
Multi-View Hair Capture using Orientation Fields

Linjie Luo1 Hao Li2,1 Sylvain Paris3 Thibaut Weise4 Mark Pauly4 Szymon Rusinkiewicz1

1Princeton University 2Columbia University 3Adobe Systems, Inc. 4EPFL

Input photograph Orientation field Depth map Final merged result PMVS + Poisson [4, 7]

Figure 1: We begin with many high-resolution photographs (with unconstrained lighting), compute an orientation field for
each, and perform multi-view stereo matching using a metric based on orientation similarity. The resulting depth maps show
high-resolution details of hair strands and we integrate them into a single merged model. In contrast, conventional multi-view
stereo algorithms and merging techniques [4, 7] fail at capturing the fine hair structures.

Abstract

Reconstructing realistic 3D hair geometry is challeng-
ing due to omnipresent occlusions, complex discontinuities
and specular appearance. To address these challenges, we
propose a multi-view hair reconstruction algorithm based
on orientation fields with structure-aware aggregation. Our
key insight is that while hair’s color appearance is view-
dependent, the response to oriented filters that captures
the local hair orientation is more stable. We apply the
structure-aware aggregation to the MRF matching energy
to enforce the structural continuities implied from the local
hair orientations. Multiple depth maps from the MRF opti-
mization are then fused into a globally consistent hair ge-
ometry with a template refinement procedure. Compared to
the state-of-the-art color-based methods, our method faith-
fully reconstructs detailed hair structures. We demonstrate
the results for a number of hair styles, ranging from straight
to curly, and show that our framework is suitable for cap-
turing hair in motion.

1 Introduction

Despite its aesthetic importance in defining a person’s look,
the reconstruction of realistic hair is often neglected in
methods for 3D acquisition. Hair is one of the most chal-

lenging objects to capture using standard computer vision
techniques. Occlusions are omnipresent, and hair’s strand
geometry precludes general surface-based smoothness pri-
ors for stereo (e.g., [17]). Besides, the highly specular na-
ture of hair fibers [9] is not well modeled by standard ap-
pearance models. Even the latest facial reconstruction tech-
niques (e.g., [1]) exclude hair from the region of interest,
and so hair modeling largely remains a manual task in prac-
tice [10]. Dedicated acquisition methods have been pro-
posed [12, 6], but they rely on scanning rigs that are costly
and difficult to build. Furthermore, these methods require
lengthy capture sessions that limit their suitability to treat
hair in motion. While Hair Photobooth is perhaps the best
example of this approach, we argue that in fact all active
illumination methods will be challenging to apply to hair
capture, especially in the dynamic setting. Single-frame
methods such as noise patterns are ineffective because of
the complex geometry and occlusion of hair, while multi-
frame structured light methods such as Gray codes fail for
moving hair.

To address these difficulties we investigate a single-
shot passive multi-view stereo approach that requires only
consumer-level hardware and produces results on par with
or superior to existing techniques.

Naively applying existing stereo techniques fails be-
cause hair is specular, and hence, observed color varies
quickly with changes in viewpoint. Our key insight is
that hair orientation (which can be computed using a
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Figure 2: Our reconstruction pipeline. We use a robotic gantry to capture static images from different views. Each 4
views are grouped into a cluster to reconstruct a single accurate depth map based on orientation fields computed from input
photographs. (Section 2 and 3) Finally, the depth maps are merged into a single hair surface (Section 4).

filter bank of many — e.g. 180 — oriented Difference-of-
Gaussians (DoG) kernels) is a stable feature across nearby
viewpoints and can be used as a reliable matching crite-
rion. We leverage this idea by defining a stereo matching
metric based on similarity of local orientation that is insen-
sitive to local changes in brightness. We further improve
matching robustness by aggregating local evidence with a
scheme that accounts for the local hair structure; i.e., we
aggregate matching costs along strands but not perpendic-
ular to them. We incorporate the resulting matching score
into a coarse-to-fine multi-view stereo framework based on
Markov Random Fields (MRF). We operate on small sets of
nearby viewpoints at a time to minimize the effect of inter-
view differences in foreshortening, then merge all the result-
ing depth maps into a globally consistent detail-preserving
model of the whole head of hair.

