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Abstract
We demonstrate a method of acquiring a 3D

model of a human using commodity scanning

hardware and then controlling that 3D figure in

a simulated environment in only a few minutes.

The model acquisition requires 4 static poses

taken at 90 degree angles relative to each

other. The 3D model is then given a skeleton

and smooth binding information necessary for

control and simulation. The 3D models that

are captured are suitable for use in applications

where recognition and distinction among char-

acters by shape, form or clothing is important,

such as small group or crowd simulations, or

other socially oriented applications. Due to the

speed at which a human figure can be captured

and the low hardware requirements, this method

can be used to capture, track and model human

figures as their appearances changes over time.
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1 Introduction

Recent advances in low-cost scanning have en-

abled the capture and modeling of real-world
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objects into a virtual environment in 3D. For ex-

ample, a table, a room, or work of art can be

quickly scanned, modeled and displayed within

a virtual world with a handheld, consumer scan-

ner. There is great value to the ability to quickly

and inexpensively capture real-world objects

and create their 3D counterparts. While numer-

ous generic 3D models are available for low-

or no-cost for use in 3D environments and vir-

tual worlds, it is unlikely that such acquired 3D

model matches the real object to a reasonable

extent without individually modeling the object.

In addition, the ability to capture specific ob-

jects that vary from the generic counterparts is

valuable for recognition, interaction and com-

prehension within a virtual world. For exam-

ple, a real table could have a noticeable scratch,

design, imperfection or size that differs greatly

from a stock 3D model of a table. These individ-

ual markers can serve as landmarks for people

interacting with the virtual scene.

The impact of recognizing living objects in a

virtual environment can be very powerful, such

as the effect of seeing a relative, partner or even

yourself in a simulation. However, living ob-

jects present simulation challenges due to their

dynamic nature. Organic creatures, such as

plants, can be difficult to scan due to their size

and shape, which requires high levels of details

and stable scanning environments. Similarly,

other living objects such as people or animals,

can be scanned, but require much more complex



Figure 1: The 3D models captured in our system can be readily applied in real-time simulation to

perform various behaviors such as jumping and running with the help of auto-rigging and

animation retargeting.

models to model motion and behavior. In addi-

tion, the particular state of the living object can

vary tremendously; an animal may grow, a plant

can blossom flowers, and a person can wear dif-

ferent clothes, inhale or exhale, as well as gain

or lose weight. Thus, capturing a moment in

time of a living object is usually not sufficient

for its representation in dynamic environments,

where the 3D representation of that living ob-

ject is expected to breath, move, grow as well as

respond to interaction in non-trivial ways.

In this work, we demonstrate a process for

capturing human subjects and generating digital

characters from those models using commodity

scanning hardware. Our process is capable of

capturing a human subject using still four poses,

constructing a 3D model, then registering it and

controlling it within an animation system within

minutes. The digital representation that our pro-

cess is able to construct is suitable for use in

simulations, games and other applications that

use virtual characters. Our technique is able to

model many dynamic aspects of human behav-

ior (see Figure 1). As shown in Figure 2, our

main contribution in this work is a near-fully au-

tomated, rapid, low-cost end-to-end system for

capture, modeling and simulation of a human

figure in a virtual environment that requires no

expert intervention.

2 Related Work

2.1 3D Shape Reconstruction

3D shape reconstruction has been extensively

explored, among which the 3D shape recon-

struction of human subjects is of specific in-

terest to computer vision and computer graph-

ics, with its potential applications in recogni-

tion, animation and apparel design. With the

availability of low-cost 3D cameras (e.g., Kinect

and Primesense), many inexpensive solutions

for 3D human shape acquisition have been pro-

posed. The work by [1] employs three Kinect

devices and a turntable. As the turntable ro-

tates, multiple shots are taken with the three

precalibrated Kinect sensors to cover the entire

body. All frames are registered in a pairwise

non-rigid manner using the Embedded Defor-

mation Model [2] and loop-closure is explicitly

addressed at the final stage. The work done in

[3] utilizes two Kinect sensors in front of the

self-turning subject. The subject stops at sev-

eral key poses and the captured frame is used

to update the online model. Again the dynamic

nature of the turning subject is considered un-

der the same non-rigid registration framework

[2] and the loop is implicitly closed.

