
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#1442
ECCV

#1442

Contextual Based Image Inpainting: Infer,
Match and Translate

Anonymous ECCV submission

Paper ID 1442

Abstract. We study the task of image inpainting, which is to fill in the
missing region of an incomplete image with plausible contents. To this
end, we propose a learning-based approach to generate visually coherent
completion given a high-resolution image with missing components. In
order to overcome the difficulty to directly learn the distribution of high-
dimensional image data, we divide the task into inference, translation as
two separate steps and model each step with a deep neural network. We
also use simple heuristics to guide matching of textures from boundary
to the hole. We show that, by using such techniques, inpainting reduces
to the problem of learning two image-feature translation functions of
much smaller dimensionality. We evaluate our method on several public
datasets and show that we not only generate results of comparable or
better visual quality, but are orders of magnitude faster than previous
state-of-the-art methods.

1 Introduction

(a) (b) (c) (d) (e) (f)

Fig. 1. Our result comparing with GL inpainting [1]. (a) & (d) The input image with
missing hole. (b) & (d) Inpainting result given by GL inpainting [1]. (c) & (f) Final
inpainting result using our approach. The size of images are 512x512.

.

The problem of generating photo-realistic images from sampled noise or con-
ditioning on other inputs such as images, texts or labels has been heavily investi-
gated. In spite of recent progress of deep generative models such as PixelCNN [2],
VAE [3] and GANs [4], generating high-resolution images remains a difficult task.
This is mainly because modeling the distribution of pixels is difficult and the
trained models easily introduce blurry components and artifacts when the di-
mensionality becomes high. Several approaches have been proposed to alleviate



045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV

#1442
ECCV

#1442

2 ECCV-18 submission ID 1442

the problem, usually by leveraging multi-scale training [5, 6] or incorporating
prior information [7].

Instead of tackling the general image synthesis problem, we are interested in
the task of image inpainting. The task can be described as: given an incomplete
image as input, how do we fill in the missing parts with semantically and visually
plausible contents. It can also be interpreted as the problem of image synthesis
conditioned on a set of known pixels. We are interested in this problem for several
reasons. First, it is a well-motivated task. It is a common scenario where we may
want to remove unwanted objects from pictures or videos, or we may want to
restore damaged photographs. Second, while purely unsupervised learning may
be challenging for large inputs, we show in this work that the problem becomes
more constrained and tractable when we train in a multi-stage self-supervised
manner and leverage the high-frequency information in the known region.

Context-encoder [8] is one of the first works that apply deep neural networks
for image inpainting. It trains a deep generative model that maps an incomplete
image to a complete image using reconstruction loss and adversarial loss. While
combining adversarial loss significantly improves the inpainting quality, the re-
sults still lack high-frequency details and contain notable artifacts. In addition,
we found it fails to train on larger inputs like 256x256 or 512x512. Hence it can-
not generalize to the high-resolution inpainting task. More recently [1] improved
the result by using dilated convolution and an additional local discriminator.
However it is still limited to relatively small images and holes due to the spatial
support of the model.

Yang et al. [9] proposes to use style transfer for image inpainting. More
specifically, it initializes the hole with the output of context-encoder, and then
improves the texture by using style transfer techniques [10] to propagate the
high-frequency textures from the boundary to the hole. It shows that matching
the neural features not only transfers artistic styles, but can also synthesize real-
world images. The approach is optimization-based and applicable to images of
arbitrary sizes. However, the computation is costly and it takes long time to
inpaint a large image.

Our approach overcomes the limitation of the aforementioned methods. Being
similar to [9], we decouple the inpainting process into two stages: inferrence
and translation. In the inferrence stage, we train an Image2Feature network
that initializes the hole with coarse prediction and extract its features. The
prediction is blurry but contains high-level structure information in the hole.
In the translation stage, we train a Feature2Image network that transforms the
feature back into a complete image. It refines the contents in the hole and outputs
a complete image with sharp and realistic texture. Its main difference with [9]
is that, instead of relying on optimization, we model texture refinement as a
learning problem. Both networks can be trained end-to-end and, with the trained
models, the inference can be done in a single forward pass, which is much faster
than iterative optimization.

