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Figure 1: Our method automatically reconstructs dynamic facial models from multi-view stereo with consistent parameterization. (a) Facial
reconstruction with artist-quality mesh topology. (b) Reconstructed facial mesh overlaid on the input video. (c) Reconstructed face model
with a displacement map estimated from details in the images. (d) Close-up of fine details, such as pores and dynamic wrinkles from (c).

Abstract
We present a multi-view stereo reconstruction technique that directly produces a complete high-fidelity head model with con-
sistent facial mesh topology. While existing techniques decouple shape estimation and facial tracking, our framework jointly
optimizes for stereo constraints and consistent mesh parameterization. Our method is therefore free from drift and fully paral-
lelizable for dynamic facial performance capture. We produce highly detailed facial geometries with artist-quality UV param-
eterization, including secondary elements such as eyeballs, mouth pockets, nostrils, and the back of the head. Our approach
consists of deforming a common template model to match multi-view input images of the subject, while satisfying cross-view,
cross-subject, and cross-pose consistencies using a combination of 2D landmark detection, optical flow, and surface and vol-
umetric Laplacian regularization. Since the flow is never computed between frames, our method is trivially parallelized by
processing each frame independently. Accurate rigid head pose is extracted using a PCA-based dimension reduction and de-
noising scheme. We demonstrate high-fidelity performance capture results with challenging head motion and complex facial
expressions around eye and mouth regions. While the quality of our results is on par with the current state-of-the-art, our ap-
proach can be fully parallelized, does not suffer from drift, and produces face models with production-quality mesh topologies.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Computer Vision]: Image Processing and Computer Vision—
ScanningI.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation

1. Introduction

Video-based facial performance capture has become a widely es-
tablished technique for the digitization and animation of realistic

∗ G. Fyffe, and K. Nagano are joint first authors.
† G. Fyffe and J. Busch are now at Google.

virtual characters in high-end film and game production. While re-
cent advances in facial tracking research are pushing the bound-
aries of real-time performance and robustness in unconstrained cap-
ture settings, professional studios still rely on computationally de-
manding offline solutions with high resolution imaging. To further
avoid the uncanny valley, time-consuming and expensive artist in-
put, such as tracking clean-up or key-framing, is often required to
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fine-tune the automated tracking results and ensure consistent UV
parameterization across the input frames.

State-of-the-art facial performance capture pipelines are mostly
based on a multi-view stereo setup to capture fine geometric de-
tails, and generally decouple the process of model building and
facial tracking. The facial model (often a parametric blendshape
model) is designed to reflect the expressiveness of the actor but
also to ensure that any deformation stays within the shape and ex-
pression space during tracking. Because of the complexity of facial
expressions and potentially large deformations, most trackers are
initialized from the previous input frames. However, such sequen-
tial approaches cannot be parallelized and naturally result in drift,
which requires either artist-assisted tracking corrections or ad-hoc
segmentation of the performance into short temporal clips.

We show in this work, that it is possible to directly obtain, for any
frame, a high-resolution facial model with consistent mesh topol-
ogy using a passive multi-view capture system with flat illumina-
tion and high-resolution input images. We propose a framework
that can accurately warp a reference template model with exist-
ing texture parameterization to the face of any person, and demon-
strate successful results on a wide range of subjects and challeng-
ing expressions. While existing multi-view methods either explic-
itly compute the geometry [BHB∗11, KH12] or implicitly encode
stereo constraints [VWB∗12], they rely on optical flow or scene-
flow to track a face model, for which computation is only possible
sequentially. Breaking up the performance into short clips using
anchor frames or key frames with a common appearance is only
a partial solution, as it requires the subject to return to a common
expression repeatedly throughout the performance.

Our objective is to warp a common template model to a differ-
ent person in arbitrary poses and different expressions while ensur-
ing consistent anatomical matches between subjects and accurate
tracking across frames. The key challenge is to handle the large
variations of facial appearances and geometries, as well as the com-
plexity of facial expression and large deformations. We propose an
appearance-driven mesh deformation approach that produces inter-
mediate warped photographs for reliable and accurate optical flow
computation. Our approach effectively avoids image discontinu-
ities and artifacts often caused by methods based on synthetic ren-
derings or texture reprojection.

In a first pass, we compute temporally consistent animations, that
are produced from independently computed frames, by deforming
a template model to the expressions of each frame while enforc-
ing consistent cross-subject correspondences. To initialize our face
fitting, we leverage recent work in facial landmark detection. In
each subsequent phase of our method, the appearance-based mesh
warping is driven by the mesh estimate from the previous phase.
We show that even where the reference and target images exhibit
significant differences in appearance (due to significant head ro-
tation, different subjects, or expression changes), our warping ap-
proach progressively converges to a high-quality correspondence.
Our method does not require a complex facial rig or blendshape
priors. Instead, we deform the full head topology according to the
multi-view optical flow correspondences, and use a combination of
surface and volumetric Laplacian regularization to produce a well-

behaved shape, which helps especially in regions that are prone to
occlusion and inter-penetration such as the eyes and mouth pocket.

As the unobserved regions such as the back of the head are in-
ferred from the Laplacian deformation, these regions may be tem-
porally inconsistent in the presence of significant head motion or
expression changes. Thus we introduce a PCA based technique for
general deformable surface alignment to align and denoise the fa-
cial meshes over the entire performance, which improves temporal
consistency around the top and back of the head and reduces high-
frequency “sizzling” noise. Unlike [BB14, WBGB16], our method
does not employ any prior knowledge of anatomy. We then com-
pute a subject-specific template and refine the performance capture
in a second pass to achieve pore-level tracking accuracy.

Our method never computes optical flow between neighboring
frames, and never compares a synthetic rendering to a photograph.
Thus, our method does not suffer from drift, and accurately cor-
responds regions that are difficult to render synthetically such as
around the eyes. Our method can be applied equally well to a set
of single-frame expression captures with no temporal continuity,
bringing a wide variety of facial expressions into (u,v) correspon-
dence with pore-level accuracy. Furthermore, our joint optimiza-
tion for stereo and fitting constraints also improves the digitization
quality around highly occluded regions such as mouth, eyes, and
nostrils as they provide additional reconstruction cues in the form
of shape priors. We report timings for each step of our method, most
of which are trivially parallelizable across multiple computers. In
summary, our contributions include:

• a fully parallelizable multi-view stereo facial performance cap-
ture pipeline that produces a high-quality facial reconstruction
with consistent mesh topology.

• an appearance-driven mesh deformation algorithm using optical
flow on high-resolution imaging data combined with volumetric
Laplacian regularization.

• a PCA-based pose estimation and denoising technique for gen-
eral deformable surfaces.

