. We increment the subarray in the vertical direction and no match is found
because the injectivity of Φ is violated. This is shown in figure 2.13.

3. We increment the subarray in the horizontal direction and no match is found
because the injectivity of Φ is violated. This is shown in figure 2.14.

The substructure characterization is then followed by a recursive definition of the
value of an optimal solution. This is equivalent to recursively defining the score of
the entire match Φ using the previously defined subarrays:

σ(Φ∗
j,i) =


0 , if j = 0 or i = 0

max


σ(Φ∗

j−1,i−1) + score(qj, ei)

σ(Φ∗
j−1,i)

σ(Φ∗
j,i−1)

. (2.6)
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Figure 2.13: Φ∗
j,i = Φ∗

j−1,i ⊆ Gj−1,i
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Figure 2.14: Φ∗
j,i = Φ∗

j,i−1 ⊆ Gj,i−1

The recursive definition allows us to compute the O(M · N) different scores of the
corresponding paths in a bottom up fashion, by filling up an array containing all
the scores, yielding a cost matrix. Finally, we backtrack the cost matrix in a greedy
manner. From right to left, we move through the matches with the highest scores
and obtain the final optimal path which yields to the demanded optimal global
match hypothesis in O(M + N). This is justified by the substructure property of
the problem described previously.

2.5.3 Multi-pass Procedure To Avoid The Monotonicity
Assumption

As seen before, using the dynamic programming approach is limited to strict mono-
tonicity assumption. Any projected edge index jk−1 that is smaller than another
edge jk can only be assigned to a captured edge index ik−1 that is smaller than
the assigned ik. Thus we are only able to scan objects that do not contain any
occlusion, which tends to influence the order of the acquired edges as illustrated
in figure 2.15.
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Figure 2.15: Occlusions in object cannot be solved using the simple dy-
namic programming approach. We have jk < jk+1 but ik > ik+1, that
violates the monotonicity assumption. The multi-pass procedure is therefor
required.

In order to be able to scan realistic objects that potentially contain occlusions, we
adapt a multi-pass procedure proposed in [ZCS02]. In practice we observed that the
computed monotonic optimal path corresponds to a correct subpath of the optimal
solution. Whenever an occlusion occurs it will appear as a hole. The way to
overcome this problem is therefore to fill these holes by iteratively recomputing the
dynamic programming until no matches can be found and by taking into account
previously computed paths. In this way, algorithm 2.3 describes this multi-pass
procedure that wraps over an underlying dynamic programming procedure and we
can obtain a match such as the one in figure 2.16.

procedure Multipass(scoreArray)
finalPath = clear
temporaryPath = clear
repeat
temporaryPath = labeling(scoreArray)
add temporaryPath to finalPath
remove columns and rows in temporaryPath from scoreArray

until temporaryPath is an emptyPath
return finalPath

Algorithm 2.3: Multi-pass Procedure.

In contrast to the pure monotonic dynamic programming approach, this easy to
implement procedure solves the occlusion problem with an additional O(N) factor.
In practice objects that contain too many occlusions might already fail the edge
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detection pass due to high shading frequencies that increase with the objects shape
complexity.
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Figure 2.16: A non monotonic match. This can be found using the multi-
pass overlying procedure.

2.5.4 Quality Of A Match: The Scoring Function

In relation with our previously described dynamic programming, we have recur-
sively defined the value of the optimal solution (equation 2.6). This definition
contains a scoring function score(q, e) which is the value that measures the consis-
tency between a projected edge q and a captured edge. In this manner, we compute
all values of the potential solutions by summing up the scores of the considered
match, as described in 2.5.1. We now introduce score(q, e) as a specific definition
of consistency. We recall that the projected edge value is given by e = (er, eg, eb),
with ec ∈ [−1, 1], while the captured edge value is given by q = (qr, qg, qb), with
qc ∈ {−1, 0, 1}. Thus, two edges are consistent if their values match in all three
channels. However, for comparison purposes, score(q, e) must return a scalar value.
Therefore, we compute the consistency of a pair of edges in each channel indepen-
dently and set the scoring function to be the smallest value among them for a
pessimistic estimation. We obtain:

score(q, e) = min
c∈{ r,g,b}

{consistency(qc, ec)} .

By just taking the minimum value we can be certain that the return value of
score(q, e) won’t be falsified by values that are too consistent in the other chan-
nels, which would have happened if we consider all channels at the same time.
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Figure 2.17: The consistency(qc, ec) function defined for qc = 1 in (a),
qc = 0 in (b) and qc = −1 in (c)

consistency(qc, ec) is a function that measures the agreement between q and e in
a single channel by returning normalized scalar values. In this manner, we define
for instance, consistency(1, ec) to be equal to 1 if ec exceeds a certain threshold
β. Every edge pair that has a value greater than β is considered to have a valid
consistency. When ec is below β, consistency(1, ec) will have a linear decreasing
value that is equal to 0 for a small value of ec in α. For inconsistent edge pairs,
consistency(1, ec) carries a negative value. A more comprehensible Figure 2.17 il-
lustrates the definition of consistency(1, ec), as well as for the cases of qc = 0 and
−1. Thus, a formal definition can deduced with the following equations:

consistency(1, ec) = clamp( ec−α
β−α

;−1, 1)

consistency(0, ec) = clamp(1− | ec|−α
β−α

;−1, 1)

consistency(−1, ec) = consistency(1,−ec)

where

clamp(x; x0, x1) =


x0 , if x < x0

x , if x0 < x ≤ x1

x1 , if x1 < x

.