To ease the difficulty of training the Feature2Image network, we design a
“patch-swap” layer that propagates the high-frequency texture details from the



090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV

#1442
ECCV

#1442

ECCV-18 submission ID 1442 3

boundary to the hole. The patch-swap layer takes the feature map as input, and
replaces each neural patch inside the hole with the most similar patch on the
boundary. We then use the new feature map as the input to the Feature2Image
network. Presumably by re-using the neural patches on the boundary, the feature
map contains sufficient details making the high-resolution image reconstruction
feasible.

Our experience is that it is difficult to directly train a generative model for
high-resolution inpainting. This might be because the space of mapping from an
incomplete image to a complete image is overly large. We address this by reducing
the dimensionality of either the input or the output. For the Image2Feature
network, we only produce a blurry and coarse inpainting so that the output space
is constrained. For the Feature2Image network, the space of input is curtailed
when we initialize with the high-level prior from the Image2Feature network and
the low-level prior from patch-swap. We observe that reducing the dimensionality
of input or output space enables us to train both models much more easily at
higher resolutions.

When being compared with the GL inpainting [1], we generate sharper and
better inpainting results at size 256x256. Our approach also scales to larger
resolution at 512x512, while GL inpainting cannot handle large hole generations.
As compared with neural inpainting [9], our results have comparable or better
visual quality in most examples. Especially our synthesized contents blends with
the boundary more seamlessly. On top of that, our approach is much faster.

The main contributions of this paper are summarized as follows:

1. We design a learning-based inpainting system that is able to synthesize sub-
stantial missing parts in a high-resolution image with high-quality contents
and textures.

2. We propose a novel and robust training scheme that addresses the issue of
noisy input and avoids under-fitting.

3. We show that our trained model can be directly used on other tasks like
style transfer and achieve performance comparable with state-of-the-art.

2 Related Work

Image synthesis using deep learning Using deep learning techniques for
generative image modeling has gain remarkable progress recently. Based on how
we model the density for image sampling, we can classify those methods into
different categories. An important category is to implicitly model the density,
predominantly based on the generative adversarial networks (GANs) [4]. The
vanilla GANs has shown promising performance to generate sharper images, but
training instability makes it hard to scale to higher resolution images. Several
techniques have been proposed to stabilize the training process, including DC-
GAN [11], energy-based GAN [12], Wasserstein GAN (WGAN) [13, 14], WGAN-
GP [15], BEGAN [16], LSGAN [17] and the more recent Progressive GANs [18].
A complete list and benchmark of various GANs can be found at [19].



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV

#1442
ECCV

#1442

4 ECCV-18 submission ID 1442

Patch-Swap

Skip Connections

Image2Feature Network Feature2Image Network

Real/Fake Pair Real/Fake Pair

●●●

VGG Layers

Fig. 2. Overview of our network architecture. We use Image2Feature network as coarse
inferrence and use VGG network to extract a feature map. Then patch-swap matches
neural patches from boundary to the hole. Finally the Feature2Image network trans-
lates to a complete, high-resolution image.

There are also plenty of literatures that address the problem of conditioning
image generation, which is also more relevant to the inpainting task. For exam-
ple, [5, 20] use GANs to generate images from texts. [21–23] study the problem of
image super-resolution, which can be interpreted as image synthesis condition-
ing on low-resolution image. Related to our image-feature translation models
are Pix2Pix [24] and CycleGAN [25] which translate images across different do-
mains. Different from their work, our networks translate between feature space
and image space. Finally using deep neural network for image inpainting has
been studied in [26, 8, 9, 27, 1].

Neural style transfer Similar to [9], our method is based on recent works in
neural style transfer. Gatys et al. [28] first formulates style transfer as an opti-
mization problem that combines texture synthesis with content reconstruction.
[29, 30, 2] alternatively use neural-patch based similarity matching between the
content and style images. In particular, Li and Wand [10] optimize the output
image such that each of its neural patch matches with a similar neural patch
in the style image. This enables arbitrary style transfer at the cost of expen-
sive computation. [31] proposes a fast approximation to [10] where it constructs
the feature map directly and uses an inverse network to synthesize the image
in feed-forward manner. However, we observe using off-the-shelf style transfer
techniques for inpainting is not sufficient to generate high-quality result and we
must propose new training principals and architectures to address the specific
property of the inpainting problem.

