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ABSTRACT
Creating and animating realistic 3D human faces is an important
element of virtual reality, video games, and other areas that in-
volve interactive 3D graphics. In this paper, we propose a system
to generate photorealistic 3D blendshape-based face models auto-
matically using only a single consumer RGB-D sensor. The cap-
ture and processing requires no artistic expertise to operate, takes
15 seconds to capture and generate a single facial expression, and
approximately 1 minute of processing time per expression to trans-
form it into a blendshape model. Our main contributions include a
complete end-to-end pipeline for capturing and generating photore-
alistic blendshape models automatically and a registration method
that solves dense correspondences between two face scans by uti-
lizing facial landmarks detection and optical flows. We demon-
strate the effectiveness of the proposed method by capturing dif-
ferent human subjects with a variety of sensors and puppeteer-
ing their 3D faces with real-time facial performance retargeting.
The rapid nature of our method allows for just-in-time construc-
tion of a digital face. To that end, we also integrated our pipeline
with a virtual reality facial performance capture system that al-
lows dynamic embodiment of the generated faces despite partial
occlusion of the user’s real face by the head-mounted display.
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3D characters are an important element of many 3D games, sim-
ulations, feature films, and other media that use 3D content. Of
particular interest is the ability to represent the human face for
purposes of expression, speech and recognition. The generation
of a highly realistic, emotive digitally-based human face has been
shown in feature films and high end video games which utililize a
combination of traditional 3D art techniques and high-quality scan-
ning.

Scan-based facial modeling techniques are capable of capturing
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the appearance and expression of a human subject through a com-
bination of still images, video, or 3D images from a depth sen-
sor or laser scanner. In contrast to traditional 3D art pipelines,
scan-based techniques allow for subtle and realistic variations in
shape and color between subjects. However, the challenge when
using scan-based data is in manipulating the data into a form that
be controlled in a simulation. Scanning techniques are suscepti-
ble to problems such as noisy data, inconsistent topologies, texture
discolorations and so forth. Thus scan-based techniques are chal-
lenged to transform complex, unstructured data into well-formed,
structured data, which can be complicated and time-consuming.
And thus, the widespread use of high quality, scanned 3D faces
in simulations is limited due to the complexity and time needed to
transform such scanned data into a well-formed set of controllable
data.

In this work, we demonstrate a method of capturing a set of 3D
facial data from a commodity depth sensor, then transform these fa-
cial poses into a set of blendshapes and textures that can be used in
a standard 3D animation pipeline. Our capture system takes only 15
seconds to capture and construct a single facial pose, and approx-
imately 1 minute to process that pose and generate a topologically
consistent blendshape. The processing is done near-automatically,
and requires no artistic expertise. Also, the expression capture does
not require a separate operator, and can be performed by the cap-
ture subject themself. Thus, our method allows a single subject
to capture their own expressions and subsequently generate a data
set that can be used on standard 3D facial animation systems that
require blendshapes and textures. By allowing the rapid capture
and transformation of human subject’s facial data, numerous 3D
facial images suitable for animation can be generated efficiently.
Since the capture subject’s own faces are used to generate the data,
the facial models retain a photorealistic appearance and by defi-
nition reside within the limits of human facial appearances. Thus
our method is capable of quickly generating variations in a human
face, while simultaneously retaining the efficiency of traditional 3D
facial pipelines.

Our method is data-agnostic; any set of unstructured, individ-
ual poses can be used with our method and similarly transformed
into blendshapes and textures. Thus data captured from higher-
quality sources, such as depth sensors with higher scan and RGB
resolution or data obtained from photogrammetry systems can also
benefit from this method.

Our method has two main contributions: 1) a registration method
capable of operating on non-coherent 3D scan data, and 2) an end-
to-end system for generating a photorealistic set of blendshapes and
textures from any set of 3D input scans.



