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Abstract

3D scanning techniques based on structured light usu-
ally achieve robustness against outliers by performing mul-
tiple projections to simplify correspondence. However, for
cases such as dynamic scenes, the number of frames cap-
tured from a certain view must be kept as low as possible,
which makes it difficult to reconstruct complex scenes with
high frequency shapes and inappropriate reflection prop-
erties. To tackle this problem, we present a novel set of
color stripe patterns and a robust correspondence algo-
rithm that assume local spatial coherence in the captured
data. This assumption allows us to design our stripe se-
quences with globally unique neighborhood properties to
effectively avoid wrong correspondences. The concept of lo-
cal spatial coherence is further exploited to make the ensu-
ing surface reconstruction practically insensitive to noise,
outliers, and anisotropic sampling density. Thus, the recov-
ery of a topologically consistent manifold surface can be
drastically simplified. We have successfully generated high
quality meshes of various colored objects using a minimal-
istic projector-camera system. In particular, the full sam-
pling capabilities of our devices can be exhausted by taking
only three shots.

1. Introduction

A projector and a camera form the basic requirements for
building a 3D scanner based on structured light (cf. Fig. 1).
In order to capture the shape of a real-world object, a se-
quence of patterns is projected onto the scene and their re-
flections are captured from a shifted position over time by
taking photographs. Depending on where the pattern reflec-
tions are detected in the acquisitions, depth information can
be accurately retrieved. This type of range measurement is
called active optical triangulation [2] and typically yields a
point cloud representing the object’s surface.

Projecting a pattern with multiple stripes allows a two
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Figure 1. Top: Our minimalistic 3D scanner
based on time-coded color structured light.
Bottom: A textured reconstruction of a stripe
illuminated skull.

dimensional sampling of depth from a single input image
and a faster acquisition. Depending on the projected stripe
width and the acquisition resolution, the sampling densities
along and between the stripe boundaries are generally dif-
ferent. This is particularly noticeable when we use the full
resolution of our digital camera (6 Mpixel), which is much
higher than that of our video projector (1 Mpixel). Without
prior knowledge on how the point cloud is generated, most
surface reconstruction methods from unorganized points
fail to find the desired topology from such anisotropic sam-
plings. Since most of the available range scanners rely on
rather modest camera resolutions, this issue has not yet been
explicitly addressed. As we do not wish to sacrifice accu-
racy and resolution, we choose to take on this challenge.

When multiple stripes are simultaneously projected, it



is necessary to match the acquired stripe boundaries to the
corresponding emitted ones. In this work, we project color
stripes where two stripe projections suffice to uniquely en-
code stripe boundaries for identification and to exhaust the
full projector resolution (one pixel wide stripes). By as-
suming negligible motion within two frames, our method is
suitable for dynamic scenes. This property of the scene is
called local temporal coherence.

The key innovation of our method is that the assumption
of local spatial coherence (cf. Section 3.1) is not only used
to identify stripe boundaries as in [3, 9, 16, 18, 12], but
also to effectively enhance robustness against outliers. Our
patterns are designed with stripe boundaries with globally
unique neighborhood properties that are essential to avoid
wrong correspondences due to high frequency occlusions.

In our correspondence algorithm, robustness is greatly
improved by exploiting the synergetic effect of combining
colors located at the medial axis of each stripe, which are
more reliable, and those around the stripe boundaries, which
are less susceptible to spatial discontinuities and occlusions.
This method partly shifts the correspondence problem be-
tween projected and acquired data to that of within acquired
data, which is similar in stereo vision. Hence, we can
more easily handle the issues of chromatic aberration, the
chicken-wire effect, and unfocused stripe boundaries, which
are caused by video projector limitations and the use of high
resolution captures (cf. Fig. 2).
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Figure 2. Pixel boundaries (chicken-wire ef-
fect) and color fringes around stripe bound-
aries (chromatic aberration) are visible due to
limitations of the video projector.

Finally, we propose a surface reconstruction technique
that is tightly integrated into the reconstruction pipeline.
This involves extracting topology from the projected pat-
terns and from the scanline ordering of the acquired images.
It is therefore possible to make use of crucial a-priori knowl-
edge of the underlying scan configuration to substantially
simplify the task of generating a topologically consistent
triangle mesh. In fact, this technique is insensitive to noise,
outliers, and anisotropic sampling densities. Moreover, it
also fills small undesired holes under the restriction of local
spatial coherence.