More recently, solutions which utilize only a

single 3D sensor have been proposed, and this

allows for home-based scanning and applica-

tions. The work in [4] asks the subject to turn

in front of a fixed 3D sensor and 4 key poses are

uniformly sampled to perform shape reconstruc-

tion. The 4 key poses are registered in a top-

bottom-top fashion, assuming an articulated tree

structure of human body. Their reconstructed

model, however, suffers from a low-resolution

issue at a distance. To overcome the resolu-

tion issue, KinectAvatar [5] considers color con-

straints among consecutive frames for super-

resolution. They register all super-resolution



Figure 2: The overall work flow of our fast

avatar capture system.

frames under a probabilistic framework. More

recently, the work in [6] asks the subject to come

closer and obtain a super-resolution scan at each

of 8 key poses. The 8 key poses are then aligned

in a multi-view non-rigid manner to generate the

final model. Inspired by their work, we follow

the same idea of asking the subject to get closer,

but employ a different super-resolution scheme.

Unlike [6] where they merge all range scans us-

ing the Iterative Closest Point (ICP) algortihm

[7] along with the Poisson Surface Reconstruc-

tion algorithm [8], we use the KinectFusion al-

gorithm [9] which incrementally updates an on-

line volumetric model.

All these works capture the static geometry of

human subjects, and additional efforts are nec-

essary to convert the static geometry into an an-

imated virtual character. The research works

[10, 11] focus on capturing the dynamic shapes

of an actor’s full body performance. The cap-

turing sessions usually require a dedicated setup

with multiple cameras and are more expensive

than capturing only the static geometry. The re-

sulting dynamic geometries can be played back

to produce the animations of the scanned ac-

tor. The work in [12] combines dynamic shapes

from multiple actors to form a shape space. The

novel body deformations are driven by motion

capture markers and can be synthesized based

on an actor’s new performance.

Other research has created a database of peo-

ple that show the diversity of shape, size and

posture in a small population of shape, size and

posture [13]. The data set has be employed

for human body modeling by fitting the model

to input range scans of subject of interest [14].

This data set has also been used to manipulate a

scanned human model by modifying the models

proportions according to the data [15].

2.2 Automatic Rigging and Retargeting

While it is relatively easy to obtain static 3D

character models, either from the internet or

through 3D scanning, it requires much more ef-

forts to create an animated virtual character. A

3D model needs to be rigged with a skeleton hi-

erarchy and appropriate skinning weights. Tra-

ditionally, this process needs to be done manu-

ally and is time consuming even for an experi-

enced animator. An automatic skinning method

is proposed in [16] to reduce the manual efforts

of rigging a 3D model. The method produces

reasonable results but requires a connected and

watertight mesh to work. The method proposed

by [17] complements the previous work by auto-

matically skinning a multi-component mesh. It

works by detecting the boundaries between dis-

connected components to find potential joints.

Thus the method is suitable for rigging the me-

chanical characters that usually consist of many

components. Other rigging algorithms can in-

clude manual annotation to identify important

structures such as wrists, knees and neck [18].

Recent work has shown the capability of cap-

turing a human figure and placing that character

into a simulation using 48 cameras with process-

ing time on the order of two hours [19]. Our



method differs in that we use a single commod-

ity camera and scanner and our processing time

takes a few minutes. While this introduces a

tradeoff in visual quality, the minimal technical

infrastructure required makes our approach sub-

stantially more accessible to a widespread audi-

ence. In addition, our method requires no ex-

pert intervention during the rigging and anima-

tion phases.