We demonstrate that our approach can handle a wide
variety of hairstyles, that strands can be grown within the
reconstructed hair volume which is suitable for rendering,
and that our approach is capable of capturing hair in motion
when using video cameras. We quantitatively evaluate the
precision of our approach using synthetic data.

1.1 Related Work

Multi-view stereo has received significant attention [15] but
applying a generic algorithm to hair images yields unsatis-
fying results, as we illustrate in Figure 6.

A few dedicated techniques have been designed to cap-
ture hair. Paris et al. [11] introduced the idea of estimating
the orientation of hair in images, coupled with an analy-
sis of the highlights on the hair. This analysis requires a
light source to move along predefined known trajectories.
Paris et al. [12] later described Hair Photobooth, a complex
system made of several light sources, projectors, and video
cameras that captures a rich set of data to extract the hair
geometry and appearance. Jakob et al. [6] showed how to
capture individual hair strands using focal sweeps with a
camera controlled by a robotic gantry. While accurate, these

active techniques are expensive and the capture is inherently
slow because of their design. For example, the method of
Paris et al. [12] relies on time multiplexing and requires
thousands of images for a single reconstruction. Similarly,
Jakob et al. [6] uses many input photographs with a sweep-
ing focus plane across the hair volume.

Wei et al. [16] proposed a purely passive technique based
on several handheld photographs. Their approach also relies
on hair orientation fields, but uses a coarse visual hull as the
approximate bounding geometry for hair growing.

The numerical accuracy of existing hair acquisition tech-
niques remains unexplored since only visual evaluations
were conducted. We address this shortcoming by perform-
ing ground-truth analyses using synthetically generated data
(see Section 5).

1.2 Contributions

Compared to previous work, we introduce the following
contributions:
• a passive multi-view stereo approach capable of recon-

structing finely detailed hair geometry;
• a robust matching criterion based on the local orienta-

tion of hair;
• an aggregation scheme to gather local evidence while

taking hair structure into account;
• a progressive template fitting procedure to fuse multiple

depth maps; and
• a quantitative evaluation of our acquisition system.

2 Local Hair Orientation
Because hair is highly specular, its color varies quickly
when the viewpoint moves, making standard multi-view
stereo fail, as shown in Figure 6. We address this issue by
replacing colors with local orientations. In this section, we
describe how we reliably estimate local directions of hair
strands.
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Figure 3: The multi-resolution orientation fields (b)-(d)
computed from two nearby input images (a) shown in sepa-
rate rows. Note that the local hair orientations highlighted
by boxes correspond naturally between the two views. Finer
levels of orientation field reveal high resolution hair details.

Paris et al. [11] first introduced dense orientation fields
for hair modeling. Our orientation field computation differs
from the prior one in that we only consider highlighted hair
strands (i.e., positive filter response). We observe in our ex-
periments that reliable orientations are difficult to obtain in
dark regions due to the poor signal-to-noise ratio of negative
parts of the filter response. Instead, we recover the orien-
tations in dark regions using available data obtained from
the coarser resolution level where more data is aggregated
and/or from a finer resolution level where finer and brighter
structures are revealed.

Formally, given oriented filters Kq generated by rotating
an original x-aligned filter K0 by angles q 2 [0, p), we define
the orientation Q(x, y) of image I at pixel (x, y) as Q(x, y) =
arg maxq |Kq ⇤ I(x, y)|. To eliminate the ±p ambiguity of
the orientation, we map Q to the complex domain as in [11]
by F(x, y) = exp

�
2iQ(x, y)

�
. We also use the (nonlinearly

mapped) maximum response F(x, y) = maxq |Kq ⇤ I(x, y)|g
as a confidence measure in our stereo algorithm: it cap-
tures both the strength of the image intensity and confidence
in the orientation, at the filter’s characteristic scale. The
power-law mapping enhances weak responses and improves
reconstruction quality. We use g = 0.5 for all our datasets.
Finally, our orientation field O(x, y) is defined by taking the
product of F(x, y) and F(x, y), where the maximum filter
response was positive:

O(x, y) =

(
F(x, y)F(x, y), maxq

�
Kq ⇤ I(x, y)

�
> 0

0, maxq
�
Kq ⇤ I(x, y)

�
 0

(1)
We select a DoG filter for K0. Specifically, K0(x, y) =�

Gs (x) � Gs 0(x)
�

Gs 00(y), where Gs is a 1D zero-mean

Gaussian with standard deviation s . We use filters 1 degree
apart, for a total of 180 filters.