2. Structured Light Techniques

A wide range of 3D scanning methods have been exten-
sively investigated. An overview is presented by Curless
et al. in [8] from which only active optical triangulation ap-
proaches based on structured light are the focus of our work.
Our reconstruction pipeline follows a typical data flow:
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According to Rusinkiewicz et al. [16], different struc-
tured light approaches can be distinguished by the underly-
ing coherence assumptions of the scene. Methods that rely
on an ideal scene reflectance (cf. [4, 6]) are too restrictive
and unreliable for general usage. For this reason, only ap-
proaches that assume spatial and temporal coherences are
relevant in this paper. Regardless of the application, the
objective is to relax these assumptions by finding a good
trade-off between speed, robustness, and accuracy.

Approaches based on global temporal coherence assume
a static scene during the entire scanning. Posdamer and
Altschuler introduced in [14] a set of binary coded stripe
patterns that produced a sequence of n unique stripes by ac-
cumulating log n projections over time. Using Gray codes,
Sato and Inokuchi [17] improved this approach by generat-
ing broader stripes for better detection. The same technique
was adapted by Rocchini et al. [15], in which accuracy was
ameliorated with uniform light intensity color stripes. To
further increase speed, Caspi et al. generalized in [5] the
concept of Gray codes by also using color encoding.

An effective way to reduce the number of input images
is to consider spatial continuity in the scene. Koninckx et
al. recently presented in [11] a one-shot technique based on
global spatial coherence which allows objects with occlu-
sions by using a self-adaptive pattern. The required adapta-
tion process however disallows fast changes in the scene.
Another avenue to reconstruct objects with occlusions is
to assume piecewise continuity. One solution is to encode
stripe boundaries with their adjacent stripe colors. In [3],
only the three primary colors were used and the correspon-
dence algorithm iteratively takes the longest subsequence
of corresponded stripe boundaries. According to [18], this
method has proven to be unsatisfactory, yielding many out-
liers and holes. Davies and Nixon embarked on a similar
technique in [9] by projecting dots in a hexagonal arrange-



ment at the cost of a more complex segmentation. In partic-
ular, two-dimensional local spatial coherence is assumed in
the captured data as in our method. However, this is not the
case in other techniques involving stripe projections.

One approach to improve robustness against high fre-
quency discontinuities is to formulate the correspondence as
a global optimization problem. This has been demonstrated
by Zhang et al. in [18] using a multi-pass dynamic program-
ming approach and a colored stripe pattern that is generated
from a so-called DeBruijn sequence, which guarantees that
very small subsequences are unique within the whole se-
quence. However, this approach exhibits flaws when longer
stripe sequences are not captured by the camera and multi-
ple optimal solutions are possible. In fact, the reconstructed
mesh can be broken into several disconnected parts as ob-
served in many examples in [12], especially around surface
boundaries.

A more effective way to enhanced robustness is to use
very few additional acquisitions assuming local temporal
coherence. A remarkable example is the real-time acqui-
sition technique proposed by Rusinkiewicz et al. in [16].
It requires four frames to encode a sequence of 111 u-
nique stripe boundaries with additional spatio-temporal
constraints to enhance robustness against slight motions.
They define local spatial coherence by the minimum num-
ber of camera pixels (two in this case) required to iden-
tify a projected feature, which is resolution dependent. Be-
cause of the limited depth of field in video projectors, stripe
boundaries would appear out of focus when the photographs
have a higher resolution.

Our spatio-temporal approach uniquely encodes stripe
boundaries via adjacent stripe colors and is able to exhaust
the full projector resolution with two stripe projections only.
It is independent of the input image resolution and can
achieve higher robustness against outliers.

3. Range Acquisition

This section explains how to generate a point cloud that
represents the reconstructed surface from a set of input pho-
tographs. The first step consists of projecting our stripe pat-
terns onto the scene to perform active optical triangulation.
A diligent design of the patterns and an algorithm for gen-
erating them are described in Section 3.1.