2. Related Work

Driving the motion of digital characters with real actor perfor-
mances has become a common and effective process for creating re-
alistic facial animation. Performance-driven facial animation dates
back as least as far as Williams [Wil90] who used facial markers
in monocular video to animate and deform a 3D scanned facial
model. Guenter et al. [GGW∗98] drove a digital character from
multi-view video by 3D tracking a few hundred facial markers seen
in six video cameras. Yet even a dense set of facial markers can
miss subtle facial motion details necessary for conveying the entire
meaning of a performance. Addressing this, Disney’s Human Face
Project [Yea02] was perhaps the first to use dense optical flow on
multi-view video of a facial performance to obtain dense facial mo-
tion for animation, setting the stage for the markerless multi-view
facial capture system used to animate realistic digital characters in
the "Matrix" sequels [BPL∗05]. In our work, we use a multi-view
video setup to record facial motion, but fit a model to the images
per time instant rather than temporally tracking the performance.

Realistic facial animation may also be generated though physi-
cal simulation as in [PB81, TW93]. The computer animation "The
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Jester" [CSDV99] tracked the performer’s face with a standard set
of mocap markers but used finite element simulation to simulate
higher-resolution performance details such as the skin wrinkling
around the eyes. [SNF05] used a bone, flesh, and muscle model
of a face to reverse-engineer the muscle activations which gener-
ate the same motion of the face as recorded with mocap mark-
ers. Recent work showed a way to automatically construct per-
sonalized anatomical model for volumetric facial tissue simula-
tions [CBE∗15]. In our work, we use a volumetric facial model to
enable robust model fitting solutions including occluded regions.

Faces assume many shapes but have the same features in sim-
ilar positions, and as a result can be modeled with generic tem-
plates such morphable models [BV99]. Such models have proven
useful in recent work for real-time performance tracking [LWP10,
WBLP11,LYYB13,BWP13,CHZ14,HMYL15,CWW∗16,SLL16],
expression transfer [WLVGP09, BGY∗13, TZN∗15, TZS∗16], and
performance reconstruction from monocular video [GVWT13,
SKS14, SWTC14, GZC∗16]. Recent work demonstrated recon-
struction of a personalized avatar from mobile free-form videos
[IBP15], medium scale dynamic wrinkles from RGB monocular
video [CBZB15], and high fidelity mouth animation for an head
mounted display [OLSL16]. These template based approaches can
provide facial animation in a common artist-friendly topology with
blendshape animations. But they cannot capture shape details out-
side of the assumed linear deformation subspace, which may be im-
portant for high quality expressive facial animation. On the other
hand, our technique captures accurate 3D shapes comparable to
multi-view stereo, on a common head topology without the need
for complex facial rigs.

Multi-view stereo approaches [FP10, BBB∗10, BHB∗11] re-
main popular since they yield verifiable and accurate geometry
even though they require offline computation. Our dynamic per-
formance reconstruction technique differs from techniques such as
[FP09,BHPS10,BHB∗11] in that we do not begin by solving for in-
dependent multi-view stereo geometry at each time instant. In fact
our method does not require a set of high-resolution facial scans
(or even a single facial scan) of the subject to assist performance
tracking as in [ARL∗09, HCTW11, GVWT13, AFB∗13, FJA∗14].
Instead, we employ optical flow and surface/volume Laplacian pri-
ors to constrain 3D vertex estimates based on a template.

Video-based facial performance capture is susceptible to “drift”,
meaning inconsistencies in the relationship between facial features
and the mesh parameterization across different instants in time. For
example, a naive algorithm that tracks vertices from one frame
to the next will accumulate error over the duration of a perfor-
mance. Previous works have taken measures to mitigate drift in a
single performance. However, none of these approaches lends it-
self to multiple performance clips, or collections of single-frame
captures. Furthermore, previous works addressing fine-scale con-
sistency involve at least one manual step if high-quality topology
is desired. [BHB∗11] employs a manually selected reference frame
and geometry obtained from stereo reconstruction. If a clean topol-
ogy is desired, is it edited manually. The method locates “anchor
frames” similar to the reference frame to segment the performance
into short clips, and optical flow tracking is performed within each
clip and across clip seams. The main drawback of this method is

that all captures must contain well distributed anchor frames that
resemble the reference, which limits the expressive freedom of the
performer. [KH12] constructs a minimum spanning tree in appear-
ance space and employs non-sequential tracking to reduce drift,
combined with temporal tracking to reduce temporal seams. The
user must manually create a mesh for the frame at the root of the
tree, based on geometry obtained from stereo reconstruction. De-
spite the minimum spanning tree, expressions far from the root
expression still require concatenation of multiple flow fields, ac-
cumulating drift. If single-frame captures are included in the data,
it may fail altogether. [VWB∗12] employs the first frame of a per-
formance as a template. If clean topology is desired, it must be
manually edited. Sequences are processed from the first frame to
the last. Synthetic renderings of the template are employed to re-
duce drift via optical flow correction. This method cannot handle
multiple performance clips or single frame captures in correspon-
dence. [GVWT13] employs a neutral facial scan as a template, and
requires manually refined alignment of the neutral scan to the start-
ing frame of the performance. The method locates “key frames”
resembling the neutral scan (much like anchor frames) to segment
the performance into short clips that are tracked via temporal op-
tical flow, and employs synthetic renderings of the neutral scan
to reduce drift via optical flow correction. This method is unsuit-
able for collections of multiple performances, as the manual ini-
tial alignment required for each performance would be prohibitive
and error-prone. [FJA∗14] employs multiple facial scans, with one
neutral scan serving as a template. The neutral scan topology is
produced manually. The neutral scan is tracked directly to all per-
formance frames and all other scans using optical flow, which is
combined with temporal optical flow and flows between a sparse
set of frames and automatically selected facial scans to minimize
drift. This method handles multiple performance clips and multiple
single-frame captures in correspondence, but requires multiple fa-
cial scans spanning the appearance space of the subject’s face, one
of which is manually processed.

3. Shared Template Mesh

Rather than requiring a manually constructed personalized template
for each subject, our method automatically customizes a generic
template including the eyes and mouth interior. We maintain a con-
sistent representation of this face mesh throughout our process: a
shared template mesh with its deformation parameterized on the
vertices. The original template can be any high-quality artist mesh
with associated multi-view photographs. To enable volumetric reg-
ularization, we construct a tetrahedral mesh for the template using
TetGen [Si15] (Fig. 3). We also symmetrize the template mesh by
averaging each vertex position with that of the mirrored position of
the vertex bilaterally opposite it. This is because we do not want
to introduce any facial feature asymmetries of the template into the
Laplacian shape prior. For operations relating the template back to
its multi-view photographs, we use the original vertex positions.
For operations employing the template as a Laplacian shape prior,
we employ the symmetrized vertex positions.