0 ≤ α < β ≤ 1 are soft thresholds as they represent the linear decreasing con-
sistency measurement, which implies a certain notion of uncertainty when ec is
situated between α and β. The uncertainty of consistency linearly increases with
β − α. In the particular case of α = β we would obtain a hard threshold mea-
surement. In practice, we achieve best results by maximizing the uncertainty with
α = 1 and β = 0. This is mainly due to the shadings in the object.
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We also note as mentioned in [ZCS02], that when using the summation based
optimal solution value, only matches with a positive consistency value are taken.
If it is negative, a greater optimal solution is achieved by not taking it into account.
This implies that negative consistency values are actually not required, but they
help to stabilize possible numerical problems for very large negative values when
α and β are too close.

2.5.5 Additional Ambiguity Avoidance Through Masking

Figure 2.18: The structured light illuminated object image is shot with a
plane wall behind it (right). We reuse the white light projected image taken
during color correction without the wall (left) to distinguish the object from
its background. The wall contains the missing colors that cannot be reflected
by the object. This stabilizes the matching using dynamic programming.

Because of the limited windowed uniqueness of the De Bruijn pattern (of window
size n), we must expect repeating subpatterns of size smaller than n within a large
sequence. Another observation is that in many cases the silhouette of the scanned
object does not cover the complete stripe pattern. Some areas of the stripes do
not appear on the object. Moreover, our dynamic programming approach evalu-
ates the cost matrix in a bottom up fashion, which is in this case a scanline from
left to right. These three situations often cause wrongly matched edge correspon-
dence. For example, a black to blue transition q15, which yields to an edge value
of (0, 0, 1), occurs again at q10. If the shape of the object ends at the projection
q10, the backtracking procedure of the dynamic programming would automatically
match with the wrong q15, which also maximizes the optimal solution. A match
is found between q15 and ei instead of q10 and ei. This ambiguity leads to an un-
controllable bad triangulation. This is due to the greedy path backtracking of the
cost matrix. We could have overcome this particular case by not choosing a match
when ambiguity occurs. But the problem would reappear on the other side of the
object as shown in figure 4.10 and 4.12. The problem lies in the lack of stripe in-
formation caused by the empty background of the shape and of potential shadows.
We therefore propose a solution that reduces the effect of the empty background,
by putting a plane wall behind the object during the stripe projection and cap-
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tion. The wall is removed during the white light projection in order to produce a
bitmask that identifies the object from the background and purges the image from
pixels under shadow. In this way, the previously missing stripes can be recovered
on the wall and will fix the ambiguity problem. Now the labeling process is now no
longer limited to unsuitable bounding shapes of the object. This method requires
an additional scan with the white light projection, and fortunately, we can reuse
the scan performed previously during the color correction stage.

2.6 Subpixel Accurate Repositioning

For the optical triangulation pass, we use our previously labeled edges that were
detected on the input images. These input images are pixel arrays recovered from
the CCD of the camera. It is obvious that from a pixel accurate edge detection,
we are only able to triangulate the image at pixel accuracy. This imprecision is
manifested by jagged aliasing effects when the final object is zoomed in. In order
to produce high precision scanned results, many approaches have been suggested.
Zhang et al. [ZCS02] adapted the space time analysis technique on this colored
structured light approach with the disadvantage of requiring multiple input im-
ages of the shifted De Bruijn pattern. We will explain in this technical report how
it is possible to detect colored edges with subpixel accuracy from a single struc-
tured light projected image. This will consequently produce a subpixel accurate
triangulated range map.

An edge that has been detected between two pixels will typically be positioned
exactly in the middle of the center of these two pixels. This is a subsampling
approximation, but in reality, the edge is not always located exactly in the middle.
In the monochromatic case for example, let us consider an edge of a transition with
intensity from 0 to 1. If the edge is situated nearer to the center of the left pixel,
we can assume that the left pixel will appear slightly brighter as compared to when
the edge is located exactly in the middle. Similar to the linear boundary inter-
polation approach described in [MV97], we use this observation to approximate a
subpixel accurate position for the edges, by exploiting the light intensity of these
pixels. Let f(n) be the intensity of the pixel n in an one-band image and an edge
being detected between f(ne) and f(ne +1). 4f(n) = f(n+1)− f(n) is the local
contrast between these two pixels. We have defined in section 2.4 that an edge is
detected when this value is a local maximum of the signal f(n). The laplacian of
f(n) would have a transversal zero-crossing at ne. Comparing with an imaginary
non-discretized image f(x), the edge would be located at the exact zero-crossing of
the laplacian of f(x), which is not the pixel position ne. We therefore approximate
this subpixel position by considering the gradient of the contrast function4f(x) to
be a piecewise linear polynomial that is achieved by linearly interpolating the sub-
sampled pixels from f(n). The subpixel position of the edge can now be computed
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by calculating the intersection of the piecewise linearly approximated function of
42f(x) with the x-axis g(x) = 0. Finally, we apply this approximation method to
the multi-spectral case by approximating the gradient of the square local contrast
of each channel of the captured image 4S(n) = S(n + 1)− S(n) with a piecewise
linear function. In the interval [n, n + 1], the approximated curve is given by

c(x− n) = S(n) + (S(n + 1)− S(n))(x− n) .