During the acquisition, the scene is only illuminated by
the video projector in order to avoid intervention from other
light sources. An additional photograph of a plain white
projected scene is used for foreground segmentation and
color correction as in [12]. It is worth highlighting that this
supplementary shot opens up the possibility for texture re-
construction (cf. Fig. 1). On each shot of the stripe illumi-
nated scene, we apply a scalar median filter in each RGB-
channel independently to reduce noise that is mainly caused

by the chicken-wire effect (cf. Fig. 2).
For the optical triangulation, stripe boundaries must be

localized on the camera image plane. This is done by
simple color edge detection on each scanline as described
in [18, 12]. To obtain subpixel accuracy, we use the same
linear interpolation technique presented in [13]. Diminish-
ing false positive edges that do not belong to the projected
stripe boundaries is possible via a non-maxima suppression
method suggested in [12]. According to our designed stripe
patterns, some stripe boundaries might not be present in all
frames (cf. Section 3.1). For this reason, detected edges
from all acquired frames are merged into one data set.

Our correspondence algorithm then matches the se-
quence of acquired stripe boundaries with the projected
ones for each row. This is presented at length in Section 3.2.
Next, we eliminate false positive stripe boundaries that do
not belong to our projected stripe patterns using the proper-
ties described in Section 3.1. Due to our assumption of local
spatial coherence, a stripe boundary is considered valid if at
least one of its acquired neighbors is also a neighbor stripe
boundary in the projected pattern. By removing invalid cor-
respondences, outliers can be significantly reduced at the
cost of some eliminated correct data. Finally, optical trian-
gulation is performed to obtain the desired point cloud as
illustrated in Figure 7(c).

3.1. A Spatio-temporal Pattern

The design of a structured light pattern depends on spa-
tial and temporal coherence assumptions. Rusinkiewicz et
al. [16] assume that two adjacent camera pixels observe the
same spot on the surface and refer to it as local spatial co-
herence. Here, we use vertical stripes and assume that in
general two adjacent stripe boundaries in a camera scanline
correspond to adjacent projected stripe boundaries. We call
this property horizontal spatial coherence. Additionally, we
assume that stripe boundaries detected in any camera scan-
line are also present in the adjacent scanlines in general.
We call this vertical spatial coherence. Note that these as-
sumptions are independent of the camera resolution. We
will exploit this in Sections 3.2 and 4.

In order to more reliably acquire scenes, we restrict the
number of colors in the projected pattern to the RGB-colors
c ∈ {0, 1}3, where [1 1 1]t represents white, for in-
stance. Let P = [p1 . . .pn] represent our projected spatio-
temporal stripe sequence. By projecting t stripe patterns
sequentially, the accumulation of t projected colors of a
single stripe form one of 23t possible color combinations
pi = [c1

i . . . ct
i], where each cj

i ∈ {0, 1}3 represents a stripe
color of a specific frame.

We uniquely encode each stripe boundary by its two
adjacent stripe color combinations and obtain the stripe
boundary sequence Q = [q1 . . .qn−1], where qi =



[pipi+1] represents a single stripe boundary. This is illus-
trated in Figure 3.
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Figure 3. Color-coded stripes pi and the cor-
responding stripe boundaries qi.

A stripe boundary is only detectable if it has a color tran-
sition in at least one of the projections:

∀i ∈ {1, . . . , n− 1} : pi 6= pi+1 . (1)

Thus, there are 23t · (23t − 1) different stripe boundaries.
However, when only adjacent stripe colors are consid-

ered, local incoherences due to high frequency occlusions
are likely to produce ambiguous correspondences. For in-
stance, Figure 4 illustrates a situation where a projected
stripe is not visible to the camera and a wrongly captured
stripe boundary is identical to another projected one. The
same problem occurs when some areas are not illuminated
by the projector.

projector camera
p4

q1

q1

r3 = q1

Figure 4. As the stripe p4 is completely oc-
cluded, the wrongly acquired stripe bound-
ary r3 can be falsely corresponded to the pro-
jected stripe boundary q1.

Here, we alleviate misidentifications of this type by
adding spatio-temporal constraints in our stripe patterns.
Analogous to [16], we first ensure that each stripe bound-

ary changes over time:

∀i ∈ {1, . . . , n− 1}∃t1, t2 : t1 6= t2 ,
[ct1

i ct1
i+1] 6= [ct2

i ct2
i+1] .

(2)

This helps to distinguish between projected stripe bound-
aries and false positive detected ones.