We demonstrate initialization using a high-quality artist mesh
template constructed from multi-view photography. We use the
freely available “Digital Emily” mesh, photographs, and camera
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Figure 2: Our pipeline proceeds in six phases, illustrated as numbered circles. 1) A common template is fitted to multi-view imagery of a
subject using landmark-based fitting (Section 4.1). 2) The mesh is refined for every frame using optical flow for coarse-scale consistency and
stereo (Section 4.2). 3) The meshes of all frames are aligned and denoised using a PCA scheme (Section 4.3). 4) A personalized template
is extracted and employed to refine the meshes for fine-scale consistency (Section 4.4). 5) Final pose estimation and denoising reduces
“sizzling” (Section 4.5). 6) Details are estimated from the imagery (Section 4.6).

(a) (b)

Figure 3: Production-quality mesh template and the cross-section
of the volumetric template constructed from the surface.

calibration from [Lea15]. The identity of the template is of no sig-
nificance, though we purposely chose a template with no extreme
unique facial features. A single template can be reused for many
recordings of different subjects. We also compare to results ob-
tained from a morphable model [TZN∗15] with synthetic render-
ings in place of multi-view photographs.

4. Method Overview

Given an existing template mesh, we can reconstruct multiple video
performances by optimizing photoconsistency cues between differ-
ent views, across different expressions, and across different sub-
jects. Our method consists of six sequential phases, illustrated in
Fig. 2. Some phases share the same underlying algorithm, there-
fore in this section we provide a short overview of each phase, and
then provide further technical details in Sections 5 and 6. We report
run times for each phase based on computers with dual 8-core Intel
E5620 processors and NVidia GTX980 graphics cards. All phases
except for rigid alignment are trivially parallelizable across frames.

(a) (b) (c) (d)

Figure 4: (a) Facial landmarks detected on the source subject and
(b) the corresponding template; (c) The template deformed based
on detected landmarks on the template and subject photographs;
(d) Detailed template fitting based on optical flow between the tem-
plate and subject, and between views.

4.1. Landmark-Based Initialization

First, we leverage 2D facial landmark detection to deform the com-
mon template and compute an initial mesh for each frame of the
performance. Subsequent optical flow steps require a mesh esti-
mate which is reasonably close to the true shape. We estimate fa-
cial landmark positions on all frames and views using the method
of [KS14] implemented in the DLib library [Kin09]. We then trian-
gulate 3D positions with outlier rejection, as the landmark detec-
tion can be noisy. We use the same procedure for the template pho-
tographs to locate the template landmark positions. Fig. 4(a) shows
an example with detected landmarks as black dots, and triangulated
landmarks after outlier rejection as white dots. We transform the
3D landmarks of all poses to a common coordinate system using
an approximate rigid registration to the template landmarks. We
perform PCA-based denoising per subject in the registered space
to remove any isolated errors, and then transform the landmarks
back into world space. We additionally apply Gaussian smoothing
to the landmark trajectories in each performance sequence. We fi-
nally compute a smooth deformation of the template to non-rigidly
register it to the world space 3D landmarks of each captured facial
pose, using Laplacian mesh deformation. Fig. 4(c) shows an exam-
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Figure 5: Facial expressions reconstructed without temporal flow.

ple of the template deformed to a subject using only the landmarks.
These deformed template meshes form the initial estimates in our
pipeline, and are not required to be entirely accurate. This phase
takes only a few seconds per frame, which are processed in parallel
except for the PCA step.

4.2. Coarse-Scale Template Warping

Starting from the landmark-based initialization in Section 4.1, we
employ an appearance-driven mesh deformation scheme to propa-
gate the shared template mesh onto the performance frames. More
details on this algorithm are provided in Section 5. This phase takes
25 minutes per frame, which are processed in parallel. (Most time is
spent in the volumetric Laplacian solve.) After this phase, the pro-
cessed facial meshes are all high quality 3D scans with the same
topology, and are consistent at the level of coarse features such as
the eyebrows, eyes, nostrils, and corners of the mouth. Fig. 5 shows
the results at this phase directly deforming the template to multiple
poses of the same individual without using any temporal informa-
tion. Despite significant facial motion, the mesh topology remains
consistent with the template. If only a single pose is desired for
each subject, we can stop here. If sequences or multiple poses were
captured, we continue with the remaining phases to improve con-
sistency across poses.

4.3. Pose Estimation, Denoising, and Template Personalization

The face mesh estimates from Section 4.2 are reasonably good
facial scans, but they exhibit two sources of distracting temporal
noise. First, they lack fine-scale consistency in the UV domain, and
second, any vertices that are extrapolated in place of missing data
may differ considerably from frame to frame (for example, around
the back of the head). The primary purpose of this phase is to pro-
duce a mesh sequence that is temporally smooth, with a plausible
deformation basis, and closer to the true face sequence than the
original estimate in Section 4.1. We wish to project the meshes
into a reduced dimensional deformation basis to remove some of
the temporal noise, which requires the meshes to be registered to a
rigidly aligned head pose space, rather than roaming free in world
space. Typically this is accomplished through iterative schemes, al-
ternating between pose estimation and deformation basis estima-
tion. In Section 6 we describe a method to decouple the pose from
the deformation basis, allowing us to first remove the relative rota-
tion from the meshes without knowledge of the deformation basis,
then remove the relative translation, and finally compute the defor-
mation basis via PCA. We truncate the basis retaining 95% of the
variance, which reduces temporal noise without requiring frame-
to-frame smoothing. Finally, we identify the frame whose shape is

closest to the mean shape in the PCA basis, and let this frame be the
personalized template frame for the proceeding phases. This phase,
which is not easily parallelized, takes about 8 seconds per frame.

4.4. Fine-Scale Template Warping

This phase is nearly identical to Section 4.2, except that we prop-
agate the shared template only to the personalized template frame
identified in Section 4.3 (per subject), after which the updated per-
sonalized template becomes the new template for the remaining
frames (again, per subject). This enables fine-scale consistency to
be obtained from optical flow, as the pores, blemishes, and fine
wrinkles on a subject’s skin provide ample registration markers
across poses. Further, we start from the denoised estimates from
Section 4.3 instead of the landmark based estimates of Section 4.1,
which are much closer to the actual face shape of each frame, re-
ducing the likelihood of false matches in the optical flow.

4.5. Final Pose Estimation and Denoising

After the consistent mesh has been computed for all frames, we per-
form a final step of rigid registration to the personalized template
and PCA denoising, similar to Section 4.3 but retaining 99% of the
variance. We found this helps remove “sizzling” noise produced by
variations in the optical flow. We also denoise the eye gaze anima-
tion using a simple Gaussian filter. More details on this phase are
provided in Section 6.