The intersection of this approximated curve with the abscissae x, yields to the
following subpixel accurate position:

x = n− S(n)

(S(n + 1)− S(n))
.

2.7 Optical Triangulation

Figure 2.19: An illustration of the optical triangulation. The De Bruijn
pattern on the projector’s LCD is projected onto the object and acquired by
the camera’s CCD at a shifted position.

Once we successfully label the detected edges on the captured image with the cor-
responding stripe transitions on the projected pattern, we are able to compute the
depth information of these edges. The vertical stripe transition pattern projected
on the object represents a set of vertical planes passing through the central point
of the projector. On the other hand, an edge on the sensor image corresponds to,
w. r. t. the central point of the camera a line of sight that intersects the projected
planes in one single point. This point corresponds to our detected edge in 3-space,
yielding to a depth value. It is therefore necessary to know the camera and pro-
jector parameter in advance. To be flexible, we choose to keep these parameter
values as variables in our calculations, so that a calibration can be independently
made without any assumption of the chosen pattern and the configuration of the
devices.
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The optical triangulation with a stripes pattern has been reduced to a ray plane
intersection problem. A classical method, as described in [KSK+98], is to assume
perfectly vertical stripes and use the ray-ray-theorem and right triangle trigonom-
etry formulas. Due to the limitations of this solution, we choose a solution using
projective geometry that has proven to be an attractive framework for computer
vision. Using projective geometry allows us to construct a model that is able to
relate world coordinates with pixel coordinates in a homogeneous way. Thus, we
do not need to convert the pixel coordinates into world coordinates and can obtain
very compact equations to work with. Moreover camera and projector intrinsic and
extrinsic parameters can be easily embedded into these equations and boundary
conditions such as rays parallel to the image plane, can be excluded.

2.7.1 Projective Extension Of Affine Spaces

The projective space P(V) of a vector space V is defined as the set of 1 dimensional
spans of v, with v ∈ V. If V is of dimension n + 1, P(V) is defined to be of
dimension n. We note that ρ · v ∈ P(V), with ρ 6= 0. This element is called a
point in projective space.

An affine space A = (A,V, +) has two components represented by vector spaces,
the point space A and the vector space V. Both are defined to have same dimen-
sions. Moreover an operator + : A×V → A is defined such that for all p ∈ A and
q ∈ V, there is exactly one r ∈ A such that p + q = r. Moreover the transitivity
property holds. To easily handle affine spaces, we embed A of dimension n into
an extended vector space with an additional coordinate, namely the homogeneous
coordinate. This extra coordinate has values 0 if it lies in V and 1 if it lies in A.
A vector v in homogeneous coordinates is denoted v and a point p is denoted p.

To construct a projective space P out of an affine space A of same dimension n,
we exploit this additional coordinate to represent the overlying vector space of
dimension n + 1. We simply multiply the homogeneous component of the affine
space element by ρ, a non zero scalar. In this manner we are able to extract all
point elements from P . The points with homogeneous coordinate of value 0 now
represent all the points that cannot be projected onto a plane that is orthogonal
to the axis spanned by the homogeneous coordinate. This plane refers to the ideal
hyperplane. We define these points as ideal points and for every other points of non
zero homogeneous coordinate, it is defined as a proper point in projective space.
All point elements of A and the ideal points (projective closure of A), are thus
uniquely embedded into the projective space P , which is also called the projective
extension of an affine space.

The camera model, described more in detail later, is characterized by its extrin-
sic and intrinsic parameters, which can be described using our previously defined
spaces. Our camera is located in world coordinates, namely a 3 dimensional affine
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Figure 2.20: A scheme of the projective extension of an affine space. The
image plane of the camera model can be interpreted by the proper points of
A2. A point u in this A2 represents a line of sight in P(V 3), which also lies
in P(V 4). P(V 4) is the projective extension of A3 in which the triangulated
point x lies

space (for extrinsic parameter). The unknown point in the scene that we are scan-
ning also lies in this space. In order to triangulate, this point is extended to a ray
of sight by considering the projective extension of this affine space. This ray is
mapped onto the projection plane of our camera in a 2 dimensional projection ex-
tension of the pixel coordinates, namely a 2 dimensional affine space. Subsequently
we use this 2 dimensional affine coordinate system to describe the projection plane
properties and the focal length (intrinsic parameters).