3 3D Model Reconstruction

We propose a convenient and fast way to ac-

quire accurate static 3D human models of dif-

ferent shapes by the use of a single commod-

ity hardware, e.g., Kinect. The subject turns in

front of the Kinect sensor in a natural motion,

while staying static at 4 key poses, namely front,

back and two profiles, for approximately 10 sec-

onds each. For each key pose, a super-resolution

range scan is generated as the Kinect device,

controlled by a built-in motor, moves up and

down (Sec 3.1). The 4 super-resolution range

scans are then aligned in a multi-view piece-

wise rigid manner, assuming small articulations

between them. Traditional registration algo-

rithms (e.g., Iterative Closest Point [7]), which

are based on the shape coherence, fail in this

scenario because the overlap between consec-

utive frames is very small. Instead, we em-

ploy contour coherence (Sec 3.2) and develop

a contour-based registration method [20], which

iteratively minimizes the distance between the

closest points on the predicted and observed

contours (Sec 3.3). For more details on using

contour coherence for multi-view registration of

range scans, please refer to [20]. In this pa-

per, we summarize their method and give a brief

introduction. At the final stage, the 4 aligned

key poses are processed to generate a water-tight

mesh model using the Poisson Surface Recon-

struction algorithm [8]. The corresponding tex-

ture information of the 4 super-resolution range

scans are inferred using the Poisson Texture

Blending algorithm [21] (Sec 3.4).

3.1 Super-resolution Range Scan

Given the field of view of the Kinect sensor, the

subject must stand 2 meters away in order to

cover the full body while turning in front of the

device. The data is heavily quantized at that dis-

tance (Fig 3(b)), thus produces a poor quality

scan, which results in a coarse model after in-

tegration. Here, instead, we ask the subject to

come closer and stay as rigid as possible at the

4 key poses, while the Kinect device scans up

and down to generate a super-resolution range

scan. Each pose takes 10 seconds and approxi-

mately 200 frames are merged using the Kinect-

Fusion algorithm [9] (Fig 3(a))). This process

greatly improves the quality of the input and al-

lows us to capture more details, such as wrinkles

of clothes and face as shown in Fig 3. It is worth

mentioning that the ground is removed by using

the RANSAC algorithm [22], assuming that the

subject of interest is the only thing in the sen-

sor’s predefined capture range.

(a) (b)

Figure 3: (a) Super-resolution range scans after

integrating approximately 200 frames

using the KinectFusion algorithm (b)

Low-resolution single range scan at

the distance of 2 meters

3.2 Contour Coherence as a Clue

The amount of overlap between two consecutive

super-resolution range scans is limited as they

are 90o apart (i.e.wide baseline). As such, tradi-

tional shape coherence based methods (e.g., ICP

and its variants [23]) fail, as it is hard to estab-

lish the point-to-point correspondences on two

surfaces with small overlap.

An example of two wide baseline range scans

of the Stanford bunny with approximately 35%



(a)

(b)

Figure 4: (a) Two roughly aligned wide base-

line 2.5D range scans of the Stan-

ford Bunny with the observed and

predicted apparent contours extracted.

The two meshed points cloud are gen-

erated from the two 2.5D range scans

respectively (b) Registration result af-

ter maximizing the contour coher-

ence

overlap is given in Fig 4(a). Traditional methods

fail, as most closest-distance correspondences

are incorrect.

While the traditional notion of shape coher-

ence fail, we propose the concept of contour co-

herence for wide baseline range scan registra-

tion. Contour coherence is defined as the agree-

ment between the observed apparent contour

and the predicted apparent contour. As shown

in Fig 4(a), the observed contours extracted

from the original 2.5D range scans, i.e.red lines

in image 1 and blue lines in image 2, do not

match the corresponding predicted contours ex-

tracted from the projected 2.5D range scans,

i.e.blue lines in image 1 and red lines in image 2.

We maximize contour coherence by iteratively

finding closest correspondences among apparent

contours and minimizing their distances. The

registration result is shown in Fig 4(b) with

the contour coherence maximized and two wide

baseline range scans well aligned. The contour

coherence is robust in the presence of wide base-

line in the sense that, no matter the amount of

overlap between two range scans, only the shape

area close to the predicted contour generator is

considered when building correspondences on

the contour, thus avoiding the search for corre-

spondences over the entire shape.