4.6. Detail Enhancement

Finally we extract texture maps for each frame, and employ the
high frequency information to enhance the surface detail already
computed on the dense mesh in Section 5.3, in a similar man-
ner as [BBB∗10]. We make the additional observation that the se-
quence of texture maps holds an additional cue: when wrinkles ap-
pear on the face, they tend to make the surface shading darker rela-
tive to the neutral state. To exploit this, we compute the difference
between the texture of each frame and the texture of the personal-
ized template, and then filter it with an orientation-sensitive filter to
remove fine pores but retain wrinkles. We call this the wrinkle map,
and we employ it as a medium-frequency displacement, in addition
to the high-frequency displacement obtained from a high-pass fil-
ter of all texture details. We call this scheme “darker is deeper”, as
opposed to the “dark is deep” schemes from the literature. Fig. 6
shows the dense mesh, enhanced details captured by our proposed
technique, and details using a method similar to [BHB∗11].This
step including texture extraction and mesh displacement takes 10
minutes per frame and is trivially parallelizable.

5. Appearance-Driven Mesh Deformation

We now describe in detail the deformation algorithm mentioned
in Sections 4.2 and 4.4. Suppose we have a known reference mesh
with vertices represented as yi ∈Y and a set of photographs IY

j ∈IY

corresponding to the reference mesh along with camera calibra-
tions. Now suppose we also have photographs IX

k ∈ I
X and cam-

era calibrations for some other, unknown mesh with vertices repre-
sented as xi ∈ X . Our goal is to estimate X given Y,IY ,IX . In other
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Figure 6: (a) Dense base mesh; (b) Proposed detail enhancement;
(c) “Dark is deep” detail enhancement.

words, we propagate the known reference mesh Y to the unknown
configuration X using evidence from the photographs of both. Sup-
pose we have a previous estimate X̂ somewhat close to the true X .
(We explain how to obtain an initial estimate in Section 4.1.) We
can improve the estimate X̂ by first updating each vertex estimate
x̂i ∈ X̂ using optical flow (described in Section 5.2), then updating
the entire mesh estimate X̂ using Laplacian shape regularization
with Y as a reference shape (described in Section 5.4). Finally we
position the eyeballs based on flow vectors and geometric evidence
from the eyelid region (described in Section 5.5).

5.1. Image Warping

Before further discussion, we must address the difficult chal-
lenge of computing meaningful optical flow between pairs of pho-
tographs that may differ in viewpoint, in facial expression, in sub-
ject identity, or any combination of the three. We assume high-
resolution images and flat illumination, so different poses of a sub-
ject will have generally similar shading and enough fine details for
good registration. Still, if the pose varies significantly or if the sub-
ject differs, naive optical flow estimation will generally fail. For ex-
ample, Fig. 7(b, f) shows the result of naively warping one subject
to another using optical flow, which would not be useful for facial
correspondence since the flow mostly fails. Even in these cases, we
desire a flow field that aligns coarse facial features even though the
fine-scale features will lack meaningful matches, as in Fig. 7(d, h).

Our solution is to warp the image of one face to resemble the
other face before computing optical flow (and vice-versa to com-
pute optical flow in the other direction). We warp the images based
on the current 3D mesh estimates (first obtained via the initializa-
tion in Section 4.1.) One might try rendering a synthetic image in
the first camera view using the first mesh and texture sourced from
the second image via the second mesh, to produce a warped version
of the second image in a similar configuration to the first. How-
ever this approach would introduce artificial discontinuities wher-
ever the current mesh estimates are not in precise alignment with
the photographs, and such discontinuities would confuse the opti-
cal flow algorithm. Thus we instead construct a smooth vector field
to serve as an image-space warp that is free of discontinuities. We
compute this vector field by rasterizing the first mesh into the first
camera view, but instead of storing pixel colors we write the second
camera’s projected image plane coordinates (obtained via the sec-
ond mesh). We skip pixels that are occluded in either view using a
z buffer for each camera, and smoothly interpolate the missing vec-
tors across the entire frame. We then apply a small Gaussian blur

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Optical flow between photographs of different subjects
(a) and (e) performs poorly, producing the warped images (b) and
(f). Using 3D mesh estimates (e.g. a template deformed based on
facial landmarks), we compute a smooth vector field to produce
the warped images (c) and (g). Optical flow between the original
images (a, e) and the warped images (c, g) produces the relatively
successful final warped images (d) and (h).

to slightly smooth any discontinuities, and finally warp the image
using the smooth vector field. Examples using our warping scheme
are shown in Fig. 7(c, g), and the shape is close enough to the true
shape to produce a relatively successful optical flow result using the
method of [WTP∗09], shown in Fig. 7(d, h). After computing flow
between the warped image and the target image, we concatenate
the vector field warp and the optical flow vector field to produce
the complete flow field. (This is implemented simply by warping
the vector field using the optical flow field.)

5.2. Optical Flow Based Update

Within the set of images IY ,IX , we may find cues about the shape
of the unknown mesh X and the relationship between X and the
reference mesh Y . We employ a stereo cue between images from
the same time instant, and a reference cue between images from
different time instants or different subjects, using optical flow and
triangulation (Fig. 8). First, consider a stereo cue. Given an esti-
mate pk

i =Pk(x̂i)≈ Pk(xi) with Pk representing the projection from
world space to the image plane coordinates of view k of X , we can
employ an optical flow field F l

k between views k and l of X , to esti-
mate pl

i = F l
k (pk

i )≈ Pl(xi). Defining Dk(pk
i ) = I−dk(pk

i )d
k(pk

i )
T

where dk(pk
i ) is the world space view vector passing through image

plane coordinate pk
i of the camera of view k of X , and ck the center

of projection of the lens of the same camera (and likewise for l),
we may employ pk

i and pl
i together to triangulate x̂i as:

x̂i← argmin
xi

∥∥∥Dk(pk
i )(xi− ck)

∥∥∥2
+
∥∥∥Dl(pl

i)(xi− cl)
∥∥∥2
, (1)

which may be solved in closed form. Next, consider a reference
cue, which is a cue involving the reference mesh Y , being either a
shared template or another pose of the same subject. Given a known
or estimated q j

i = Q j(yi) with Q j representing the projection from

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



G. Fyffe, K. Nagano, et al. / Multi-View Stereo on Consistent Face Topology

(a)

(b)

Figure 8: (a) A stereo cue. An estimated point x is projected to
the 2D point pk in view k. A flow field F l

k transfers the 2D point to
pl in a second view l. The point x is updated by triangulating the
rays through pk and pl . (b) A reference cue. An estimated point y is
projected to the 2D point q j in view j. A flow field Gk

j transfers the
2D point to pk in view k of a different subject or different time. A
second flow field F l

k transfers the 2D point to pl in view l and then
point x is estimated by triangulating the rays through pk and pl .

world space to the image plane coordinates of view j of Y , we can
employ an optical flow field Gk

j between view j of Y and view k of

X , to estimate pk
i = Gk

j(q
j
i )≈ Pk(xi). Next, we use F l

k to obtain pl
i

from pk
i as we did for the stereo cue, and triangulate x̂i as before.