The following scheme illustrates the relation between the spaces.

A3 = (A3,V3)︸ ︷︷ ︸
for extrinsic parameters

∼ P(V4) → P(V3) ∼ (A2,V2) = A2︸ ︷︷ ︸
for intrinsic parameters
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2.7.2 Camera And Projector Model

The camera and projector model are commonly described by an ideal pinhole
model. Both models describe how a point in pixel coordinates is transformed
into a ray in world coordinates w. r. t. their parameters as mentioned before. To
simplify matters, we ignore the effects of lens distortion in our system. We define
the points p = [u′, v′, 1] and p = [u, v, 1] in pixel coordinates and x = [x, y, z, 1] a
point in world coordinates.

2.7.2.1 Mapping Function

Let us first examine the mapping of the camera model, for which the camera center
is placed at the origin of the world coordinate system. The aim is to map a point
x = [x, y, z, 1] of a 3 dimensional affine space onto a point ρ · u = [u, v, 1] in a
projective extension of a 2 dimensional affine space, as they represent the ray of
sight by means of affine geometry. Before considering the intrinsic parameters, we
first map onto a point ρ · u′ = [u′, v′, 1]. We therefor use the mapping matrix A:

ρ ·

 u′

v′

1

 =

 1 0 0 0

0 1 0 0

0 0 1 0


︸ ︷︷ ︸

A

·


x

y

z

1

 . (2.7)

We note that if the projection(or image) plane is the plane z = 1, we obtain u′ = x
z
,

v′ = y
z
, which is a particular case of a simple central projection, that can also be

deduced from the ray theorem.

2.7.2.2 Intrinsic Parameters

The internal parameters of the camera are a set of transformations applied in the
pixel coordinates which is the 2 dimensional affine space of the overlying projective
extension. For example by using a focal length f other than 1, which is the distance
from the camera center to the projection plane, we must scale down the vector u′

in the equation 2.7. In addition, the CCD properties of the camera are unknown
before calibration. We must determine the image input coordinates u = [u, v, 1]
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Figure 2.21: On the left: a representation of the focal length f and principal
point coordinates [cu, cv], which is responsible for centralising the acquired
image’s origin. In practice, the acquired image has its origin on the top left
of the image. On the right: a pixel of width pu, height pv and skew angle θ.

w. r. t. the physical position u = [u′, v′, 1] of the CCD in the device, the size and
the shape of the pixels, which is given by: u

v

1

 =


f
pu

(tan θ) f
pv

cu

0 f
pv

cv

0 0 1


︸ ︷︷ ︸

K

·

 u′

v′

1

 .

with pu and pv the pixel’s width and height of the CCD array. c = [cu, cv, 1] is
called the principal point of the camera, which is the intersection of the optical axis
with the image plane. θ is called the skewing angle of a pixel, which is the difference
between the angle of the retinal axes and an orthogonal angle. In practice, we can
assume it to be equal to π

2
. The Matrix K depicts the calibration matrix of the

camera. We note K to be a combination of a translation of vector c, a shearing
with a coefficient tan θ, a scaling w. r. t. the pixel sizes pu and pv, and scaling
w. r. t. the focal length f of the camera, which is conversely linear to the input
coordinate. All these are basic 2D affine transformations, which are described with
3× 3 matrix transformations with homogeneous coordinates:

K = Mprincipal point translation ·Mfocus scaling ·Mpixelsize scaling ·Mshearing .

2.7.2.3 Extrinsic Parameters

We have previously assumed that the center of the camera is at the origin of the
world coordinates. Therefore, the extrinsic parameters simply consist of a combi-
nation of movements in the corresponding 3 dimensional affine space to position
and orientate our camera. The motion of objects in the scene are seen conversely, if
we describe with the camera’s motion. For instance, if an object moves to the left,
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it would be the same as if the camera moves to the right. Moreover, these move-
ments are represented by 2 affine transformations, namely rotation (for the camera
orientation) followed by translation (for the camera position). These transforma-
tion are also described with extended matrices with homogeneous coordinates. In
this case, we have 4×4 matrices as we are in a 3 dimensional world coordinates and
they are given by a concatenation of inverse rotation matrices (we use the camera
motion) Rt around each axis and the inverse translation matrix. The camera is ori-
ented with R and positioned with T, which yields to the following transformations
of the points in the scene:

Rt = Rt
x · Rt

y · Rt
z

with

Rx =


1 0 0 0

0 cos θx sin θx 0

0 − sin θx cos θx 0

0 0 0 1



Ry =


cos θy 0 sin θy 0

0 1 0 0

− sin θy 0 cos θy 0

0 0 0 1



Rz =


cos θz sin θz 0 0

− sin θz cos θz 0 0

0 0 1 0

0 0 0 1

 .

The inverse translation matrix T−1 of translation vector −t = [−tx,−ty,−tz, 0] is
given by:

T−1 =


1 0 0 −tx

0 1 0 −ty

0 0 1 −tz

0 0 0 1

 .