3.3 Contour Coherence based

Registration Method

We apply the notion of contour coherence

to solve the registration problem of 4 super-

resolution range scans with small articulations.

For simplicity, we start the discussion with

the contour-based rigid registration of 2 range

scans. As shown in Fig 4(a), the observed con-

tour and the predicted contour do not match. In

order to maximize the contour coherence, we it-

eratively find the closest pairs of points on two

contours and minimize their distances. Assume

point u ∈ R
2 is on predicted contour in image

1 of Fig 4(a) (i.e.blue line) and point v ∈ R
2 is

its corresponding closest point on the observed

contour in image 1 (i.e.red line), we minimize

their distance as

‖v − P1(T
−1

1
T2V2(ũ))‖, (1)

where ũ is the corresponding pixel location in

image 2 of u, V2 maps the pixel location ũ to its

3D location in the coordinate system of camera

2, T1 and T2 are the camera to world transforma-

tion matrices of camera 1 and 2 respectively, and

P1 is the projection matrix of camera 1. Assum-

ing known P1 and P2, we iterate between find-

ing all closest contour points on image 1 and 2

and minimizing the sum of their distances (Eq 1)

to update the camera poses T1 and T2 until con-

vergence. We use quaternion to represent the ro-

tation part of T and Levenberg-Marquardt algo-

rithm to solve for the minimization as it is non-

linear in parameters. It is worth mentioning that

minimizing Eq 1 updates T1 and T2 at the same

time, and this enables us to perform multi-view

rigid registration in the case of 3 or more frames.

The extension from rigid registration to piece-

wise rigid registration is quite straightforward.

Each segment (i.e., segmented body part) is con-

sidered rigid, and all the rigid segments are

linked by a hierarchical tree structure in the case

of body modeling. We again iteratively find

the closest pairs on contours between all corre-

sponding body segments and minimize the sum

of their distances.



A complete pipeline of our registration

method is given in Fig 5. First, the 4 super-

resolution range scans are initialized by assum-

ing a 90o rotation between consecutive frames

(Fig 6(a)). Second, they are further aligned by

the multi-view rigid registration method consid-

ering the whole body as rigid (Fig 6(b)). While

the translation part of the camera pose is not

well estimated by the initialization procedure,

it is corrected by the multi-view rigid regis-

tration step. As indicated by the red boxes,

however, the small articulations between frames

still remain unresolved under the rigid assump-

tion. Third, the front pose is roughly segmented

into 9 body parts in a heuristic way (Fig 6(c)).

Fourth, we iteratively propagate the segmenta-

tion to other frames, find closest pairs on con-

tours between corresponding rigid body parts,

and minimize their distances to update the cam-

era poses, as well as the human poses of each

frame (Fig 6(d)).

Figure 5: General pipeline of our registration

method

3.4 Water-tight Mesh Model with Texture

At this point, we have aligned all four super

scans to produce a point cloud with normal vec-

tors. Poisson mesh reconstruction [8] is used to

obtain a watertight mesh from the point clouds.

The Kinect camera also captures the color in-

formation from the scanned person when gen-

erating the superscans at each pose. For each

superscan, we also store a color image corre-

sponding to the range scan and combine the

color images to produce the texture for the wa-

tertight mesh. We follow a similar procedure as

in [6] to corrode the color images and remove

unreliable pixels. The corroded color images

are then transferred onto the superscans as ver-

tex colors to produce color meshes before going

through the registration process. Finally, these

(a) (b)

(c) (d)

Figure 6: (a) 4 super-resolution range scans af-

ter initialization (b) 4 super-resolution

range scans after multi-view rigid reg-

istration, with red boxes indicating un-

resolved small articulations under the

rigid assumption (c) Rough segmen-

tation of the front pose (d) 4 super-

resolution range scans after multi-

view piecewise rigid registration

aligned color meshes are used to texture the

watertight mesh generated from Poisson recon-

struction. We apply the Poisson texture blending

algorithm in [21] to filling out the gaps and holes

in the texture and produce the final color mesh.