However, instead of triangulating all these different cues separately,
we combine them into a single triangulation, introducing a scalar
field rk

j representing the optical flow confidence for flow field Gk
j ,

and sl
k representing the optical flow confidence for flow field F l

k .
Including one more parameter γ to balance between stereo cues and
reference cues, the whole thing looks like this:

x̂i← argmin
xi

γ∑
k,l

sl
k

2
(pk

i )
(∥∥∥Dk(pk

i )(xi− ck)
∥∥∥2

+
∥∥∥Dl(F l

k (pk
i ))(xi− cl)

∥∥∥2)
+(1− γ) ∑

j,k,l
rk

j(q
j
i )s

l
k(G

k
j(q

j
i ))
(∥∥∥Dk(Gk

j(q
j
i ))(xi− ck)

∥∥∥2

+
∥∥∥Dl(F l

k (G
k
j(q

j
i )))(xi− cl)

∥∥∥2)
. (2)

This differs from [FJA∗14] in that reference flows are employed as
a lookup into stereo flows instead of attempting to triangulate pairs
of reference flows, and differs from [BHB∗11] in that the geometry
is not computed beforehand; rather the stereo and consistency are
satisfied together. While (2) can be trivially solved in closed form,
the flow field is dependent on the previous estimate x̂i, and hence
we perform several iterations of optical flow updates interleaved

with Laplacian regularization for the entire face. We schedule the
parameter γ to range from 0 in the first iteration to 1 in the last iter-
ation, so that the solution respects the reference most at the begin-
ning, and respects stereo most at the end. We find five iterations to
generally be sufficient, and we recompute the optical flow fields af-
ter the second iteration as the mesh will be closer to the true shape,
and a better flow may be obtained.

The optical flow confidence fields rk
j and sl

k are vitally important
to the success of the method. The optical flow implementation we
use provides an estimate of flow confidence [WTP∗09] based on
the optical flow matching term, which we extend in a few ways.
First, we compute flows both ways between each pair of images,
and multiply the confidence by an exponentially decaying func-
tion of the round-trip distance. Specifically, in sl

k(pk
i ) we include a

factor exp
(
−κ

∥∥∥pk
i −Fk

l (F
l
k (pk

i ))
∥∥∥2)

(with normalized image coor-
dinates), where κ = 20 is a parameter controlling round-trip strict-
ness, and analogously for rk

j . Since we utilize both directions of
the flow fields anyway, this adds little computational overhead. For
stereo flows (i.e. flows between views of the same pose) we in-
clude an additional factor penalizing epipolar disagreement, includ-
ing in sl

k(pk
i ) the factor exp

(
−λ dl2(ck,dk(pk

i ),c
l ,dl(F l

k (pk
i )))
)
,

where dl(o1,d1,o2,d2) is the closest distance between the ray de-
fined by origin o1 and direction d1 and the ray defined by origin
o2 and direction d2, and λ = 500 is a parameter controlling epipo-
lar strictness. Penalizing epipolar disagreement, rather than search-
ing strictly on epipolar lines, allows our method to find correspon-
dences even in the presence of noise in the camera calibrations. In
consideration of visibility and occlusion, we employ the current es-
timate X̂ to compute per-vertex visibility in each view of X using
a z-buffer and back-face culling on the GPU, and likewise for each
view of Y . If vertex i is not visible in view k, we set sl

k(pk
i ) to 0.

Otherwise, we include a factor of (−ni ·dk(pk
i ))

2 to soften the vis-
ibility based on the current surface normal estimate ni. We include
a similar factor for view l in sl

k(pk
i ), and for view j of Y and view k

of X in rk
j . As an optimization, we omit flow fields altogether if the

current estimated head pose relative to the camera differs signifi-
cantly between the two views to be flowed. We compute the closest
rigid transform between the two mesh estimates in their respective
camera coordinates, and skip the flow field computation if the rela-
tive transform includes a rotation of more than twenty degrees.

5.3. Dense Mesh Representation

The optical flow fields used in Section 5.2 contain dense informa-
tion about the facial shape, yet we compute our solution only on
the vertices of an artist-quality mesh. It would be a shame to waste
the unused information in the dense flow fields. Indeed we note that
sampling the flow fields only at the artist mesh vertices in Section
5.2 introduces some amount of aliasing, as flow field values in be-
tween vertices are ignored. So we compute an auxiliary dense mesh
with 262,144 vertices parameterized on a 512× 512 vertex grid in
UV space. Optical flow updates are applied to all vertices of the
dense mesh as in Section 5.2. We then regularize the dense mesh
using the surface Laplacian terms from Section 5.4, but omit the
volumetric terms as they are prohibitive for such a dense mesh. The
surface Laplacian terms, on the other hand, are easily expressed and
solved on the dense grid parameterization.
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Figure 9: Laplacian regularization results. Left: surface regular-
ization only. Right: surface and volumetric regularization.

This dense mesh provides two benefits. First, it provides an inter-
mediate estimate that is free of aliasing, which we utilize by look-
ing up the dense vertex position at the same UV coordinate as each
artist mesh vertex. This estimate lacks volumetric regularization,
but that is applied next in Section 5.4. Second, the dense mesh con-
tains surface detail at finer scales than the artist mesh vertices, and
so we employ the dense mesh in Section 4.6 as a base for detailed
displacement map estimation.

5.4. Laplacian Regularization

After the optical flow update, we update the entire face mesh us-
ing Laplacian regularization, using the position estimates from Sec-
tion 5.3 as a target constraint. We use the framework of [ZHS∗05],
wherein we update the mesh estimate as follows:

X̂ ← argmin
X ∑

i∈S
αi‖xi− x̂i‖2

+ ∑
i∈S
‖LS(xi)− εi‖2 +β ∑

i∈V
‖LV (xi)−δi‖2, (3)

where αi=σ(γ∑k,ls
l
k
2
(pk

i )+(1−γ)∑ j,k,lr
k
j(q

j
i )s

l
k(G

k
j(q

j
i ))) is the

constraint strength for vertex i derived from the optical flow confi-
dence with σ = 15 being an overall constraint weight, S is the set
of surface vertices, LS is the surface Laplace operator, εi is the sur-
face Laplacian coordinate of vertex i in the rest pose, V is the set

of volume vertices, LV is the volume Laplace operator, δi is the
volume Laplacian coordinate of vertex i in the rest pose, and β is
a parameter balancing LS and LV as in [ZHS∗05]. In our frame-
work, the rest pose is the common template in early phases, or the
personalized template in later phases. We solve this sparse linear
problem using the sparse normal Cholesky routines implemented in
the Ceres solver [AMO]. We also estimate local rotation to approx-
imate as-rigid-as-possible deformation [SA07]. We locally rotate
the Laplacian coordinate frame to fit the current mesh estimate in
the neighborhood of x̂i, and iterate the solve ten times to allow the
local rotations to converge. Fig. 9 illustrates the effect of including
the volumetric Laplacian term. While previous works employ only
the surface Laplacian term [VWB∗12], we find the volumetric term
is vitally important for producing good results in regions with miss-
ing or occluded data such as the back of the head or the interior of
the mouth, which are otherwise prone to exaggerated extrapolation
or interpenetration.