However, the problem of newly emerged stripe bound-
aries, as illustrated in Figure 4, still remains. Such stripe
boundaries can only be identified if they are not present in
the projected pattern. As they emerge from two stripes in
close vicinity, we avoid the problem by ensuring that stripe
color combinations of a pair of close stripes are unique
within all other close pairs. We express this as:

∀i, j, k, l ∈ {1, . . . , n},
1 ≤ |i− j| ≤ d, 1 ≤ |k − l| ≤ d :

[pipj ] = [pkpl] ⇒ (i = k) ∧ (j = l) ,
(3)

where two stripes are defined to be close if their distances
are less than or equal to a predefined d. In this way, up to
d− 1 consecutive missing stripes can be tolerated.

At this point, it is still unclear how to generate a stripe
pattern with the above stated properties or whether such a
pattern with a minimum sequence length n and closeness
d exists. Answering this question is particularly difficult
because Property (3) is global. We propose an algorithm
that incrementally adds a new stripe to the sequence and
ensures that the Properties (1), (2), and (3) are satisfied.

For fast verification of the global property, we use a hash
table containing all close stripe pairs in the stripe pattern
built so far. For each stripe, all stripe color combinations are
consecutively tested. The order of choosing new stripe color
combinations should be random as an exhaustive test of
color combinations in the same order for each stripe would
lead to repetitions and thus more failures. If none of the
color combinations is valid, back tracking is required and
another color combination is chosen for a previous stripe.
If the algorithm terminates without any results, a stripe pat-
tern with the neighborhood properties does not exist. The
worst-case running time is O(23tn · d), assuming each hash
table operation to be O(1). Finding the optimal pattern with
the maximum possible d for a given t and n would thus
be intractable for large t and n. Nevertheless, suboptimal
patterns with large enough d can be pre-computed within a
reasonable amount of time as shown in Table 1.

3.2. Correspondence

Once the stripe boundaries are detected for each row,
they must be correctly assigned to the projected ones. Al-
though they are uniquely encoded with their adjacent stripe
color combinations, pixel values in the vicinity of the ac-
quired stripe boundaries are not suitable for identification,



d
nmax 1 2 3 4

1 ≥ 26 11 9 8
t 2 ≥ 1955 ≥ 893 ≥ 525 ≥ 337

3 ≥ 130420 ≥ 62253 ≥ 37967 ≥ 25711

d
nmax 5 6 7 8

1 8 8 8 8
t 2 ≥ 235 ≥ 165 ≥ 134 ≥ 93

3 ≥ 18488 ≥ 13855 ≥ 10647 ≥ 8479

Table 1. Maximum possible number nmax of
stripes satisfying Equations (1), (2), and (3)
for a given number of acquired frames t and
distance d.

especially in high resolution photographs. As noted ear-
lier, this is mainly due to hardware limitations of the video
projector. On the other hand, two color combinations that
are measured at the medial axes of two adjacent stripes in
a camera scanline are more discriminating and expressive
than those around stripe boundaries—provided horizontal
spatial coherence is present in the scene. However, these
color combinations suffer from high frequency spatial dis-
continuities, undetected stripe boundaries, and overdetected
ones. Conversely, color combinations obtained from the
vicinity of stripe boundaries are almost unaffected by these
problems, but are less expressive.

Assuming vertical spatial coherence, our method clus-
ters stripe boundaries of similar color combinations across
the scanlines. All stripe boundaries have both a left and a
right side medial axis color and the medians of each side
within a cluster are used for correspondence. Because of
occlusions, neither the number of resulting clusters nor their
corresponding representatives are known in advance.

Let rjk be the kth acquired stripe boundary in row j:

rjk = [ajkaj,k+1] ∈ [0, 1]6t ,
j = 1, . . . , r , k = 1, . . . ,mj ,

where ajk and aj,k+1 are the acquired color combinations
of the respective left and right pixels adjacent to the stripe
boundary. At the beginning, each first row stripe boundary
r1k belongs to a newly initialized cluster Ck. Each cluster
Ci is represented by its centroid ci:

ci =
1
|Ci|

∑
r∈Ci

r ∈ [0, 1]6t .