Hence, the camera orientation matrix M = T−1 ·Rt is given by the following trans-
formation:

M =

[
Rt −t

0t 1

]
.
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2.7.2.4 The Projection Matrix

The camera model can be summarized as

ρ ·

 u

v

1

 = K−1 · A · M ·


x

y

z

1

 ,

or simply

ρ ·

 u

v

1

 = P


x

y

z

1


with P = K−1 · A · M the 3 × 4 projection matrix, which comprises all parameters
required for the calibration of the camera.

2.7.3 Ray-Plane Intersection Using Projective Geometry

We recall that by projecting a stripe transition on the target object, with the cam-
era at a shifted position, we can capture a set of points in the sensor image plane
corresponding to the distorted stripe. Each point on this image corresponds to a
point reflected from the object. We know that these points are in the line of sight
of the camera as well as in the plane represented by the stripe transition projection
as shown in figure 2.19. We use the advantages of our previously described camera
model which uses projective geometry to formulate a compact linear equation that
has to be solved in order to extract the depth information from our acquired image.
All necessary parameter information of the camera as well as of the projector are
naturally embedded in this equation.

We recall that the camera’s model is given by:

ρc · pc = Mc · xc

with xc a point on the ray of sight in A. Respectively, the projector’s model is
given by:

ρp · pp = Mp · xp .
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In addition, we have assumed, that the projector projects perfectly vertical stripes.
Thus, an explicit representation of a stripe at position p in the horizontal axis in
pixel coordinates is given by:

pp(λ) =

 p

0

1

 +

 0

λ

0

 .

Thus, let e1 = [1, 0, 0]t be a unit vector in the horizontal axis in pixel coordinates.
We obtain an implicit representation:

et
1 · (pp −

 p

0

1

) = 0

⇔ et
1 · pp = p

⇔ up + 0 · vp − p = 0

⇔ [1, 0,−p] ·

 up

vp

1


⇔ nt · pp = 0

.

with nt = [1, 0,−p].

The projector model describes a line of sight between the pixel coordinates and
the world coordinates. In order to describe a plane of sight, as we are projecting
stripes, we embed the implicit definition of the stripe in pixel coordinates in the
projector model as follows:

pp = 1
ρp
· Mpxp

⇔ nt · Mp · xp
1
ρp

= 0

⇔ ntMpxp = 0

.



2.8. ARTIFACT ELIMINATION THROUGH MESHING 39

We now set xs = xp = x to compute the ray-plane intersection:

ntMpx = 0

Mcx = uc

}

⇔

[
ntMp

Mc

]
x =

[
0

ρcuc

]

⇔

[
ntMp

Mc

]
x 1

ρc
=

[
0

uc

]
.

The position of x 1
ρc

= w is computed by solving this linear equation and x can
be deduced by dividing w’s coordinates with its coordinate extension such that its
coordinate extension becomes 1.

2.8 Artifact Elimination Through Meshing

The previous sections allow us to reconstruct a range map from the captured
image of an object, that is illuminated by a structured light. Usually, the output
is unsatisfactory. In our experiments, we observed that most areas of the range
map are seriously affected by noise. Wrong triangulated points are scattered all
over the object. This is due to the difficulty in detecting the projected stripe
edges in high frequency shading areas of the image, that yields to bad labeling
and subsequently wrong triangulation. We therefor designed two post-processing
algorithms to annihilate the triangulated points that are most probably not part
of the object. Although this might cause more untriangulated points, i. e. more
holes in the end result, it is more important to acquire less but correct data than
wrong ones.

2.8.1 Meshing Using Context Knowledge Of The Mesh
Topology

Our relatively high resolution images (1500 × 1000 pixels) produce a dense set
of scattered discretizations all over the visible shape of the object. Many of the
triangulated ranges are still wrongly labeled, due to estimation failure during the
dynamic labeling and also due to other sources of noise. We must therefor perform
another step of noise reduction. Assuming that the points belong to the surface
of the object, we further assume that a point is valid if and only if it has two
neighboring points to produce a triangle surface. Horizontal neighboring points
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are those which belong to two consecutive stripe transitions and vertical points are
those triangulated from the next pixel row. Our experiments have demonstrated
that using the connectivity of the points (that is the mesh topology), has improved
the results, as shown in figure 4.15 and 4.16. This yields to algorithm 2.4.

procedure artifactEliminationThroughMeshing(match_data)
for rows=0 to number of rows-1
for column=0 to rowLength
if (match at row happens before match at row+1)
if (match upper left has less than 2 neighbors)
remove match and its neighbors.

else
if (match lower left has less than 2 neighbors)
remove match and its neighbors.

end for
end for

Algorithm 2.4: Artifact elimination through meshing procedure.

with match_data a data structure implemented as a 1D array of lists. The 1D
array of match_data represents the rows of the input image. Each element of this
array holds a chained list of matches as shown in the following illustration:

0

1

2

3

4

5

6

chained list of matches

1D array

upper row

lower row

neighbourhood 
check

Figure 2.22: In this example, the algorithm checks if the 2nd match at row
3 has any neighbors. If the 3rd match has a stripe transition corresponding
to the next stripe transition of the 2nd match, it would be a neighbor.