1. RELATED WORK

1.1 3D Reconstruction
Capturing realistic 3D face models from a human subject has

been an important goal in computer graphics. Highly detailed fa-
cial geometry can be obtained with photogrammetry in a controlled
studio setup. Work from [1] utilizes multiple DSLR cameras to
perform multiview face scans resulting in high quality facial ge-
ometry with detailed normal and reflectance maps. Other methods
initially reconstruct each frame independently [2], resulting in a
per-frame geometry, using a passive stereo system that enables sub-
millimeter accuracy. The unstructured mesh sequence is then tem-
porally aligned by identifying anchor frames to propagate a con-
sistent topology across the sequence using multi-view optical flow
[3]. Motion capture techniques are used in combination with 3D
scans to produce high fidelity images, but requires motion capture
markers. Similarly, the work in [4] captures the full facial perfor-
mance from multi-view video sequences. Unaligned meshes are
first reconstructed at each video frame and are used as constraints
to produce the aligned mesh sequences. Additional skin details
are captured using photometric stereo with color lights. The above
methods produce very high quality faces but usually require a stu-
dio setup and controlled lighting to extract facial details.

The recent advancements in RBG-D sensor technologies provide
low cost solutions to obtain high quality 3D models.

KinectFusion [5] reconstructs a 3D environment in real-time us-
ing inputs from a moving Kinect [6] sensor. The method works well
in reconstructing 3D static scenes but is not suitable for capturing
non-rigid scene such as human bodies. Methods for full-body scan
from low-cost commodity depth sensors have also been proposed.
For the sake of simplicity, common approach is to turn around a
single depth sensor [7, 8] to capture multiple depth scans of the ac-
tor from different views. Alignment techniques based on Iterative
Closest Point, ICP, [9] are generally used due to their efficiency
to align the depth scans and create a single point cloud. Non-rigid
registration techniques have been also proposed [7, 10, 11] but have
not been considered in this work due to the rigid nature of a single
expression scan.

Work in [12] uses a low-cost RGB-D sensor to infer an accu-
rate face model. It works by setting a cylinder around the reference
frame and continuously transforming the 3D point clouds to 2D
cylindrical map to update the face model. Since low-cost depth
sensors tend to produce noisy point clouds, they also apply bilat-
eral filtering on the cylinder map to produce smooth models. More
recently, the method proposed in [13] utilize a template-based tech-
nique for real-time non-rigid reconstruction. It first captures a base
template geometry from the subject that is moving rigidly. The
template mesh is then deformed to align with the input scans from
RGB-D sensor in real-time to obtain a non-rigid reconstruction.
This allows real-time 3D geometry acquisition from a deforming
subjects using only low-cost depth sensors.

1.2 Face Rigging and Blendshapes
The movement of a human face is complex and it is a challenging

task to animate a face realistically. The most widely used technique
for modeling facial animation is blendshapes, which define a linear
space for facial expressions [14]. Building such a blendshape rig
typically requires efforts from 3d artists to craft each shape manu-
ally. The work in [15] can produce blendshapes by fitting a tem-
plate model onto multiple images. The method is mostly automatic
and only requires the user to mark up some feature points in the
photos. The work in [16] captures high quality 3D face scans us-
ing multiple synchronized cameras and structured light projectors.

A template mesh is then used to register with each scan to obtain
a consistent face mesh sequences that can also be used as blend-
shapes. Reconstruction of detailed face blendshapes from monoc-
ular video is performed by [17], but also requires an initial manual
creation of a blendshape model, as well as utilizing a video stream
to tune the facial model. In addition, since the method copies tex-
tures from the video, there is no explicit step to enforce texture co-
herency, thus extraction of blendshapes from such a method could
result in texture drift that our method explicitly handles. Another
work [18] proposed an automatic method to learn the segmenta-
tions of local shape deformations from a set of blendshapes and
build a more expressive control rig. The work in [19] produces a
full set of blendshapes models from the 3D model of a specific char-
acter. It uses a pre-defined blendshape of a generic face model and
transfers the expressions to the user-provided 3D face model. This
method is useful as it only requires a reduced set of example poses
for a specific model to produce fully expressive face blendshapes.
One advantage of blendshapes is that the control is simple and ro-
bust, yet it produces expressive results. Recently there have been
a number of advancements in the area of facial tracking, where the
goal is to efficiently and accurately track the movements of a face
over time. Such tracking can be done from 2D video frames [20,
21] or from RGB-D sensors [22, 23]. Our work differs in that we
are presenting a method for the generation of blendshapes that can
subsequently be controlled with such tracking methods. Our ex-
amples show the use of a real time tracking system as a control
signal to our generated blendshapes, but we do not address the fa-
cial tracking problem at all. While those methods do produce 3D
geometric models during the course of their tracking results, the
models lack the fidelity of the original scan data and likewise do
not account for texture correspondences. By contrast, our method
attempts to preserves the original scan data, resulting in imagery
that mirrors the original scans.