5.5. Updating Eyeballs and Eye Socket Interiors

Our template represents eyeballs as separate objects from the face
mesh, with their own UV texture parameterizations. We include the
eyeball vertices in the optical flow based update, but not the Lapla-
cian regularization update. Instead, the eyes are treated as rigid ob-
jects, using the closest rigid transform to the updated positions to
place the entire eyeball. This alone does not produce very good re-
sults, as the optical flow in the eye region tends to be noisy, partly
due to specular highlights in the eyes. To mitigate this problem, we
do two things. First, we apply a 3× 3 median filter to the face im-
ages in the region of the eye, using the current mesh estimate to
rasterize a mask. Second, after each Laplacian regularization step,
we consider distance constraints connecting the eye pivot points
e0 and e1 to the vertices on the entire outer eyelid surfaces, and
additional distance constraints connecting the eye pivot points to
the vertices lining the inside of the eye socket. These additional
constraints appear as: ∑

1
j=0
[

∑i∈E j∪O j
(
∥∥xi− e j

∥∥− ∥∥∥yi− eY
j

∥∥∥)2 +

∑i∈E j
φ(
∥∥xi− e j

∥∥, r)], where E0 and E1 are the set of left and right
eyelid vertices, O0 and O1 are the set of left and right socket ver-
tices, eY

0 and eY
1 are the eye pivot positions in the reference mesh,

φ is a distance constraint with a non-penetration barrier defined as
φ(a,b) = (a− b)2 exp(ρ(b− a)) with ρ = 10 being a parameter
controlling barrier fall-off, and r is a hard constraint distance repre-
senting the radius of the eyeball plus the minimum allowed thick-
ness of the eyelid. The target distance of each constraint is obtained
from the reference mesh. We minimize an energy function includ-
ing both (3) and the eye pivot distance constraints, but update only
the eye pivots, interior volume vertices, and vertices lining the eye
sockets, leaving the outer facial surface vertices constant. The dis-
tance constraints render this a nonlinear problem, which we solve
using the sparse Levenberg-Marquardt routines implemented in the
Ceres solver [AMO]. After the eye pivots are computed, we com-
pute a rotation that points the pupil towards the centroid of the iris
vertex positions obtained in the optical flow update. Although this
scheme does not personalize the size and shape of the eyeball, there
is less variation between individuals in the eye than in the rest of
the face, and we obtain plausible results.
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Figure 10: Comparison of rigid mesh alignment techniques on
a sequence with significant head motion and extreme expressions.
Top: center view. Middle: Procrustes alignment. Bottom: our pro-
posed method. The green horizontal strike-through lines indicate
the vertical position of the globally consistent eyeball pivots.

6. PCA-Based Pose Estimation and Denoising

We next describe the pose estimation and denoising algorithm men-
tioned in Sections 4.3 and 4.5. Estimating the rigid transformation
for each frame of a performance serves several purposes. First, it is
useful for representing the animation results in standard animation
packages. Second, it allows consistent global 3D localization of the
eyeballs, which should not move with respect to the skull. Third, it
enables PCA-based mesh denoising techniques that reduce high-
frequency temporal noise and improve consistency of occluded or
unseen regions that are inferred from the Laplacian regularization.
A rigid stabilization technique could be employed such as [BB14]
(also employed in [WBGB16]), which involves fitting an anatom-
ical skull template and skin thickness models. Instead we estimate
rigid rotation without any anatomical knowledge, and then esti-
mate rigid translation using a simple eyelid thickness constraint.
Section 6.1 describes our novel rotation alignment algorithm for
deformable meshes which does not require knowledge of the de-
formation basis. Section 6.2 describes our novel translation align-
ment algorithm that simultaneously estimates per-mesh translation
and globally consistent eyeball pivot placement. Section 6.3 then
describes a straightforward PCA dimension reduction scheme.

We compare our rigid alignment technique to Procrustes analy-
sis [Gow75] as a baseline. Fig. 10 shows several frames from the
evaluation of our technique on a sequence with significant head
motion and extreme facial expressions including wide open mouth.
The baseline method exhibits significant misalignment especially
on wide open mouth expressions, which becomes more apparent
when globally consistent eye pivots are included. Our proposed
technique stabilizes the rigid head motion well, enabling globally
consistent eye pivots to be employed without interpenetration.

6.1. Rotation Alignment

We represent the set of facial meshes as a 3N×M matrix X, where
each column of X is a 3N dimensional vector X t , t = 1 . . .M, rep-
resenting the interleaved x, y, and z coordinates of the N vertices
of mesh t. We assume a low-dimensional deformation basis, and
hence X = BW in the absence of rigid transformations, where B is
a 3N×K basis matrix with K�M, and W is a K×M weight ma-
trix with columns W t corresponding to the basis activations of each
X t . (We do not separately add the mean mesh in the deformation
model, so it will be included as the first column of B.) The trou-
ble is that each X t may actually have a different rigid transform, so
that X t = RtBW t +T t for some unknown rotation Rt and transla-
tion T t , rendering B and W t difficult to discover. Translation can be
factored out of the problem by analyzing the mesh edges ~X t rather
than the vertices X t , defining B̃ appropriately so that ~X t = Rt B̃W t ,
and defining a matrix X̃ having columns ~X t . This eliminates T t ,
however the rotations Rt still obfuscate the solution.