Next, we describe a coarse-to-fine optimization strategy
that requires orientation fields at multiple resolutions. We
generate these fields with a pyramid structure to accelerate
the computation: we recursively downsample the image for
coarse levels in the pyramid and apply each oriented filter
Kq . We use a fixed sized Kq with s = 0.5, s 0 = 1 and
s 00 = 4 for all levels of the orientation field. The multi-
resolution oriented pyramid is visualized in Figure 3.

3 Partial Geometry Reconstruction

In this section, we assume that we have a set of images of
the hair from a few nearby viewpoints. We will discuss in
Section 5 the specific setups we have used in our exper-
iments. For now, we focus on reconstructing the partial
geometry of the hair seen from these viewpoints. In Sec-
tion 4 we will describe how to merge the pieces coming
from several groups of cameras to form a full head of hair.

We formulate the partial reconstruction process as an
MRF optimization based on the computed orientation fields,
i.e., we seek to reconstruct the geometry that best explains
the orientations observed in each view. To make this process
robust, we use a coarse-to-fine strategy and locally aggre-
gate evidence using a scheme inspired by [13].

We reconstruct a depth value D(p) for each pixel p of
the center reference view using orientation fields computed
from all cameras. The reconstruction volume is bounded by
the nearest and farthest depths, dnear and dfar.

3.1 Energy Formulation

We use an MRF energy minimization framework to opti-
mize for D. The total MRF energy E(D) with respect to D
consists of a data term Ed(D) and a smoothness term Es(D):

E(D) = Ed(D) + lEs(D), (2)

where l is the smoothness weight. The data energy is the
sum of the per-pixel data cost ed(p,D) for each pixel p
of the reference view while the smoothness energy is the
weighted sum of the depth deviation between p and its
4-connected neighbors N (p):

Ed(D) = Â
p2pixels

ed(p,D)

Es(D) = Â
p2pixels

Â
p02N (p)

ws(p, p0)
��D(p)� D(p0)

��2.
(3)

The MRF cues ws(p, p0) encode different depth continuity
constraints between adjacent pixels p and p0. To enforce a
strong depth continuity along the hair strands where orien-
tations are similar, we define ws(p, p0) as a Gaussian of the



orientation distance in the reference image:

ws(p, p0) = exp

 
�
��Oref(p)� Oref(p0)

��2

2s2
o

!
. (4)

The parameter so controls the constraint sensitivity and is
set to so = 0.15 for all our datasets.

Similar to [14], we formulate the data term ed based on
the multi-resolution orientation field computed in Section 2.
We define ed as the sum of the matching costs e(l)d of each
level l from the orientation field for all views:

ed(p,D) = Â
l2levels

e(l)d (p,D)

e(l)d (p,D) = Â
v2views

cv

⇣
O(l)

ref
�

p
�
,O(l)

v
�
Pv(p,D)

�⌘
,

(5)

where O(l)
ref and O(l)

v are the orientation fields at level l of
the reference view and of adjacent view v, respectively.
Pv(p,D) is the projection of the 3D point defined by the
depth map D at pixel p onto view v. The cost function cv
for adjacent view v is defined as:

cv(O,O0) = �¬
�

O⇤O0 exp
�
2i(fref � fv)

� 
, (6)

where ¬(z) denotes the real part of a complex number z, fref
and fv are the angles between image x-axis and the vector
from the image principal point to the epipole of the other
view for reference view and adjacent view v. Intuitively,
cv(O,O0) measures the deviation of the orientation fields
for corresponding pixels as the negative correlation of the
two orientation vectors O and O0, and the correction fac-
tor exp

�
2i(fre f � fv)

�
compensates for the influence of the

camera pair’s different tilting angles on the orientation field
comparison.