4 Resolution Independent

Automatic Rigging

Animating a 3D character model usually re-

quires a skeletal structure to control the move-

ments. Our system automatically builds and

adapts a skeleton to the 3D scanned character.

Thus, it can later apply the rich sets of behavior

on the character through motion retargeting.

The auto-rigging method in our system is

similar to the one proposed in [16]. The



method builds a distance field from the mesh

and uses the approximate medial surface to ex-

tract the skeletal graph. The extracted skeleton

is then matched and refined based on the tem-

plate skeleton. The method is automatic and

mostly robust, but it requires a watertight and

single component mesh to work correctly. This

poses a big restriction on the type of 3D mod-

els the method can be applied to. For example,

the production meshes usually come with many

props and thus have multiple components. On

the other hand, the mesh produced from range

scans tend to contain holes, non-manifold ge-

ometry, or other topological artifacts that re-

quire additional clean-up. Moreover, the result-

ing mesh produced through the super-resolution

scans usually consists of hundreds of thousands

of vertices. Such high resolution meshes would

cause the auto-rigging method fail during opti-

mization process to build the skeleton. To alle-

viate this limit, we proposed a modified method

that works both for generic production models

and large meshes.

Our key idea is that the mesh could be ap-

proximated by a set of voxels and the distance

field could be computed using the voxels. The

voxels are naturally free from any topological

artifacts and are easy to processed. It is done by

first converting the mesh into voxels using depth

buffer carving in all positive and negative x,y,

and z directions. This results in 6 depth images

that can be used to generate the voxelization of

the original mesh. Although most small holes in

the original mesh are usually removed in the re-

sulting voxels due to discretization, some holes

could still remain after the voxelization. To re-

moving the remaining holes, we perform the im-

age hole filling operation in the depth images

to fill up the small empty pixels. After vox-

elization, we select the largest connected com-

ponent and use that as the voxel representation

for the mesh. The resulting voxels are water-

tight and connected and can be converted into

distance field to construct the skeleton. Figure 2

demonstrates the process of converting the orig-

inal mesh into voxel representation to produce

the skeleton hierarchy and skinning weights.

The voxel representation is only an approx-

imation of the original mesh. Therefore the

resulting distance field and consequently the

skeleton could be different from the one gener-

Figure 7: The voxelization produces the skele-

ton similar to the one extracted from

original mesh. Left : original mesh

and its skeleton. Right : voxel repre-

sentation of original mesh and its cor-

responding skeleton.

ated with the original mesh. In our experiments,

we found the resulting skeletons tend to be very

similar as shown in Figure 7 and do not impact

the overall animation quality in the retargeting

stage. Once we obtain the skeleton, the skin-

ning weights can be computed using the origi-

nal mesh instead of the voxels since the weight

computation in [16] does not rely on the dis-

tance field. Alternatively, the skinning weights

can be computed using the techniques in [24],

which uses voxels to approximate the geodesic

distance for computing bone influence weights.

Thus we can naturally apply their algorithm us-

ing our resulting voxels and skeleton to produce

higher quality smooth bindings.

5 Behavior Transfer

The behavior transfer stage works by retarget-

ing an example motion set from our canonical

skeleton to the custom skeleton generated from

automatic rigging. Here we use the method from

[25] to perform motion retargeting. The retar-

geting process can be separated into two stages.

The first stage is to convert the joint angles en-

coded in a motion from our canonical skeleton

to the custom skeleton. This is done by first re-

cursively rotating each bone segment in target

skeleton to match the global direction of that

segment in source skeleton at default pose so

that the target skeleton is adjusted to have the

same default pose as the source skeleton. Once

the default pose is matched, we address the dis-

crepancy between their local frames by adding

suitable pre-rotation and post-rotation at each



joint in target skeleton. These pre-rotation and

post-rotation are then used to convert the joint

angles from source canonical skeleton to the tar-

get skeleton.