Non-neural image inpainting Traditional non-neural inpainting algorithms [32,
33] mostly work on the image space. While they share similar ideas of patch
matching and propagation, they are usually agnostic to high-level semantic and
structural information. A complete comparison with non-neural inpainting algo-
rithms is beyond the scope of our paper.



180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV

#1442
ECCV

#1442

ECCV-18 submission ID 1442 5

3 Methodology

3.1 Problem description

We formalize the task of image inpainting as follows: suppose we are given an
incomplete input image I0, with R and R̄ representing the missing region (the
hole) and the known region (the boundary) respectively. We would like to fill in
R with plausible contents IR and combine it with I0 as a new, complete image
I. Evaluating the quality of inpainting is mostly subject to human perception
but ideally IR should meet the following criteria: 1. It has sharp and realistic-
looking textures; 2. It contains meaningful content and is coherent with IR̄ and
3. It looks like what appears in the ground truth image Igt (if available). In our
context, R can be either a single hole or multiple holes. It may also come with
arbitrary shape, placed on random location of the image.

3.2 System Overview

Our system divides the image inpainting tasks into three steps:

1. Inferrence: We use an Image2Feature network to fill an incomplete im-
age with coarse contents as inference and extract a feature map from the
inpainted image.

2. Matching: We use patch-swap on the feature map to match the neural
patches from the high-resolution boundary to the hole with coarse inference.

3. Translation: We use a Feature2Image network to translate the feature map
to a complete image.

The entire pipeline is illustrated in Fig. 2.

3.3 Training

We introduce separate steps of training the Image2Feature and Feature2Image
network. For illustration purpose we assume the size of I0 is 256x256x3 and the
hole R has size 128x128.

3.3.1 Inference: Training Image2Feature Network The goal of the Im-
age2Feature network is to fill in the hole with coarse prediction. During training,
the input to the Image2Feature translation network is the 256x256x3 incomplete
image I0 and the output is a feature map F1 of size 64x64x256. The network
consists of an FCN-based module G1, which consists of an down-sampling front
end, multiple intermediate residual blocks and an up-sampling back end. G1 is
followed by the initial layers of the 19-layer VGG network [34]. Here we use
the filter pyramid of the VGG network as a higher-level representation of im-
ages similar to [28]. At first, I0 is given as input to G1 which produces a coarse
prediction IR1 of size 128x128. IR1 is then embedded into R forming a complete
image I1, which again passes through the VGG19 network to get the activation



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV

#1442
ECCV

#1442

6 ECCV-18 submission ID 1442

of relu3 1 as F1. F1 has size 64x64x256. We also use an additional PatchGAN
discriminator D1 to facilitate adversarial training, which takes a pair of images
as input, and outputs a vector of true/fake probabilities.

For G1, the down-sampling front-end consists of three convolutional layers,
and each layer has stride 2. The intermediate part has 9 residual blocks stacked
together. The up-sampling back-end is the reverse of the front-end and consists of
three transposed convolution with stride 2. Every convolutional layer is followed
by batch normalization (BN) and ReLu activation, except for the last layer which
outputs the image. We also use dilated convolution in all residual blocks. Similar
architecture has been used in [35] for image synthesis and [1] for inpainting.
Different from [35], we use dilated layer to increase the size of receptive field.
Comparing with [1], our receptive field is also larger given we have more down-
sampling blocks and more dilated layers in residual blocks.

During training, the overall loss function is defined as:

LG1
= λ1Lperceptual + λ2Ladv. (1)

The first term is the perceptual loss, which is shown to correspond better with
human perception of similarity [36] and has been widely used in many tasks [37–
39, 31]:

Lperceptual(F, Igt) = ‖ MF ◦ (F1 − vgg(Igt)) ‖1 . (2)

HereMF are the weighted masks yielding the loss to be computed only on the
hole r. We also assign higher weight to the overlapping pixels between the hole
and the boundary to ensure the composite is coherent. The weights of VGG19
network are loaded from the ImageNet pre-trained model and are fixed during
training.