FaceShift [24] is a facial performance capture system using an
RGB-D sensor. Although at a glance it seem to share the same goal
as our work and use the same accumulated face models from RGB-
D sensor, our work differs in how we make use of the input raw
scans and the resulting textured face blendshape models. FaceShift
utilizes template fitting methodology to deform a generic template
model toward raw face scans. Therefore the resulting face model
represents only an approximation of the original geometry instead
of an exact reconstruction. Moreover, since the template model is
deformed under geometric constraints, there is no guarantees on
exact texture alignments between different facial expressions. On
the other hand, our method starts from raw face scans and directly
extract consistent mesh from the scans. Therefore the geometric
representations are exact to the original shapes. Our method un-
wrap both geometric and texture information into 2D images and
solve for alignments in the UV space using facial feature detection
and optical flow. Therefore the geometric and texture alignments
are more accurate in the reconstructed facial expressions. For better
visualization of the surface alignment results, Figure 1 illustrates
a comparison of the generated texture maps for expressions ‘neu-
tral’ and ‘mouthLeft’. Our approach improves upon FaceShift re-
sults, which suffer from texture drifting artifacts, because it aligns
both texture and geometry using a novel optical-flow based surface
alignment approach in a 2D domain.

Closely related to our work is [25], which has shown how mul-
tiple images from a smartphone can be used as a data source to
generate a template rig with localized texture details. Our work
differs in that we are using scans from RGB-D sensors instead of
photogrammetric processes, and we are using per-shape textures,
rather than extracting high resolution details. In addition, since our



(a) Ours ‘neutral’ (b) Ours ‘mouth-
Left’

(c) FaceShift
‘neutral’

(d) FaceShift
‘mouthLeft’

Figure 1: Comparison of the texture maps generated with our ap-
proach, (a) and (b), and FaceShift, (c) and (d), for ‘neutral’ and
‘mouthLeft’ scans, respectively. Notice that the surface drifting ar-
tifacts in the eyebrow area when using FaceShift is not present us-
ing the proposed approach. Please check the supplementary video
for better visualization.

method does not use templates, it also generates photorealistic re-
sults, in contrast to a stylized appearance that the templates gener-
ate. In addition, our method has much faster processing, and it does
not on its own produce an entire head, which a template method is
capable of doing.

[26] demonstrates a method to use data from an RGB-D sen-
sor and populate a template model while adding textures from spe-
cific regions of the face, such as the wrinkles above the brow. By
contrast, our method utilizes the entire texture from each facial ex-
pression, rather than enhancing specific expressions with limited
details. [27] demonstrates facial reenactment using a video-based
capture of source and target while finding matching areas between
the two. [28] uses a template model-based face replacement to per-
form a realtime puppeteering of some facial expressions by over-
laying onto video. High frequency detail is transferred to the target
actor. By contrast, our method is not based on video processing,
and directly captures texture details, such as blood flow that could
not be captured by high frequency filtering.