The second stage is using inverse kinematics

to enforce various positional constraints such as

foot positions to remove motion artifacts such as

foot sliding. The inverse kinematic method we

use is based on damped Jacobian pseudo-inverse

[26]. We apply this IK method at each motion

frame in the locomotion sequences to ensure the

foot joint is in the same position during the foot

plant stage. After the retargeting stage, the ac-

quired 3D skinned character can be incorporated

into the animation simulation system to execute

a wide range of common human-like behaviors

such as walking, gesturing, and etc.

6 Applications

6.1 3D Capture for Use in Games and

Simulation

We demonstrate our method by showing the cap-

ture and processing, registration and subsequent

simulation of a human figure in our accompany-

ing video and in Figure 8 below. The construc-

tion of a 3D model take approximately 4 min-

utes, and the automatic rigging, skinning and

registration of a deformable skeleton takes ap-

proximately 90 seconds. Models typically con-

tain between 200k and 400k vertices, and 400k

to 800k faces. Simulation and control of the

character is performed in real time using various

animations and procedurally-based controllers

for gazing and head movement. The 3D mod-

els captured in this way are suitable for use in

games where characters need to be recognizable

from a distance, but do not require face-to-face

or close interactions.

6.2 Temporal Avatar Capture

Since our method enables the capture of a 3D

character without expert assistance and uses

commodity hardware, it is economically feasi-

ble to perform 3D captures of the same subject

over a protracted period of time. For example, a

3D model could be taken every day of the same

subject, which would reflect their differences in

Figure 8: A representative captured character

from scan containing 306k vertices

and 613k faces. Note that distinguish-

ing characteristics are preserved in the

capture and simulation, such as hair

color, clothing style, height, skin tone

and so forth.

appearance over time. Such captures would re-

flect changes in appearance such as hair style

or hair color, clothing, or accessories worn. In

addition, such temporal captures could reflect

personal changes such as growth of facial hair,

scars, weight changes and so on. Such tempo-

ral information could be analyzed to determine

clothing preferences or variations in appearance.

Figure 9: Models generated from captures over

a period of 4 days. Note changes and

commonality in clothing, hair styles,

and other elements of appearance.

Note that our method will generate a skeleton

for each 3D model. Thus avatars of the same

subject will share the same topology, but have



differing bone lengths.

6.3 Crowds

Many applications that use virtual crowds re-

quire tens, hundreds or thousands of characters

to populate the virtual space. Research has ex-

perimented with saliency to show the needed

variation in traditionally modeled characters to

model a crowd [27] as well as the number of

variations needed [28]. By reducing the cost

of constructions of 3D characters, crowd mem-

bers can be generated from a population of cap-

ture subjects rather than through traditional 3D

means.

7 Discussion

We have demonstrated a technique that allows

the capture and simulation of a human figure

into a real time simulation without expert inter-

vention in a matter of a few minutes.

7.1 Limitations

The characters generated are suitable for appli-

cations where recognizability of and distinction

among the virtual characters is important. In

the course of our experiments, we have found

the virtual characters to be recognizable to those

familiar with the subjects. The characters are

not suitable for close viewing or in simulations

where face details are needed, such as conversa-

tional agent or talking head applications. Higher

levels of detail are needed for areas such as the

face and hands before other models of synthetic

motion, such as emotional expression, lip sync-

ing or gesturing could be used. Additionally, our

method makes no distinction between the body

of the capture subject and their clothing. Thus,

bulky clothing or accessories could change the

skeletal structure of the virtual character. Also,

the behaviors associated with the characters are

retargeted from sets of motion data and control

algorithms, but are not generated from move-

ments or motion gleaned from the subject itself.

Thus, motion transferred to all captured subjects

shares the same characteristics, differing only

by the online retargeting algorithm which ac-

commodates differently sized characters. This

homogeneity can be partially circumvented by

including variations in the set of motion data,

such as differing locomotion or gesturing sets

for male and female characters. For future work,

we plan on extracting movement models from

the capture subjects in order to further personal-

ize their virtual representation.
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