All possible neighboring matches are illustrated in figure 2.23, depending on which
match happens first (upper row or lower row). If the scanline through the chained
list, finds a match that first happens in the upper row, i. e. the stripe transition of
the upper row’s match happens before the lower row one, a neighborhood check is
performed on the upper right, lower left and lower right matches, if they exist.
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Figure 2.23: All possible neighboring matches, depending on whether a
match occurs first in the upper or lower row.

2.8.2 Face orientation culling

The previous procedure actually generates a triangle mesh. Using this mesh, the
task now is to remove those triangular surfaces that are not visible to the camera
and the projector. This is simply a backface culling algorithm that computes the
scalar product of the triangle surface normal with the normalized direction of the
line of sight to the center of this triangle. Thereafter, negative values are omitted.
It actually suffices to consider only one of the triangle corners as the center. Fur-
thermore, we leave out surfaces with normals that are almost orthogonal to the
direction of the line of sight. This can be parametrized with the corresponding
angle or scalar product value. In practice, depending on the shape of the object,
an angle of up to 60 degrees between the surface normal and the normalized line
of sight vector can be reasonable.
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The Implementation of LIThIum

Within the framework of building a low cost 3D scanner, we have developed an
experimental software that is responsible for converting 2D input images into 3D
range maps using a calibrated triangulation system. Li ti, which means 3D in
Chinese, yielded to the name of LIThIum as it is supposed to be a simple software
depicting the light weight of the element. It is only one of several key stages of
the whole system such as the calibration stage, the registration, meshing, surface
fitting and texture reconstruction. The aim is to design an experimental environ-
ment that ensures its functional purpose of generating a customizable De Bruijn
Pattern, reading in large input images and computing a point cloud in an ap-
propriate file format suitable for the registration stage. Moreover, the ability to
control thresholds was necessary, because we were processing images, behaving in
a statistical model, during the color correction, the noise sensitive edge detection
and the correspondence stage. In order to be completely independent from the
automatic calibration process, a manual calibration was temporally adapted. Fi-
nally, for ease of performing experiments, a GUI has been implemented, including
a 3D visualization.

3.1 Our Experimental Environment

The necessary hardware devices are a video projector, a professional digital camera
and a standard PC. All these components are consumer level technology, allowing
an affordable solution. We experimented with two video projectors, the Epson
EMP-7250 LCD-projector with analog video input and the ASK M2 with DLP
technology and digital video input. Both have a 24 bit color resolution and display
patterns of 1024x768 pixels (XGA). Although the EMP-7250 provides better colors,
we realized that the ASK M2 is be more appropriate for our acquisitions due to the
sharper and denser pixels on the reflected object. Anyway, the images are color
corrected subsequently. The selected camera is the FujiFilm FinePix S2 Pro, that

42
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Figure 3.1: The optical triangulation devices.

can provide images with sufficient resolution (up to 6 megapixels) and quality, as
uncompressed raw images in TIFF format could be saved. Moreover, the aperture
of the camera can be controlled and this important to acquire sharp edges from
the reflected object, especially when the whole scanning process needs to be done
in total darkness. To control these two devices, we use a camera-projector server
which is implemented separately on another PC. Thus, a client program on any
platform could remotely send the structured light pattern in PNG file format [liba]
to this server and request for the capture from the camera as an uncompressed
TIFF [Libb] file. Both PCs have Pentium 4 processors with 2.4 GHz, 512 MB
RAM and ATI Fire GL graphics cards.

projector camera

device
control
server

PC

scan software

IEEE 1394a Firewire

Gigabit
Ethernet

ASK M2 Fine Pix S2

DVI

Figure 3.2: An overview showing how the devices are interconnected to
form the optical triangulation system.

The software is developed on a Linux platform and the code is entirely written
in C/C++. For efficient coding, we use generic data structures from the STL
(Standard Template Library) [STL]. The pattern generator requires libpng and
the input images are read into memory using LibTIFF [Libb]. For typical linear
algebra operations, such as matrix multiplications and solving linear systems, the
GSL (gnu scientific library) [GSL] proved to be sufficiently efficient for the opti-
cal triangulation computations. To store the 3D range map output in memory,
we use OpenMesh’s data structure [Opeb] and reuse its OFF file format writer.
Trolltech’s QT satisfies our implementation of the GUI because of its ease of usage
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and OpenGL [Opea] support that was necessary for the visualization of the final
result.

3.2 Functional Requirements

Figure 3.3: A screenshot of our implemented experimental software en-
vironment ”LIThIum”. Top: the visualization toolbar. Left: The side bar
with tab browsing for each stage in the pipeline. The main window is the
OpenGL viewer for 3D visualization of the triangulated point cloud.