Our goal of photorealistic blendshapes requires the manipulation
not only of the underlying face geometry but also the appearance.
Texture maps need to be aligned in the UV space to avoid ghosting
artifacts in the final texture. Texture alignment to synthesize para-
metric textures for a 3D model has been recently tackled by using
online optical flow computed from the virtual view-point [29]. In
addition, a combination of image, shape and directable forces has
been used to create scan correspondences in [30]. Similarly, multi-
camera setups also use texture alignment techniques to synthesize
blended view-dependent appearances [31, 32]. The work in [33]
reconstructs mesh sequences using 14 cameras and optical flow to
recover motion sequences at 30 frames per second. Our method
likewise uses optical flow, but attempts to recover a set of control-
lable, user-specified blendshapes, rather than a sequence from a
performance, and uses only a single RGB-D sensor.

The typical artist-driven transformation of a 3D scan into a blend-
shape involves manually manipulating the geometry of a neutral
face scan until it matches the appearance of a different expressive
scan. Commercial tools help to automate the geometry process-
ing, but do not account for the simultaneous texture and geometry
registration as our method does.

2. SYSTEM OVERVIEW
The goal of our work is to build an end-to-end system that can

quickly capture a user’s face geometry using a low-cost commodity
sensor and convert the raw scans into a blendshape model automat-
ically. Figure 2 summarizes the workflow of our pipeline. First, the
face geometry will be captured and reconstructed using an RGB-D

sensor (Section 3). Since the raw face scans have different positions
and orientations, we run rigid alignment between expressions using
iterative closest point (ICP) to obtain a set of aligned scans. These
scans are then unwrapped into a 2D representation of point clouds
and texture UV maps and stored in EXR float images to be used for
surface tracking (Section 4.1). The surface tracking then utilizes
the 2D representation of the face scans and finds correspondences
from a source face pose to the target neutral face pose. To guide the
surface tracking, we first apply face feature detection to find a set
of facial landmark points on each scan (Section 4.2). These feature
points are used to build a Delaunay triangulation on the UV map as
the intial constraints. This triangulation is used to pre-warp the 2D
map of each face scan to the target neutral face pose. Then a dense
image warping is done using optical flow to transform the source
image to the target image (Section 4.3). Once the dense correspon-
dences are established, the blendshape models can be produced by
extracting a consistent mesh from each face point cloud image us-
ing an artist mesh (Section 5.1).

3. FACE ACQUISITION
We obtain individual face scans from an RGB-D sensor and re-

construct each face pose using the method in [12]. We choose this
method for face acquisition since it is fast and requires only a sin-
gle depth sensor. However, the result of the pipeline works regard-
less of the capturing methods. Thus higher quality face models
obtained from photogrammetry or laser scans will also work. To
capture a face, the user would sit in front of the RGB-D sensor to
capture the depth image frame of a near frontal face as the reference
frame. This reference frame is used to generate 3D point clouds.
The point clouds are then unwrapped onto a reference 2D cylindri-
cal map. Then the user can freely move his head to obtain depth
scans from different views. Each of the subsequent depth scans
are then converted to 3D points and then registered with the ref-
erence point clouds. The registered points from the new scans are
then unwrapped and aggregated onto the reference map to obtain a
new map. In order to avoid failed registration results from corrupt-
ing the final model, some depth scans are discarded if they can not
be aligned properly with the reference frame. Since the resulting
model may contain noise, the method applies a bilateral filter on the
cylindrical 2D map to remove noises while keeping the sharp fea-
tures. Finally, a smooth face geometry is produced by triangulating
the neighboring pixels in the final cylindrical map. The texture is
then obtained by projecting the final face model onto the reference
RGB image. The aforementioned face capture process is very fast
and requires about only 20 seconds to capture and process a face
pose using an Intel RealSense sensor. Since the raw face poses are
captured separately, they may have different positions and orienta-
tions. Thus they need to be first aligned into the same reference
frame before the surface tracking stage. To achieve this, we first
extract the points cloud from face geometry and use iterative clos-
est point (ICP) [34] to rigidly align points cloud of each face pose
with the neutral face. Since there are non-rigid deformations at the
lower parts of faces, a naive rigid registration of the whole face scan
tends to be less accurate. Thus we perform the rigid alignment only
at the forehead regions of each face between different poses, sim-
ilar to [35]. This adjustment improves the accuracy of face pose
registration since the deformations at the lower parts of faces do
not affect the alignment results. The aligned points cloud are then
mapped back to the 2D images to be used in the next stage. Note
that in our work, we already have the cylindrical mapping from the
capture session to map the points cloud back to the 2D image. If
the input geometries are captured with a different method such as
laser scans, the cylindrical mapping can be applied to convert the