The data term ed(p,D) is a function on the volume de-
fined by the pixel image of the reference view and each
possible depth value d in the interval [dnear, dfar]

3.2 Structure-Aware Aggregation

To improve robustness and adaptivity of the data term en-
ergy to the local structure of the orientation field, we per-
form cross guided filtering [5] on each level l based on the
orientation field of the reference view on that level. This
process builds upon the idea of structure-aware aggregation
introduced by Yoon and Kweong [18] for stereo and applied
to other problems by Rhemann et al. [13]. However, none
of these techniques can be directly applied to hair because
they rely on color data. We address this issue in the rest of
this section.

Before the data energy of each level e(l)d (p,D) is summed
in 5, each data energy at depth D of pixel p in the energy
volume is aggregated as a weighted average of data energies
of neighboring pixels p0:

e(l)d (p,D)  Â
p02wp

W (l)(p, p0) e(l)d (p0,D), (7)

(a) (b) (c) (d)

Figure 4: The stages of depth map refinement improve re-
constructed quality. The reference input image (a). The
surface reconstructed from the initial MRF-optimized depth
map (b) shows quantization artifacts that are removed by
sub-pixel refinement (c). A post-reconstruction guided fil-
tering step further improves quality (d).

where W (l)(p, p0) is the guided filter weight and wp is a local
window centered at p.

Generalizing the expressions derived in [5], we define
the weight W (l)(p, p0) based on the orientation field:

W (l)(p, p0) =

1
|w|2 Â

k:(p,p0)2wk

✓
1 +

¬{(O(p)� µk)⇤(O(p0)� µk)}
s2

k + e

◆
,

(8)

where the summation is over all pixels k such that p and
p0 are in a local window wk around k, |w| is the number
of pixels in the window, e controls the structure-awareness
based on the orientation, and µk and sk are the average and
standard deviation of orientation, respectively, within wk.

Note that the computation in Equation (7) can be done
efficiently regardless of the size of wk [5]. This enables effi-
cient aggregation with large-kernel windows on high reso-
lution datasets. We use 7⇥ 7, 11⇥ 11, and 15⇥ 15 kernel
windows for the 3 levels of orientation fields, and we set
e = 0.12 for all of our examples.

After aggregation, the resulting energy in Equation (2)
can be efficiently minimized by graph cuts [2].

3.3 Depth Map Refinement

We employ a sub-pixel refinement technique similar to [1]
to refine the integer depth map optimized by graph cuts.
To be specific, for each pixel p on the reference view
and its associated depth D(p), we look up its data cost
e0 = ed

�
p,D(p)

�
and the data cost e�1 = ed

�
p,D(p)� 1

�

and e+1 = ed
�

p,D(p) + 1
�

for the adjacent depth values
D(p)� 1 and D(p) + 1. The subpixel depth D0(p) is com-
puted as:

D0(p) =

8
><

>:

D(p)� 0.5, e�1 < e0, e+1

D(p) + 0.5 e�1�e+1
e�1�2e0+e+1

, e0 < e�1, e+1

D(p) + 0.5, e+1 < e0, e�1

(9)



We then apply guided filtering once again on the depth map
based on the finest orientation level to further reduce the
stereo noise with the same weights as in Equation 8:

D0(p)  Â
p02wp

W (p, p0)D0(p0). (10)

Figure 4 shows how the reconstructed surface evolves
after applying each of the refinement steps discussed above.
Note the importance of subpixel refinement, without which
the features are overwhelmed by quantization artifacts. The
post-reconstruction guided filtering step increases surface
quality modestly, but is not a replacement for the structure-
aware aggregation.

4 Final Geometry Reconstruction
The previous section described how we produce a set of par-
tial reconstructions (depth maps) of the hair volume using
small groups of nearby views. We combine these into a
model of the full head of hair by aligning and merging these
pieces.