Typical for a software engineering process, it is useful to make a detailed user
requirements checklist to meet the satisfaction of its purpose as an experimental
3D scanning environment. The end product is a X11 application running under
Linux but porting for other platforms should be possible without much effort. All
stages of the acquisition process are independent programs (modules) that can be
run in the command line. The graphical interface is also separately implemented
to integrate these stages together. To ensure a convenient workflow, each module
represents a tab in the sidebar, containing spin boxes, check boxes and other
widgets for the configuration of each stage. For instance, the De Bruijn generator
can be configured to generate structured light patterns based on variable numbers
of stripes, variable size and position of the pattern in the image and variable
resolution of the output image. The acquisition process must read the captured
image under stripe pattern, white and black light illumination in TIFF format.
To keep it simple, the image pre-processing stage and the edge detection stage
are integrated into one tab. A threshold value can be set to purge the image
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from pixels under shadow and the background. An optional color cross-talk and
smoothing pass can be performed by marking the checkboxes. Our special multi-
spectral edge detection requires, in addition to its threshold, another parameter to
restrict the number of consecutive pixels. The labeling technique does require, as
mentioned, the alpha and beta values for the soft thresholding. Finally, before our
computed ranges are visualized in the OpenGL display window, a triangulation
tab has to be configured. More specifically the parameters of the camera and
projector have to be entered. The additional post-processing, namely the artifact
reduction through meshing, also requires a threshold. This stage is also included
into the triangulation tab. The 3D visualization of the point cloud in the OpenGL
display can be rotated, translated and zoomed in and out. An additional toolbar is
added to enable or disable visualization features such as the point cloud itself, the
triangulated mesh, an illumination from the projector, the camera and projector’s
position as well as a bounding box of our scanned object. The edge detection and
labeling stage have the capability to write an image in TIFF format for analytical
purposes. In order to implement these requirements, it is necessary to design a
solid architecture as presented in the next section.

3.3 Software Architecture

QGL Port

QT Widgets

Process
Controller
 Manager

GUI

Pattern Generator

2D Processing

Edge Labeling

Triangulation

Edge Detector

Range Map
 Visualizer
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Image Files 3D Files
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Figure 3.4: LIThIum’s software architecture.

The software architecture plays an important role in the implementation by means
of modularity, reliability, portability, maintainability and extendability. We there-
fore developed our implementation in a so-called water-fall model, which is a top
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down approach. The main task of our program is refined into several subtasks in a
modular fashion. In this way, most stages in our previously described shape recon-
struction architecture can be easily implemented as small independent programs.
This modularity enables us to test multiple techniques for specific problems. For
example, we experimented with several edge detectors without worrying about its
dependency with other stages. The conceptual software structure is illustrated in
figure 3.4. We note that a layer-based scheme is employed for the top level archi-
tecture, which is typical for an GUI based application. The GUI communicates
through an interface with the Core of the program. The Core itself is represented
as a pipeline. The input images are processed in this pipeline and the output is the
triangulated range map. Refining this pipeline yields to a set of substages, each
assigned with a unit test for effective data analysis and reliability tests during the
implementation. Most stages are implemented as static libraries for reuse. For
instance, all file read/writing procedures use the same library. The same applies
to many reusable classes of data structures. For example, the subpixel accurate
edge class, that is designed primarily for edge detection, is reused in the labeling
stage. Note that the workflow management procedures are also being integrated
into the GUI module as it strongly depends on the graphical interface.
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Results

Our experiments focus on the acquisition of the Beethoven bust as shown in figure
4.1. The complete acquisition process takes less than a minute of computation
time. Figure 4.3 shows an edge detection without the consecutive edge pixel re-
striction procedure, which is applied on the next 3 figures. We observe in figure
4.6 that restricting 10 consecutive edge pixels, is too much for a threshold equal
to 0.002. But as shown in figure 4.7, setting the threshold to 0.001 yields again
to good results. By setting the threshold to 0, all possible local maximum in the
square local contrast of the image signal would appear as shown in the next figure
and the detected edges are useless.

Comparing figure 4.9 and 4.10 with figure 4.11 and 4.12 shows that, using the plane
background masking, can avoid wrongly triangulated points at the boundary of the
object. For instance the left part of the head in figure 4.11, which has additional
stripes that were wrongly labeled, hence wrongly triangulated. Moreover, we ob-
serve cleaner results when the threshold is set higher for the orientational backface
culling, which can also be observed in figure 4.15 and 4.16

Finally, the improvement provided by the sub-pixel accurate repositioning are
demonstrated in Figures 4.17 to 4.22.
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Figure 4.1: Shot of the De
Bruijn Pattern illuminated
Beethoven Bust. All fig-
ures below are results from
this photo, except those us-
ing the plane background.

Figure 4.2: If desaturated,
many color transitions are
no longer visible to edge de-
tection. Cumani’s definition
of multi-spectral edges is re-
quired to solve it.

Figure 4.3: Edge de-
tection without consecutive
edge pixel restriction and
threshold=0.002.

Figure 4.4: Edge detection
with restricting 5 consecu-
tive edge pixels and thresh-
old=0.002.
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Figure 4.5: Edge detection
with restricting 7 consecu-
tive edge pixels and thresh-
old=0.002.

Figure 4.6: Edge detection
with restricting 10 consecu-
tive edge pixels and thresh-
old=0.002.