Figure 2: Diagram depicting the proposed pipeline for photorealistic blendshapes from RGB-D: (a) A set of facial expressions are scanned;
(b) Rigid alignment between expressions is obtained by automatic ICP registration; (c) and (f) 3D textured meshes are converted into
a 2D representation and stored in EXR floating image format, in this particular case (c) is the source scan and (f) the target scan; (d)
Automatic facial landmark detection is used to detect common features in scans; (e) A combination of Delaunay triangulation over the
detected landmarks and 2D optical flow is used for dense warping between source scan (c) and target scan (f); (g) Reference mesh sharing
the same UV space as the target scan is used to extract the final blendshape (h).

geometries back to 2D images.

4. SURFACE TRACKING
Triangulated pointclouds present a per-frame independent topol-

ogy, which hinders the reutilization of the reconstructed models
in the traditional animation pipelines. When capturing an actor’s
face in multiple static facial expressions, it is often desirable for
the resulting mesh to all have the same topology and for the tex-
tures to all be in the same UV space. Such “corresponded”, or
topologically-consistent, meshes would enable the straightforward
creation of blendshape-based facial rigs, extensively used in face
animation pipelines.

Marker-based motion capture systems that track a set of markers
across video has been used to generate temporally-consistent 3D
models from multicamera capture [36]. However, marker-based
approaches have not been considered in this work due to the im-
plicit problem of visible markers in the final texture maps, which
would decrease the realism of the final models. In the context of
multi-video capture, markerless approaches have also been recently
introduced [37, 2, 4]. These video-based automatic methods rely on
the fact that there is a small difference in either pixel color values or
surface deformation between consecutive frames, and therefore op-
tical flow based tracking performs well. Similarly, non-sequential
approaches [38] aim to find similar frames across video sequences.

This section targets the problem of surface tracking across a
sparse set of scans from a commodity RGB-D camera, with large
deformations between each sample. Current video-based surface
tracking approaches cannot handle such sparse sets due to the limi-
tations of the optical flow in large displacements. Our goal also re-
quires fast processing times, in the order of seconds, to enable the
automatic construction of a complete set of photorealistic blend-
shapes in minutes.

4.1 Data Format
Rather than storing our scans as geometry and textures, we choose

instead to store our scans as images. Each one of our scans is stored
as a 32 bit float EXR [39] texture map image, and a high resolution
point cloud. As it is discussed later on in this paper, the main mo-

tivation for this format conversion is the fact that this work tackles
the 3D mesh surface tracking problem in the 2D UV domain.

The maps are in a cylindrically unwrapped UV space, represent-
ing our ear to ear data. The UV space of each expression falls
roughly in the same area because each expression has been previ-
ously aligned with respect to the neutral, which is used as a refer-
ence, removing the rigid transformations. However, due to inher-
ent changes in surface details across scans, the UV space differs
slightly for each expression.

4.2 Face Landmarks Detection
Our approach for 3D surface tracking exploits the image-based

scan representation described in Section 4.1 by doing the scan cor-
respondence in 2D rather than 3D. For each shape to process, two
scans are taken as input data: one of the actual expression as the
source and the neutral expression as the target.

For each of the two inputs, we need to find a set of facial land-
marks that will be used as a starting set of features to build a new
triangulated mesh on the UV domain. This marking process, which
could also be done manually by means of a GUI interface that helps
the user to select corresponding points in a 3D rendered model [40],
is automatically done by an state-of-the-art facial landmark detec-
tion framework [41].