The adversarial loss is based on Generative Adversarial Networks (GANs)
and is defined as:

Ladv = max
D1

E[log(D1(I0, Igt)) + log(1−D1(I0, I1))]. (3)

We use a pair of images as input to the discriminator. Under the setting of
adversarial training, the real pair is the incomplete image I0 and the original
image Igt, while the fake pair is I0 and the prediction I1.

To align the absolute value of each loss, we set the weight λ1 = 10 and
λ2 = 1 respectively. We use Adam optimizer for training. The learning rate is
set as lrG = 2e−3 and lrD = 2e−4 and the momentum is set to 0.5.

3.3.2 Match: Patch-swap operation Patch-swap is an operation which
transforms F1 into a new feature map F ′

1. The idea is that the prediction IR1
is blurry, lacking many of the high-frequency details. Intuitively, we would like
to propagate the textures from IR̄1 onto IR1 but still preserves the high-level
information of IR1 . Instead of operating on I1 directly, we use F1 as a surrogate
for texture propagation. Similarly, we use r and r̄ to denote the region on F1



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

ECCV

#1442
ECCV

#1442

ECCV-18 submission ID 1442 7

corresponding to R and R̄ on I1. For each 3x3 neural patch pi(i = 1, 2, ..., N) of
F1 overlapping with r, we find the closest-matching neural patch in r̄ based on
the following cross-correlation metric:

d(p, p′) =
< p, p′ >

‖ p ‖ · ‖ p′ ‖

Suppose the closest-matching patch of pi is qi, we then replace pi with qi. After
each patch in r is swapped with its most similar patch in r̄, overlapping patches
are averaged and the output is a new feature map F ′

1. We illustrate the process
in Fig. 3.

�̅� �̅�

𝑟𝑟

(a) search (b) swap

Fig. 3. Illustration of patch-swap operation. Each neural patch in the hole r searches
for the most similar neural patch on the boundary r̄, and then swaps with that patch.

Measuring the cross-correlations for all the neural patch pairs between the
hole and boundary is computationally expensive. To address this issue, we follow
similar implementation in [31] and speed up the computation using paralleled
convolution. We summarize the algorithm as following steps. First, we normalize
and stack the neural patches on r̄ and view the stacked vector as a convolution
filter. Next we apply the convolution filter on Fr. The result is that at each
location of r we get a vector of values which is the cross-correlation between the
neural patch centered at that location and all patches in r̄. Finally we replace
the patch in r with the patch in r̄ of maximum cross-correlation. Since the
whole process can be parallelized, the amount of time is significantly reduced.
In practice it only takes about 0.1 seconds to process a 64x64x256 feature map.

3.3.3 Translate: Training Feature2Image translation network The goal
of the Feature2Image network is to learn a mapping from the swapped feature
map to a complete and sharp image. It has a U-Net style generator G2 which
is similar to G1, except the number of hidden layers are different. The input
to G2 is a feature map of size 64x64x256. The generator has seven convolution
blocks and eight deconvolution blocks, and the first six deconvolutional layers are
connected with the convolutional layers using skip connection. The output is a
complete 256x256x3 image. It also consists of a Patch-GAN based discriminator
D2 for adversarial training. However different from the Image2Feature network
which takes a pair of images as input, the input to D2 is a pair of image and
feature map.



315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV

#1442
ECCV

#1442

8 ECCV-18 submission ID 1442

A straightforward training paradigm is to use the output of the Image2Feature
network F1 as input to the patch-swap layer, and then use the swapped feature
F ′

1 to train the Feature2Image model. In this way, the feature map is derived
from the coarse prediction I1 and the whole system can be trained end-to-end.
However in practice, we found that this leads to poor-quality reconstruction I
with notable noise and artifacts (Sec. 4). We further observed that using the
ground truth as training input gives rise to results of significantly improved vi-
sual quality. That is, we use the feature map Fgt = vgg(Igt) as input to the
patch-swap layer, and then use the swapped feature F ′

gt = patch swap(Fgt) to
train the Feature2Image model. Since Igt is not accessible at test time, we still use
F ′

1 = patch swap(F1) as input for inference. Note that now the Feature2Image
model trains and tests with different types of input, which is not a usual practice
to train a machine learning model.