We begin by forming a coarse template that establishes
the topology and overall geometry of the merged recon-
struction. This step accounts for the fact that different depth
maps see different portions of the hair and, in overlapping
regions, may have misalignment. We use Poisson surface
reconstruction [7] on the union of all input points, but re-
strict the depth of the octree to level 6 (i.e., reconstructing
the surface at a resolution of 26 ⇥ 26 ⇥ 26 voxels) in order
to capture only the coarsest geometry of the hair.

We then form a refined template by deforming the coarse
template towards each of the original depth maps, moving
along each depth map’s line of sight. The warping is done
using a graph-based non-rigid registration algorithm [8] that
maximizes local rigidity, so that missing data in each depth
map does not result in a bumpy surface, and so that the
amount of deformation may be controlled (i.e., regularized).
We repeat this deformation step by reinitializing its rest en-
ergy state 10 times, reducing the amount of regularization
for later iterations. The resulting template effectively av-

(a) (b) (c) (d) (e)

Figure 5: The stages of final geometry reconstruction. (a)
Partial depth maps from all views. (b) Coarse template. (c)-
(d) Template refinement. (e) Re-introducing high frequency
details.

erages the shape of all the input depth maps where they
overlap, while remaining smooth.

The final mesh is obtained by re-introducing high-
frequency details from the depth maps onto the refined tem-
plate. This is done using a more efficient linear deformation
model based also described in [8] where the high-frequency
details are represented as offsets along the mesh vertex nor-
mals.

We have found that this three-stage process successfully
combines the goals of establishing a consensus topology
(rejecting spurious disconnected components), averaging
geometry in overlapping regions, and maintaining the de-
tails present in the original depth maps to the maximum
extent possible (Figure 5). In contrast, previous (single-
step) surface merging algorithms average away details in the
presence of misalignment in overlap regions, and are often
unable to cope with spurious topology.

5 Evaluation
We demonstrate the performance of our approach using a
variety of setups. First, we show results for a large (8 ⇥ 4
camera positions) set of high-resolution (21 Mpix) images
of static subjects: wigs. We use a robotic camera gantry
for our setup, fix a wig on the central turn table, and use
a Canon EOS 5D Mark II SLR camera to capture images
(Figure 2). The arm of the gantry is about 60cm long and
can be rotated freely, horizontally and vertically, to arbitrary
latitudes and longitudes around the hair.

The camera is positioned in groups to obtain aggregate
views of the hair for the depth map computation in Sec-
tion 3. Each group consists of four different camera po-

(a) (b) (c)

Figure 6: Qualitative evaluation on the two real captured
datasets of different hair styles (a) between the state-of-the-
art multi-view stereo methods: PMVS + Poisson [4, 7] (b)
and our method (c). Note that our method preserves hair
strand details.



Figure 7: Reconstruction results on different levels. From
left to right the resolution of the depth map increases from
0.4M to 1.5M and 6M pixels, respectively.

sitions in a T-pose: center, left, right and bottom. Each
position is 10 degrees apart from the neighboring position
in terms of gantry arm rotation. The left and right cam-
eras in the T-pose provide balanced coverage with respect
to the center reference camera. Since our system employs
orientation-based stereo, matching will fail for horizontal
hair strands (more specifically, strands parallel to epipolar
lines). To address this problem, a bottom camera is added
to extend the stereo baselines and prevent the “orientation
blindness” for horizontal strands.

We use 8 groups of 32 views for all examples in this
paper. Three of these groups are in the upper hemisphere,
while a further five are positioned in a ring configuration
on the middle horizontal plane, as shown in Figure 2. We
calibrate the camera positions with a checkerboard pat-
tern [19], then perform foreground-background segmenta-
tion by background color thresholding combined with a
small amount of additional manual keying. A large area
light source was used for these datasets.

Qualitative Evaluation The top two rows of Figure 11
show reconstructions for two different hairstyles, demon-
strating that our method can accommodate a variety of
hairstyles — straight to curly — and handle various hair col-
ors. We also compare our results on these datasets with
[4] and [7] in Figure 6. Note the significant details present
in our reconstructions: though we do not claim to per-
form reconstruction at the level of individual hair strands,
small groups of hair are clearly visible thanks to our
structure-aware aggregation and detail-preserving merging
algorithms.