For the next row, we assign each r2k to the cluster with the
most similar centroid. If r2k is too different from all ci,

we initialize a new cluster for it. This is repeated for the
remaining rows where each ci is updated accordingly. At
most one feature vector rjk from a row j should be assigned
to a specific cluster Ci. Analogous to stereo vision corre-
spondence, we call this restriction uniqueness constraint.

Each stripe boundary has a medial axis color on its left
and right side. For each Ci, we denote the set of all left side
and right side medial axis colors by S l

i = {s(i),l
1 , . . . , s(i),l

qi }
and Sr

i = {s(i),r
1 , . . . , s(i),r

qi }, respectively (cf. Fig. 5).
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Figure 5. The clusters Ci are computed by
inter-scanline clustering over the colors at
the vicinity of the stripe boundaries. The me-
dians of the color values s(i),l/r

l on the medial
axis are used for the correspondence.

The left and right side medians of each cluster Ci are
given by s̃i := [s̃l

is̃
r
i], where s̃l

i := medianS l
i and s̃r

i :=
medianSr

i . All detected stripe boundaries rjk ∈ Ci are
assigned to s̃i which is also denoted by s̃jk.

Let Q = [q1 . . .qn−1] be the projected stripe boundary
sequence. The aim is to match each rjk with a qi which is
expressed by the identification map Φj , where Φj(k) = i.
For each row j, we iteratively determine for all k the closest
pairs (s̃jk,qi) until no more matches are possible. When-
ever a match between two stripe boundaries is found, the
uniqueness constraint disallows any further matches with
one of these two stripe boundaries within the same row.
Hence, Φj is an injective function.

A brute force approach has a running time of O(r ·mj ·n·
min{mj , n}) (cf. Alg. 1). A more efficient implementation
that requires only O(r · mj · n · log n) can be achieved by
presorting the distances dik.

Although the proposed clustering is dependent on the
scanline order, we manage to obtain a more robust corre-
spondence for high resolution captures because of the two-
dimensional local spatial coherence assumption. While in
general, a globally suboptimal correspondence is computed
and the point cloud obtained by optical triangulation is still
affected by outliers (cf. Fig. 7(c)), the errors are more evenly
distributed over the entire shape than using the dynamic pro-



Algorithm 1 correspondStripeBoundaries
for all j = 1, . . . , r do

P := {1, . . . , n− 1}, A := {1, . . . ,mj}
for all k = 1, . . . ,mj do

for all i = 1, . . . , n− 1 do
dik := ‖qi − s̃jk‖

while P 6= ∅ ∧ A 6= ∅ do
(imin, kmin) := argmin(i,k)∈P×A dik

Φj(kmin) := imin

P := P \ {imin}, A := A \ {kmin}
return Φ1, . . . ,Φr

gramming approach presented by Zhang et al. in [18] as ob-
served in [12]. This is particularly important as it simplifies
the task of removing outliers for surface reconstruction.

4. Surface Reconstruction

After optical triangulation, the resulting point cloud is
given by the set of points xjk ∈ R3 each corresponding
to a detected stripe boundary rjk. The goal of our surface
reconstruction is to approximate this point cloud with a 2-
manifold triangular mesh that is free of outliers and noise.

Much research has been conducted on surface recon-
struction from point clouds and a complete review would
be beyond the scope of this paper. An excellent overview
can be found in [1]. However, since we use high resolution
captures, vertical sampling densities are much higher than
the horizontal ones (cf. Fig. 7(c) and (d)) and using com-
mon methods would be doomed to fail. The same applies
if the surface is extracted from range scans by computing a
triangulation on the camera image plane as in [7].

For this reason, we simplify the problem by extracting
useful a-priori information from the previous correspon-
dence stage and the underlying projector-camera system:

• topology Two stripe boundaries rj,k1 and rj+1,k2 from
two adjacent camera scanlines representing the same
projected stripe boundary, i. e., Φj(k1) = Φj+1(k2),
are connected vertically. If two acquired neighboring
stripe boundaries are also adjacent stripe boundaries in
the projected pattern, they are connected horizontally.

• spatial coherence Meshing only with the above topol-
ogy information would yield many holes in the recon-
struction because of undetected stripe boundaries and
eliminated correspondences. Holes that are not due to
shadow areas can be filled using our spatial coherence
assumptions.