Here we provide some intuition for this phenomenon. Essentially by training
the Feature2Image network, we are learning a mapping from the feature space
to the image space. Since F1 is the output of the Image2Feature network, it
inherently contains a significant amount of noise and ambiguity. Therefore the
feature space made up of F ′

1 has much higher dimensionality than the feature
space made up of F ′

gt. The outcome is that the model easily under-fits F ′
1, making

it difficult to learn a good mapping. Alternatively by using F ′
gt, we are selecting a

clean, compact subset of features such that the space of mapping is much smaller,
making it easier to learn. Our experiment also shows that the model trained with
ground truth generalizes well to noisy input F ′

1 at test time. Similar to [40], we
can further improve the robustness by sampling from both the ground truth and
Image2Feature prediction.

The overall loss function for the Feature2Image translation network is defined
as:

LG2
= λ1Lperceptual + λ2Ladv. (4)

The reconstruction loss is defined on the entire image between the final output
I and the ground truth Igt:

Lperceptual(I, Igt) =‖ vgg(I)− vgg(Igt) ‖2 . (5)

The adversarial loss is given by the discriminator D2 and is defined as:

Ladv = max
D2

E[log(D2(F ′
gt, Igt)) + log(1−D2(F ′

gt, I))]. (6)

The real and fake pair for adversarial training are (F ′
gt, Igt) and (F ′

gt, I).
When training the Feature2Image network we set λ1 = 10 and λ2 = 1. For the

learning rate, we set lrG = 2e−4 and lrD = 2e−4. Same as the Image2Feature
network, the momentum is set to 0.5.

3.4 Multi-scale Inference

Given the trained models, inference is straight-forward and can be done in a
single forward pass. The input I0 successively passes through the Image2Feature



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV

#1442
ECCV

#1442

ECCV-18 submission ID 1442 9

network to get I1 and F1 = vgg(I1), then the patch-swap layer (F ′
1), and then

finally the Feature2Image network (I). We then use the center of I and blend
with I0 as the output.

𝐼"
G$$

𝐼$" 𝐹$" 𝐼"𝐹′$"

𝐼$$

VGG G'"swap

upsample
𝐹$$

VGG

𝐹′$$ 𝐼$

G'$

𝐼$' 𝐹$' 𝐹′$' 𝐼

G''

swap

VGG

upsample

swap

Fig. 4. Illustration of multi-scale inference.

Our framework can be easily adapted to multi-scale. The key is that we
directly upsample the output of the lower scale as the input to the Feature2Image
network of the next scale (after using VGG network to extract features and apply
patch-swap). In this way, we will only need the Image2Feature network at the
smallest scale s0 to get I0

1 and F 0
1 . At higher scales si(i > 0) we simply set

Isi1 = upsample(Isi−1) and let F si
1 = vgg(Isi1 ) (Fig. 4). Training Image2Feature

network can be challenging at high resolution. However by using multi-scale
approach we are able to initialize from lower scales instead, allowing us to handle
large inputs effectively. We use multi-scale inference on all our experiments.

4 Experiments

4.1 Experiment Setup

We separately train and test on two public datasets: COCO [41] and ImageNet
CLS-LOC [42]. The number of training images in each dataset are: 118,287 for
COCO and 1,281,167 for ImageNet CLS-LOC. We compare with content aware
fill (CAF) [32], context encoder (CE) [8], neural patch synthesis (NPS) [9] and
global local inpainting (GLI) [1]. For CE, NPS and GLI, we used the public
available trained model. CE and NPS are trained to handle fixed holes, while
GLI and CAF can handle arbitrary holes. To fairly evaluate, we experimented
on both settings of fixed hole and random hole. For fixed hole, we compare with
CAF, CE, NPS and GLI on image size 512x512 from ImageNet test set. The hole
is set to be 224x224 located at the image center. For random hole, we compare
with CAF and GLI, using COCO test images resized to 256x256. In the case of
random hole, the hole size ranges from 32 to 128 and is placed anywhere on the
image. We observed that for small holes on 256x256 images, using patch-swap
and Feature2Image network to refine is optional as our Image2Feature network
already generates satisfying results most of the time. While for 512x512 images,



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV

#1442
ECCV

#1442

10 ECCV-18 submission ID 1442

it is necessary to apply multi-scale inpainting, starting from size 256x256. To
address both sizes and to apply multi-scale, we train the Image2Feature network
at 256x256 and train the Feature2Image network at both 256x256 and 512x512.
During training, we use early stopping, meaning we terminate the training when
the loss on the held-out validation set converges. On our NVIDIA GeForce GTX
1080Ti GPU, training typically takes one day to finish for each model.