A frontal view of each of the scans is rendered and processed by
the landmark detector, which returns a set of 2D features that are
then projected into the 3D model. These features are not required
to be specific face features such as corners of the eyes and lips,
any pair of features from corresponding positions between faces are
valid. In particular, the landmark detector used in this work [41] is
trained to find 38 face features, depicted in Figure 3, but any other
existing method for landmark detection could be used. Notice that
our approach only takes as valid features those that are successfully
detected in both input scans, therefore marking a corresponding
point. It is also important to notice that these correspondence points
do not have to be exact –the points are used only as an initialization
for the deforming algorithm.

4.3 Geometry and Texture Warping



(a) Neutral (b) Eyebrows up (c) Puff

Figure 3: Automatic landmark detection results obtained using
[41].

A geometry and texture 2D warping algorithm is used to align
the source scan into the target scan [42], following three steps.
First, a Delaunay triangulation is built between the set of landmarks
of both the source and target scans. The constructed mesh is used
to roughly pre-warp the source texture map to the target using affine
triangle transformations. Second, a GPU-accelerated optical flow
is used to compute a dense warp field from the pre-warped source
texture map to to the target. Finally, dense warp is used to deform
both the texture map and the point cloud from the source to the tar-
get scan. This results in the source scan warped to the target UV
space.

Some expressions are more challenging to correspond than oth-
ers. Especially expressions with lots of occlusions, like mouth open
to mouth closed. In such cases, optical flow may fail to get a good
result, but our pipeline provides also a semi-automatic tool that
allows the user to interactively manipulate the set of correspon-
dences. Also, we can assist the optical flow in two ways. First,
by painting black masks around occlusion regions in both source
and target diffuse textures. Second, by marking some points as
“pinned” and those points are rasterized into small black dots at
runtime. Using both of these techniques in combination usually
produces good results even in the most challenging cases.

Figure 4 presents a visualization of texture warping results achieved
with the proposed approach. Notice how the UV space of the
warped texture aligns with the neutral.

Analogously, Figures 4d, 4e and 4f present texture warping re-
sults for a character captured in a multi-camera setup with con-
trolled lighting [1].

5. BLENDSHAPES
In this section, we describe the process of automatically gen-

erating blendshapes from the aligned source and the target scans.
Additionally, we also present a masking approach for combining
blendshapes in a real-time system.

5.1 Blendshape Generation
First, the neutral scan is remeshed creating what we refer to as

artist mesh. Such mesh, whose topology will be propagated to all
the scans, can be generated using a standard automatic decimation
process or manually produced by an artist. The latter option allows
the artist to manually arrange the triangle topology, which ideally
must have a smaller triangles in the areas with large non-rigid sur-
face dynamics, such as the mouth, to ease the mesh deformation
[40]. However, the results presented in this paper use an automat-
ically decimated mesh and demonstrate that successful results can
be also generated with out artist help. The UV coordinates of the
artist mesh is generated by transferring the UV space previously

(a) Neutral (b) Smile (c) Smile warped

(d) Neutral (e) Puff (f) Puff warped

Figure 4: Example texture alignment results. Left and center
columns are the target and source texture maps respectively, gener-
ated from RGB-D capture (top) and multi-camera capture (bottom).
Right column contains the results after applying the proposed ap-
proach to warp the source UV space to the target.

automatically generated for the neutral expression. Notice that this
step is just done one single time per dataset of shapes.

Second, the artist mesh is propagated into the source mesh by
looking up the vertex positions in the warped point clouds. The
texture map is also warped into the artist UV space, which is sim-
ply an additional affine triangles 2D warp. This results in a set
of blendshapes and textures ready to plug into the standard facial
animation pipeline.

At run time, any requested blended shape is computed following
the delta blendshape formulation [14].

f = b0 +
n

∑
k=1

wk(bk−b0) (1)

where

f = (x0,y0,z0, ṡc,xn,yn,zn)
T (2)

is the resulting shape, n the number of vertices, k the number of
shapes, wk ∈ [0,1] the weight for the kth shape, and bk the kth shape
and b0 the neutral shape.