In Figure 7 and Figure 8, we show how our reconstruc-
tion algorithm scales with higher resolution input and more
camera views. Higher resolution and more views greatly
increase the detail revealed in the reconstructed results.

Quantitative Evaluation To evaluate our reconstruction
accuracy quantitatively, we hired a 3D artist to manually
create a highly detailed hair model as our ground truth
model. We then rendered 8 groups of 32 images of this
model with the same camera configuration as in the real
capture session. We ran our algorithm on the images and
compared the depth maps of our reconstruction and the

Figure 8: Comparison between the depth map recon-
structed with 2, 3, 4 cameras.

ground truth model from the same viewpoints. The results
are shown in Figure 9. On average, the distance between our
result and the ground truth model is 5 mm, and the median
distance is 3 mm. We also ran a state-of-the-art multi-view
algorithm [4, 7, 1] on the synthetic dataset, and the statistics
of its numerical accuracy are similar to ours. However, as
shown in Figure 9, their visual appearance is a lot worse
with the presence of blobs and spurious discontinuities.

Timings Our algorithm performs favorably in terms of ef-
ficiency. On a single thread of a Core i7 2.3GHz CPU, each

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 9: We evaluate the accuracy of our approach by
running it on synthetic data (a), (f). The result is shown
in (b), and is overlaid to the synthetic 3D model in (c). The
difference between our reconstruction in the ground-truth
3D model is on the order of a few millimeters (d). We show
a horizontal slice of the depth map in (e): the ground-truth
strands are shown in red and our reconstruction result in
blue. Compared to PMVS + Poisson [4, 7] (g) and [1] (h),
our reconstruction result (i) is more stable and accurate.



Figure 10: Sample frames (first row) and the reconstructed
depth maps (second row) from our dynamic hair capture
setup.

full-resolution (1404⇥ 936) depth map reconstruction takes
4.5 minutes. Multiple depth map reconstructions can be
easily parallelized using more cores. In the final geometry
reconstruction stage, the coarse template reconstruction (via
Poisson) takes on average 30 seconds, template refinement
5 to 6 minutes, and final detail synthesis 20 seconds. In
comparison, the Hair Photobooth [12] timings are on the
order of several hours.

Dynamic Hair Capture A major advantage of our ap-
proach over previous work [12, 6] is that, being completely
passive, it is amenable to simultaneous multi-view acquisi-
tion. This paves the way towards capturing hair in motion.
As a proof of concept, we built a dynamic capture setup
made of 4 high-speed video cameras capturing 640 ⇥ 480
pixels at 100 frames per second. Figure 10 shows the re-
construction results of a few sample frames from 4 captured
200-frame videos (see accompanying video for full input
videos and the reconstruction results). However, because of
the limited resolution of the high-speed video cameras, we
were not able to achieve similar quality to our static recon-
structions.

6 Conclusion and Future Work
We have proposed a passive multi-view reconstruction al-
gorithm based on multi-resolution orientation fields. We
demonstrated quantitatively that accurate measurements
can be achieved by using orientation-based stereo. Com-
bined with structure-aware aggregation, our method faith-
fully recovers detailed hair structures that surpass the qual-
ity of previous state-of-the-art methods. We also demon-
strate the capability of our method to capture hair geometry
in motion.

However, there are several limitations in our current
method that needs to be addressed in the future. The
structure-aware aggregation step, performed on the match-
ing energy volume, imposes a fronto-parallel bias on the
reconstruction result. This bias becomes considerable to-
wards the edges of the reconstructed depth map, resulting
in spurious and misaligned geometry. A possible solution
is to use slanted window matching similar to [3] that fuses
information from different depth layers.

As mentioned in Section 5, our orientation-based match-
ing metric is “blind” for strands parallel to the epipolar
plane. This can be addressed by adding more cameras of
different baselines. Although we have experimented on a
few different camera configurations, it still requires further
investigation to find out the best possible configuration for
our orientation-based hair capture system for optimal cov-
erage of the entire head.
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