4.2 Results

Quantitative comparison Table 1 shows numerical comparison result between
our approach, CE [8], GLI [1] and NPS [9]. We adopt two quality measurements:
mean `1 error and SSIM. Since context encoder only inpaints 128x128 images
and we failed to train the model for larger inputs, we directly use the 128x128
results and bilinearly upsample them to 512x512. We see that although our mean
`1 error is higher, we achieve best SSIM among all the methods, showing our
results are closer to ground truth by human perception. Besides, mean `1 error
is not an optimal measure for inpainting, as it favors averaged colors and blurry
results and does not directly account for the end goal of perceptual quality.

Method Mean `1 Error SSIM

CE [8] 15.46% 0.87

NPS [9] 15.13% 0.88

GLI [1] 15.81% 0.89

our approach 15.61% 0.89

Table 1. Numerical comparison on 200 test images of ImageNet.

Visual result Fig. 9 shows our comparison with GLI [1] in random hole cases.
We can see that our method could handle multiple situations better, such as
object removal, object completion and texture generation, while GLIs results
are noisier and less coherent. From Fig. 10, we could also find that our results
are better than GLI most of the time for large holes. This shows that directly
training a network for large hole inpainting is difficult, and it is where our “patch-
swap” can be most helpful. In addition, our results have significantly less artifacts
than GLI. Comparing with CAF, we can better predict the global structure and
fill in contents more coherent with the surrounding context. Comparing with
CE, we can handle much larger images and the synthesized contents are much
sharper. Comparing with NPS whose results mostly depend on CE, we have
similar or better quality most of the time, and our algorithm also runs much
faster. Meanwhile, our final results improve over the intermediate output of
Image2Feature. This demonstrates that using patch-swap and Feature2Image
transformation is beneficial and necessary.
User study To better evaluate and compare with other methods, we perform
a user study by seeking feedback from 20 users. We give each user a set of
20 questions. In each question the user is presented with an incomplete image



450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV

#1442
ECCV

#1442

ECCV-18 submission ID 1442 11

with center fixed hole and is asked to compare the inpainting result of NPS,
GLI and ours. We found our results are ranked best most of the time: in 75.9%
of the rankings our result receives highest score. In particular, our results are
overwhelmingly better than GLI, receiving higher score 91.2% of the time. This
is largely because GLI does not handle large holes well. Our results are also
comparable with NPS, ranking higher or the same 86.2% of the time.

4.3 Analysis

Comparison Comparing with [9], not only our approach is much faster but
also has several advantages. First, the Feature2Image network synthesizes the
entire image while [9] only optimizes the hole part. By aligning the color of
the boundary between the output and the input, we can slightly adjust the
tone to make the hole blend with the boundary more seamlessly and naturally
(Fig. 10). Second, our model is trained to directly model the statistics of real-
world images and works well on all resolutions, while [9] is unable to produce
sharp results when the image is small. Comparing with other learning-based
inpainting methods, our approach is more general as we can handle larger inputs
like 512x512. In contrast, [8] can only inpaint 128x128 images while [1] is limited
to 256x256 images and the holes are limited to be smaller than 128x128.
Ablation study For the Feature2Image network, we observed that replacing the
deconvolutional layers in the decoder part with resize-convolution layers resolves
the checkerboard patterns as described in [43] (Fig. 5 left). We also tried only
using `2 loss instead of perceptual loss, which gives blurrier inpainting (Fig. 5
middle). Additionally, we experimented different activation layers of VGG19 to
extract features and found that relu3 1 works better than relu2 1 and relu4 1.

We may also use iterative inference by running Feature2Image network mul-
tiple times. At each iteration the final output is used as input to VGG and
patch-swap, and then again given to Feature2Image network for inference. We
found iteratively applying Feature2Image improves the sharpness of the texture
but sometimes aggregates the artifacts near the boundary.