To solve this, we first roughly align the meshes using Procrustes
method so that any remaining relative rotations are small. Recall
that for rotations of magnitude O(ε), composing rotations is equal
to summing rotations up to an O(ε2) error, as in the exponential
map Rt = I+ rt

xGx + rt
yGy + rt

zGz +O(
∥∥rt∥∥2

), where rt is the Ro-
drigues vector corresponding to Rt and Gx, Gy, Gz are the genera-
tor functions for the SO3 matrix lie group:

Gx =

0 0 0
0 0 −1
0 1 0

,Gy =

 0 0 1
0 0 0
−1 0 0

,Gz =

0 −1 0
1 0 0
0 0 0

.
(4)

Defining G∗x as a block diagonal matrix with Gx repeated along
the diagonal (and likewise for y, z), we construct the 3N×4M ma-
trix X̂ =

[
X̃ G∗x X̃ G∗y X̃ G∗z X̃

]
, forming a basis that

spans the set of meshes (and hence deformation) as well as the local
rotation neighborhood, up to the O(

∥∥rt∥∥2
) error mentioned previ-

ously. Because the last three block columns of this matrix represent
small rotation differentials, and composition of small rotations is
linear, they lie in the same subspace as any rotational components
of the first block column, and therefore performing column-wise
principal component analysis on this matrix without mean subtrac-
tion separates deformation and rotation bases, as X̂ = B̂Ŵ. There
are at most M deformation bases in B̂ and three times as many rota-
tion bases, so we can assume that 3 out of 4 bases are rotational but
need to identify which ones. To do this, we score each basis with
a data weight and a rotation weight. The data weight for the basis
at column b in B̂ is the sum of the squares of the coefficients in the
first M columns of row b of Ŵ, and the rotation weight is the sum
of the squares of the coefficients in the last 3M columns of row b
of Ŵ. The rotational score of column b is then the rotation weight
divided by the sum of the data weight and rotation weight. We as-
sume the 3M columns with the greatest such score represent rota-
tions of meshes and rotations of deformation bases. The remaining
M columns form a basis with deformation only (up to O(

∥∥rt∥∥2
)),

which we call the rotation suppressed basis B̃s, and use it to sup-
press rotation by projecting X̃← B̃sB̃T

s X̃. This may also contain
a residual global rotation, so we compute another rigid alignment
between the mean over all ~X t and (the edges of) our template mesh,
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and apply this rotation to update all ~X t , making convergence pos-
sible. We iterate the entire procedure starting from the construction
of X̂ until convergence, which we usually observed in 10 to 20 iter-
ations. Finally, we compute the closest rigid rotation between each
original ~X t and the final rotation suppressed ~X t to discover Rt .

6.2. Translation Alignment

After Rt and W t are computed using the method in Section 6.1,
there remains a translation ambiguity in obtaining B. We define the
rotationally aligned mesh At = RtTX t , and we define the aligned-
space translation τ

t = RtTT t , thus At = BW t + τ
t . We compute

the mean of At and compute and apply the closest rigid transla-
tion to align it with the template mesh, denoting the result Āt . We
then wish to discover τt , t = 1 . . .M such that each At − τt is well
aligned to Āt . Since our model has eyes, we also wish to discover
globally consistent eye pivot points in an aligned head pose space,
which we call ē0 and ē1, and allow the eyes to move around slightly
relative to the facial surface, while being constrained to the eyelid
vertices using the same distance constraints as in Section 5.5, in
order to achieve globally consistent pivot locations. We find ē0, ē1,
and τt , t = 1 . . .M minimizing the following energy function using
the Ceres solver [AMO]:

M

∑
t=1

[
∑
i∈S

ψ(
∥∥at

i− τt − āt
i
∥∥)

+
1

∑
j=0

∑
i∈E j

φ(
∥∥at

i− τt − ē j
∥∥,∥∥∥yi− eY

j

∥∥∥)], (5)

where at
i is a vertex in mesh At (and āt

i in Āt ), and ψ is the Tukey
biweight loss function tuned to ignore cumulative error past 1 cm.
With τ

t computed, we let T t = Rt
τ

t .

6.3. Dimension Reduction

With Rt and T t computed for all meshes in Sections 6.1 and 6.2, we
may remove the relative rigid transforms from all meshes to place
them into an aligned pose space. We perform a weighted princi-
ple component analysis, with vertices weighted by the mean of the
confidence αi (see Section 5.4), producing the basis B and weight
matrix W. We truncate the basis to reduce noise and inconsistencies
across poses in areas of ambiguous matching to the shared tem-
plate, and in areas of insufficient data that are essentially inferred
by the Laplacian prior, such as the back and top of the head.

7. Results

We demonstrate our method for dynamic facial reconstruction with
five subjects - three male and two female. The first four subjects
were recorded in a LED sphere under flat-lit static blue lighting.
The blue light gives us excellent texture cues for optical flow. We
used 12 Ximea monochrome 2048×2048 machine vision cameras
as seen in Fig. 11. We synchronized the LEDs with cameras at
72Hz, and only exposed the camera shutter for 2ms to eliminate
motion blur as much as possible. Also pulsing the LEDs for a
shorter period of time reduces the perceived brightness to the sub-
ject, and is more suitable for recording natural facial performance.

Figure 11: 12 views of one frame of a performance sequence. Us-
ing flat blue lighting provides sharp imagery.

Figure 12: Zoomed renderings of different facial regions of three
subjects. Top: results after coarse-scale fitting using the shared
template (Section 4.2). The landmarks incorrectly located the eyes
or mouth in some frames. Middle: results after pose estimation and
denoising (4.3). Bottom: results after fine-scale consistent mesh
propagation (4.4) showing the recovery of correct shapes.

Though we captured 72Hz, we only processed 24Hz in the results,
to reduce computation time.

Fig. 12 shows intermediate results from each reconstruction step
described in Sections 4.2 through 4.4. This is a particularly chal-
lenging case as the initial facial landmark detector matches large-
scale facial proportions but struggles in the presence of facial hair
that partially occludes the lips and teeth. Artifacts remain even after
dense optical flow in Section 4.2. PCA based denoising (4.3) and
fine-scale consistent mesh propagation (4.4) fill in more accurate
mouth and eye contours that agree with inset photographs.

An alternative approach would be to initialize image-based mesh
warping with a morphable model [TZN∗15] in place of the Digi-
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tal Emily template (Fig. 13). To perform this comparison, we fitted
a morphable model to multi-view imagery of a male subject (Fig.
14(a)) and filled in the rest of the head topology using Laplacian
mesh deformation (Fig. 13(b)). We then generated synthetic ren-
derings of the morphable model using estimated morphable albedo
and inpainted textures. Our technique reconstructs more geometric
details such as the nasolabial fold on Fig. 13(c) which are not cap-
tured well by the linear deformation model in Fig. 13(a), perhaps
because our method employs stereo cues from multi-view data. Fig.
14(b) illustrates the warped image to match (e) in the same camera,
compared to the warped image (d) starting from the Digital Emily
model (c) in a similar camera view.

Our final geometry closely matches fine details in the original
photographs. Fig. 15 shows directly deformed artist quality topol-
ogy (a) and a captured detail layer (b) in a calibrated camera view.
Overlaying half the face onto the original photograph shows good
agreement for details such as forehead wrinkles.