Equation 1 treats each shape as a whole, considering that each
blending weight wk associated to the mesh bk affects equally to all
areas of the shape (i.e: all vertices are associated with the same
wk). However, in many cases we may be interested in combining
two shapes that affect two different local areas of the face, for ex-
ample, eyes_close, which modifies upper area of the face, and kiss
expressions, which modifies the lower area. In order to satisfy this
need for local blending weight control, matrix mk is incorporated
into Equation 1 as follows

f = b0 +
n

∑
k=1

wkmk(bk−b0) (3)

where mk is a diagonal matrix of size 3n×3n containing the local
weights for each vertex.

5.2 Combining Blendshapes
Blendshapes can be utilized most effectively in a real-time sys-

tem by creating masks to localize blendshapes to particular regions



of the face. As an input to a real-time system, masking effects
enable the combination of multiple blendshapes to produce a num-
ber of versatile behaviors, such as blinking and eyebrow movement
during arbitrary facial expressions, see Figure 5. Additionally, this
approach can also be used for generating the mouth poses necessary
for visual speech or lip syncing.

Figure 5: A set of blendshapes with localized effects from mask-
ing textures during rendering. The masks separate the upper face,
eyes and lower face into separate regions, allowing for blinking, lip
movement, and eyebrow expressions by combining several blend-
shapes simultaneously, shown in green.

6. RESULTS AND APPLICATIONS
The blendshapes generated by the proposed method can be used

in many animation and simulation environments that utilize blend-
shapes. Our approach is data agnostic and can utilize scan input
from depth-sensors. We demonstrate results using the Kinect v1,
Intel RealSense F200, and Occipital Structure Sensor. We expect
our method to produce results according to the quality of the sen-
sors, including depth and color specifications. Thus our method
should produce higher levels of details with better sensors as they
have already shown from low (Kinect v1), medium (RealSense)
and high (Structure Sensor). Additionally, the method introduced
in this paper is also compatible with 3D data generated from pho-
togrammetry techniques. A single user can quickly capture scans,
process the data, and puppeteer the generated face without artist
intervention in a matter of minutes.

Our accompanying videos demonstrate the acquisition, process-
ing, and use of the blendshape data with a real-time animation sys-
tem and real-time facial tracking software [24, 22]. Noting the re-
cent proliferation of consumer virtual reality technology, we have
integrated our face scanning and processing pipeline with a recently
developed head-mounted display facial performance capture sys-
tem [43, 44], see Figure 10. This system uses a head-mounted
RGB-D camera to capture lower facial expressions combined with
strain sensors embedded in the foam lining of the display to sense
expressions in the occluded upper region. This makes it possible for
dynamic real-time embodiment of one’s own (or someone else’s)
face within an immersive virtual reality environment.

7. DISCUSSION
We do not include any explicit handling or separation of lighting.

The RGB-D scan examples shown in this paper have been captured
under typical indoor lighting conditions.

By using the scans from a depth sensor and RGB camera, our
method is able to generate face data that has a photorealistic ap-
pearance. This is in contrast to a stylized or cartoonish appearance
that are often generated through traditional artist-driven 3D facial
construction and through many template-based methods that use
priors [25, 19]. The quality of scan data is dependent on the sensor
quality. Thus, sensors that can obtain higher resolutions or greater
detail will produce higher quality results through our method.

(a)

(b)

Figure 8: Real-time puppeteering a photorealistic character built
with the Intel RealSense F200 sensor, first by the original capture
subject, then by a different person.

8. CONCLUSION
Our method can rapidly generate a set of photorealistic, expres-

sive facial poses as blendshapes from a single commodity depth
sensor within a relatively short amount of time, while requiring no
artistic or technical expertise on the part of the capture subject. We
demonstrate our approach as part of a complete end-to-end system
for scanning, processing, and real-time control. The rapid nature of
model acquisition and automatic processing enables the ability to
generate a controllable 3D face model for environments where the
fast construction of an new face model is desirable. For example,
in a virtual environment while wearing a head-mounted display.
Thus, this work advances the state-of-the-art for the rapid creation
of photorealistic digital representations of real people that can en-
able multi-user communication and collaboration in virtual reality.
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