For the Image2Feature network, an alternative is to use vanilla context en-
coder [8] to generate I0

0 as initial inference. However we found our model produces
better results as it is much deeper, and leverages the fully convolutional network
and dilated layer.

As discussed in Sec. 3.3, an important practice to guarantee successful train-
ing of the Feature2Image network is to use ground truth image as input rather
than using the output of the Image2Feature network. Fig. 5 also shows that
training with the prediction from the Image2Feature network gives very noisy
results, while the models trained with ground truth or further fine-tuned with
ground-truth and prediction mixtures can produce satisfying inpainting.

Our framework can be easily applied to real-world tasks. Fig. 6 shows exam-
ples of using our approach to remove unwanted objects in photography. Given
our network is fully convolutional, it is straight-forward to apply it to photos of
arbitrary sizes. It is also able to fill in holes of arbitrary shapes, and can handle
much larger holes than [44].



495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ECCV

#1442
ECCV

#1442

12 ECCV-18 submission ID 1442

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Left: using deconvolution (a) vs resize-convolution (b). Middle: using `2 recon-
struction loss (c) vs using perceptual loss (d). Right: Training Feature2Image network
using different input data. (e) Result when trained with the Image2Feature prediction.
(f) Result when trained with ground truth. (g) Result when fine-tuned with ground
truth and prediction mixtures.

The Feature2Image network essentially learns a universal function to recon-
struct an image from a swapped feature map, therefore can also be applied on
other tasks. For example by first constructing a swapped feature map from a
content and a style image, we can use the network to reconstruct a new image
for style transfer. Fig. 7 shows examples of using our Feature2Image network
trained on COCO towards arbitrary style transfer. Although the network is ag-
nostic to the styles being transfered, it is still capable of generating satisfying
results and runs in real-time. This shows the strong generalization ability of our
learned model, as it’s only trained on a single COCO dataset unlike other style
transfer methods.

(a) (b) (c) (d) (e) (f)

Fig. 6. Arbitrary shape inpainting of real-world photography. (a) & (d) Input. (b) &
(e) Inpainting mask. (c) & (f) Output.

(a) (b) (c) (d) (e) (f)

Fig. 7. Arbitrary style transfer. (a)(d) Content. (b)(e) Style. (c)(f) Style transfer result.
.

Our approach is very good at recovering a partially missing object like a plane
or a lamp post. However, it can fail if the image has overly complicated structures



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV

#1442
ECCV

#1442

ECCV-18 submission ID 1442 13

and patterns, or a major part of an object is missing such that Image2Feature
network is unable to provide a good inference (Fig. 8).

(a) (b) (c) (d) (e) (f)

Fig. 8. Failure cases. (a)(c)(e) Input. (b)(d)(f) Output.

Fig. 9. Visual comparisons of ImageNet results with random hole. Each example from
top to bottom: input image, GLI [1], our result. All images have size 256 × 256.

5 Conclusion

We propose a learning-based approach to synthesize missing contents in a high-
resolution image. Our model is able to inpaint an image with realistic and sharp
contents in a feed-forward manner. We show that we can simplify training by
breaking down the task into multiple stages, where the mapping function in each
stage has smaller dimensionality. It is worth noting that our approach is a meta
algorithm and naturally we could explore a variety of network architectures and
training techniques to improve the inference and the final result. We also expect
that similar idea of multi-stage, multi-scale training could be used to directly
synthesize high-resolution images from sampling.



585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

ECCV

#1442
ECCV

#1442

14 ECCV-18 submission ID 1442

Fig. 10. Visual comparisons of ImageNet and COCO results. Each example from left
to right: input image, CAF [32], CE [8],NPS [9], GLI [1], our result w/o Feature2Image,
our final result. All images have size 512 × 512.