Figure 4.7: Edge detection
with restricting 10 consecu-
tive edge pixels and thresh-
old=0.001.

Figure 4.8: Edge detection
with restricting 10 consecu-
tive edge pixels and thresh-
old=0.000.
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Figure 4.9: Triangulated
point cloud without plane
background masking and ar-
tifact elimination through
meshing threshold=0.0.

Figure 4.10: Triangulated
point cloud without plane
background masking and ar-
tifact elimination through
meshing threshold=0.4.

Figure 4.11: Triangulated
point cloud with plane back-
ground masking and artifact
elimination through meshing
threshold=0.0.

Figure 4.12: Triangulated
point cloud with plane back-
ground masking and artifact
elimination through meshing
threshold=0.4.



51

Figure 4.13: Triangulated
point cloud with plane back-
ground masking and artifact
elimination through meshing
threshold=0.4 with meshed
triangle surfaces.

Figure 4.14: Triangulated
point cloud with plane back-
ground masking and artifact
elimination through mesh-
ing threshold=0.4 with illu-
minated triangles.

Figure 4.15: Triangu-
lation without orientational
backface culling. Point
cloud visualization.

Figure 4.16: Triangu-
lation without orientational
backface culling. Triangles
visualization.
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Figure 4.17: Pixel accu-
rate triangulation.

Figure 4.18: Subpixel ac-
curate repositioning.

Figure 4.19: Pixel ac-
curate triangulation. Fore
head close-up.

Figure 4.20: Subpixel ac-
curate repositioning. Fore
head close-up.
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Figure 4.21: Pixel ac-
curate triangulation. Fore
head close-up, zoomed in.

Figure 4.22: Subpixel ac-
curate repositioning. Fore
head close-up, zoomed in.
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Conclusion and Future Work

In this work, we have examined the structured light system proposed by Zhang et
al. [ZCS02], which uses multi-pass dynamic programming to solve the correspon-
dence problem, and we have performed some modifications to it to achieve subpixel
accuracy, less erroneous matching during the labeling and better robustness against
noise. Subpixel accuracy from one single frame is attained by approximating the
gradient of the square local contrast with a piecewise linear curve. The labeling
process is stabilized at the object’s bounding by considering a plane background
during the pattern projection acquisition. The noise is reduced with an extended
edge detector and a post-processing procedure based on meshing and face orien-
tation culling. In addition, an experimental software has been developed in order
to independently test different solutions according to subproblems.

Our experimental results have shown a remarkable improvement in terms of sub-
pixel accuracy. While pixel accurate triangulated point clouds show a jagged alias-
ing effect when zoomed in, an approximated gradient of the square local contrast
produces smooth transitions within neighboring ranges.

We also observed that the edge detection, based on a restricted consecutive edge
pixel occurrence, is quite effective when it comes to annihilating artifacts in high
frequency shading areas. The only drawbacks are the additional parameter that
has to be set manually and the few less detected edges. This step is indispensable
for a usable stripe edge extraction from complex shape objects.

The post-processing through meshing and face orientation culling also has a radical
impact in terms of noise reduction. A large amount of wrongly triangulated ranges
can be removed, but also at the cost of an additional parameter and less extracted
ranges.

Multi-pass dynamic programming, which solves the matching problem, has
achieved satisfactory results except at the boundary of the objects. Due to the
greedy property of the backtracking phase in dynamic programming, undesired
matches are added for a global optimal solution. These artifacts are either re-
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moved by post-processing meshing as mentioned previously or by setting a plane
wall behind the object to recover the unreflected stripes on the object. This sim-
ple solution enables the dynamic programming to start and end with the correct
matches, which also affect the correctness of the matches within the objects sur-
face. However, this solution has the drawback of requiring an additional frame
without the background to extract its silhouette. This additional frame is taken
during the white light illumination. To circumvent this additional frame, we can
think of a depth threshold w. r. t. the camera’s position. Every point above a
certain threshold is omitted.

While some improvements have been achieved, with several extensions, it is still
difficult to detect correct edges when it comes to stripe extraction from the capture.
This is due to the high curvature areas in the object and unsuitable material
reflection properties. Moreover the projector is only able to project sharp images
from a specific distance to the object, in other words, only edges on a plane at a
specific distance are sharp.

With the aim of less human inputs and more discretized points, we hope to find a
way to automatically determine statistically suitable thresholds by analyzing the
image’s color and light intensity properties. In addition, we intend to integrate the
automatic calibration for the projector and for the camera into the system. We
also plan to implement an offline colorimetric calibration for real one-shot pattern
acquisition, so that this technique could be applied on moving objects as well as
the possibility of registration from video frames by means of a real-time model
acquisition. To fill up the empty areas, caused by the relative broad stripe width
of the pattern, we would like to implement a pattern shifting acquisition for single
view registration. It would also be interesting to include lens distortion to the
camera and projector models. Finally, we hope to complete the structured light
scanning system with multi-view registration and texture reconstruction stages,
both equally important, and explore the possibility of capturing surface reflectance
properties.
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