Fig. 16 shows several frames from a highly expressive facial per-
formance reconstructed on a high-quality template mesh using our
pipeline. The reconstructed meshes shown in wire-frame with and
without texture mapping indicate good agreement with the actual
performance as well as texture consistency across frames. The de-
tail enhancement from Section 4.6 produces high-resolution dy-
namic details such as pores, forehead wrinkles, and crows feet,
adding greater fidelity to the geometry.

We directly compare our method with [BHB∗11] based on pub-
licly available video datasets as shown in Fig. 17. Our method is
able to recover significantly greater skin detail and realistic facial
features particularly around the mouth, eyes, and nose, as well as
completing the full head. Our system also does not rely on tempo-
ral flow making it easier to parallelize each frame independently
for faster processing times. Fig. 18 also illustrates the accuracy of
our method compared to the multi-view reconstruction method of
[FP10]. Though we never explicitly compute a point cloud or depth
map, the optical flow computation is closely related to stereo corre-
spondence and our result is a very close match to the multi-view
stereo result (as indicated by the speckle pattern apparent when
overlaying the two meshes with different colors). Unlike [FP10]
our technique naturally fills in occluded or missing regions such
as the back of the head and provides consistent topology across
subjects and dynamic sequences. We can reconstruct a single static
frame as shown in Fig. 5 or an entire consistent sequence.

Since our method reconstructs the shape and deformation on a
consistent UV space and topology, we can transfer attributes such
as appearance or deformation between subjects. Fig. 19 shows mor-
phing between facial performances of three subjects, with smooth
transition from one subject to the next. Unlike previous perfor-
mance transfer techniques, the recovered topology is inherent to
the reconstruction and does not require any post processing.

8. Limitations

While our technique yields a robust system and provides several
benefits compared to existing techniques, it has several limitations.
Initial landmark detection may incorrectly locate a landmark, for
example sometimes facial hair will be interpreted as a mouth. Im-

(a) (b) (c) (d)

Figure 13: Comparison using a morphable model of [TZN∗15] as
a initial template. (a) Front face region captured by the previous
technique, (b) stitched on our full head topology. (c) Resulting ge-
ometry from 4.2 deformed using our method with (b) as a template,
compared to (d) the result of using the Digital Emily template. The
linear morphable model misses details in the nasolabial fold.

(a) (b) (c) (d) (e)

Figure 14: (a) Synthetic rendering of the morphable model from
Fig. 13(b). (b) Result using our image warping method to warp (a)
to match real photograph (e). Similarly the common template image
(c) is warped to match (e), producing plausible coarse-scale facial
feature matching in (d).

provements in landmark detection would help here. The coarse-
scale template alignment fails in some areas when the appearance
of the subject and the template differ significantly, which can hap-
pen in the presence of facial hair or when the tongue and teeth be-
come visible as they are not part of the template (see Fig. 20). While
these errors are often mitigated by our denoising technique, in the
future it would be of interest to improve tracking in such regions
by providing additional semantics such as more detailed facial fea-
ture segmentation and classification, or by combining tracking from
more than one template to cover a larger appearance space. While
our appearance-driven mesh deformation warps the image and de-
forms the personalized template progressively closer to the solu-

(a) (b)

Figure 15: (a) High quality mesh deformed using our technique;
(b) high-resolution displacement details. Half-face overlay visual-
ization indicates good agreement and topology flow around geo-
metric details within the facial expression.
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Figure 16: Dynamic face reconstruction from multi-view dataset of a male subject shown from one of the calibrated cameras (top). Wireframe
rendering (second) and per frame texture rendering (third) from the same camera. Enhanced details captured with our technique (bottom)
shows high quality agreement with the fine-scale details in the photograph.

(a) (b) (c)

Figure 17: Reconstructed mesh (a), enhanced displacement details with our technique (b), and comparison to previous work (c). Our method
automatically captures whole head topology including nostrils, back of the head, mouth interior, and eyes, as well as skin details.
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(a) (b) (c)
Figure 18: Comparison of our result (a) to PMVS2 [FP10] (b).
Overlaying the meshes in (c) indicates a good geometric match.

tion, registration error could still occur under significant appear-
ance change. This could particularly occur around the eyes and the
mouth due to occlusion. Previous works are also susceptible to such
occlusion artifacts. Our facial surface details come from dynamic
high-frequency appearance changes in the flat-lit video, but as with
other passive illumination techniques, they miss some of the facial
texture realism obtainable with active photometric stereo processes
such as in [GFT∗11]. If such an active-illumination scan of the sub-
ject could be used as the template mesh, our technique could prop-
agate its high-frequency details to the entire performance, and dy-
namic skin microgeometry could be simulated as as in [NFA∗15].
Furthermore, it would be of interest to allow the animator to con-
veniently modify the captured performances; this could be faciliti-
ated by identifying sparse localized deformation components as in
[NVW∗13] or performance morphing techniques as in [MBW∗15].

9. Discussion

We have presented an entirely automatic method to accurately track
facial performance geometry from multi-view video, producing
consistent results on an artist-friendly mesh for multiple subjects
from a single template. Unlike previous works that employ tempo-
ral optical flow, our approach simultaneously optimizes stereo and
consistency objectives independently for each instant in time. We
demonstrated an appearance-driven mesh deformation algorithm
that leverages landmark detection and optical flow techniques,
which produces coarse-scale facial feature consistency across sub-
jects and fine-scale consistency across frames of the same subject.
We also demonstrated a displacement map estimation scheme that
compares the uv-space texture of each frame against an automat-
ically selected neutral frame to produce stronger displacements in
dynamic facial wrinkles. Our method operates solely in the desired
artist mesh domain and does not rely on complex facial rigs or mor-
phable models. While performance retargeting is beyond the scope
of this work, performances captured using our proposed pipeline
could be employed as high-quality inputs into retargeting systems
such as [LYYB13]. To our knowledge, this is the first method to
produce facial performance capture results with detail on par with
multi-view stereo and pore-level consistent parameterization with-
out temporal optical flow, and could lead to interesting applications
in building databases of morphable characters and simpler facial
performance capture pipelines.
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Figure 19: Since our method reconstructs the face on a common head topology with coarse-scale feature consistency across subjects,
blending between different facial performances is easy. Here we transition between facial performances from three different subjects.

(a) (b) (c) (d)

Figure 20: Our system struggles to reconstruct features that are
not represented by the template. For example, visible facial hair or
tongue (a) may cause misplacement of the landmarks employed in
4.2 (b), which the denoising in 4.3 may not be able to recover (c),
and remain as artifacts after fine-scale warping in 4.4 (d).
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