630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

ECCV
#1442

ECCV
#1442

ECCV-18 submission ID 1442 15

References

1. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and Locally Consistent Image
Completion. ACM Transactions on Graphics (Proc. of SIGGRAPH 2017) 36(4)
(2017) 107:1–107:14

2. van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.:
Conditional image generation with pixelcnn decoders. In: Advances in Neural
Information Processing Systems. (2016) 4790–4798

3. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

4. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. (2014) 2672–2680

5. Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D.: Stack-
gan: Text to photo-realistic image synthesis with stacked generative adversarial
networks. arXiv preprint arXiv:1612.03242 (2016)

6. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using
a laplacian pyramid of adversarial networks. In: Advances in neural information
processing systems. (2015) 1486–1494

7. Nguyen, A., Yosinski, J., Bengio, Y., Dosovitskiy, A., Clune, J.: Plug & play
generative networks: Conditional iterative generation of images in latent space.
arXiv preprint arXiv:1612.00005 (2016)

8. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context en-
coders: Feature learning by inpainting. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (2016) 2536–2544

9. Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image
inpainting using multi-scale neural patch synthesis. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (July 2017)

10. Li, C., Wand, M.: Combining markov random fields and convolutional neural
networks for image synthesis. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. (2016) 2479–2486

11. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learn-
ing with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434 (2015)

12. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network.
arXiv preprint arXiv:1609.03126 (2016)

13. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans. In: Advances in Neural Information Pro-
cessing Systems. (2016) 2234–2242

14. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint
arXiv:1701.07875 (2017)

15. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved
training of wasserstein gans. arXiv preprint arXiv:1704.00028 (2017)

16. Berthelot, D., Schumm, T., Metz, L.: Began: Boundary equilibrium generative
adversarial networks. arXiv preprint arXiv:1703.10717 (2017)

17. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares gener-
ative adversarial networks. arXiv preprint ArXiv:1611.04076 (2016)

18. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)



675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

ECCV
#1442

ECCV
#1442

16 ECCV-18 submission ID 1442

19. : Gans comparison without cherry-picking. https://github.com/khanrc/tf.gans-
comparison Accessed: 2017-10-29.

20. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative
adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 (2016)

21. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very
deep convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. (2016) 1646–1654

22. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: European Conference on Computer Vision, Springer
(2014) 184–199

23. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-
resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802
(2016)

24. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with con-
ditional adversarial networks. arXiv preprint arXiv:1611.07004 (2016)

25. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation us-
ing cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593 (2017)

26. Yeh, R.A., Chen, C., Lim, T.Y., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.:
Semantic image inpainting with deep generative models. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. (2017) 5485–5493

27. Wang, W., Huang, Q., You, S., Yang, C., Neumann, U.: Shape inpainting using
3d generative adversarial network and recurrent convolutional networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
(2017) 2298–2306

28. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv
preprint arXiv:1508.06576 (2015)

29. Elad, M., Milanfar, P.: Style transfer via texture synthesis. IEEE Transactions on
Image Processing 26(5) (2017) 2338–2351

30. Frigo, O., Sabater, N., Delon, J., Hellier, P.: Split and match: Example-based
adaptive patch sampling for unsupervised style transfer. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. (2016) 553–561

31. Chen, T.Q., Schmidt, M.: Fast patch-based style transfer of arbitrary style. arXiv
preprint arXiv:1612.04337 (2016)

32. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: A ran-
domized correspondence algorithm for structural image editing. ACM Trans.
Graph. 28(3) (2009) 24–1

33. Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized patch-
match correspondence algorithm. In: European Conference on Computer Vision,
Springer (2010) 29–43

34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

35. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-
resolution image synthesis and semantic manipulation with conditional gans. arXiv
preprint arXiv:1711.11585 (2017)

36. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effec-
tiveness of deep features as a perceptual metric. arXiv preprint arXiv:1801.03924
(2018)

37. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: Computer Vision and Pattern Recognition (CVPR), 2016
IEEE Conference on, IEEE (2016) 2414–2423



720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

ECCV

#1442
ECCV

#1442

ECCV-18 submission ID 1442 17

38. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: European Conference on Computer Vision, Springer (2016)
694–711

39. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics
based on deep networks. In: Advances in Neural Information Processing Systems.
(2016) 658–666

40. Zheng, S., Song, Y., Leung, T., Goodfellow, I.: Improving the robustness of deep
neural networks via stability training. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (2016) 4480–4488

41. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision, Springer (2014) 740–755

42. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision 115(3) (2015) 211–252

43. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts.
Distill (2016)

44. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image
completion. ACM Transactions on Graphics (TOG) 36(4) (2017) 107