• orientation A consistent orientation can be easily de-
termined since the normals on the object’s surface

must always point towards the camera and the projec-
tor, of which the positions and orientations are known.

Our surface reconstruction algorithm requires two input
parameters τh, τv ∈ N. τh denotes the maximum number
of consecutive stripe boundaries allowed to be missing in a
scanline to represent a small horizontal gap. τv is the max-
imum number of consecutive rows in which a specific pro-
jected stripe boundary is not detected to represent a small
vertical gap.

We begin by assuming horizontal spatial coherence for
each scanline and fill small horizontal gaps so that only tri-
angles between two adjacent stripe boundaries need to be
generated. This is done by verifying if the widths of the
gaps wjk := Φj(k + 1)− Φj(k)− 1 are less than or equal
to τh for all j = 1, . . . , r and k = 1, . . . ,mj − 1. If a small
gap is found, wjk points are added (one for each missing
projected stripe boundary) and their positions are estimated
by linearly interpolating between xjk and xj,k+1. The point
cloud and the correspondences Φj are then updated with the
newly interpolated points and correspondences.

Let Ji be the ordered set of all camera scanlines in which
the projected stripe boundary qi is visible and let jpi be the
pth largest element in Ji. More precisely:

Ji := {j |Φj(k) = i , k ∈ {1, . . . ,mj}}
= {j1i, . . . , jpi, . . . , j|Ji|,i} ,

where j1i < . . . < jpi < . . . < j|Ji|,i .

In particular, Ji and Ji+1 originate from two adjacent pro-
jected stripe boundaries. For all i = 1, . . . , n − 1, our
mesh generation algorithm iteratively creates triangle strips
by vertically advancing to the next largest element from ei-
ther Ji or Ji+1 (cf. Fig. 6). Thus, at each iteration step,
we distinguish between a left and a right triangle config-
uration with heights hl = jl+1,i − min{jli, jr,i+1} and
hr = jr+1,i+1 − min{jli, jr,i+1}, respectively, which is
counted in number of rows on the camera image plane. If
both hl and hr are greater than τv, we assume a hole due to
shadow areas and advance to the next smallest element of
Ji or Ji+1, i. e., jl+1,i or jr+1,i+1, whichever is the smaller.
Otherwise, the triangle with the shortest height is taken. As
shown in Figure 7(d), this method is insensitive to highly
anisotropic sampled data.

However, the resulting mesh is still affected by outliers
which can be easily eliminated once the mesh topology is
found. Analogous to [7], we first remove triangles with very
long edges. In addition, we leave out back-faced triangles
and those with normals that are almost orthogonal to their
lines of sight. Note that holes due to the removal of outliers
must be refilled. In practice, mesh smoothing is necessary to
reduce noise due to measurement inaccuracies. We adapted
a standard Laplacian smoothing based on curvature flow as
presented in [10].



generated 
facet

i + 1i

camera 
image plane

right 
configuration

left 
configuration

jli

jl+1,i

jr,i+1

jr+1,i+1hl hr

xli

xl+1,i

xr,i+1

xr+1,i+1

Figure 6. Triangle mesh generation from a highly anisotropic sampled point cloud.

5 Results

Our system consists of two low cost devices: an ASK
M2 DLP video projector and a Fuji Finepix S2 Pro digital
camera (cf. Fig. 1). To achieve the highest sampling res-
olution, we project stripes with one pixel width and take
photographs with 3024× 2016 pixels. This is in contrast to
most other works which use resolutions far below 1 Mpixel
[15, 16, 18, 11]. As we scan in complete darkness, the
depth of field of the camera is increased by choosing a
small aperture (f/22) and a longer exposure time (3 s). The
full sampling capabilities of our system are exhausted with
only three shots (two structured light and an additional plain
white projection). Our proposed technique has therefore the
potential to be an integral part of range scanners for dy-
namic scenes based on state-of-the-art technologies such as
high definition video projectors and camcorders.

From our experiments, we conclude that the main hard-
ware limitations are due to the video projector. For instance,
the effects of chromatic aberration and chicken-wire seri-
ously affected our acquisitions. And as with most active
scanners using video projectors, keeping sharply focused
stripe boundaries within a reasonable depth of field is hard.

Figure 7(a) and (b) demonstrate the performance of
our reconstruction on two particularly challenging objects.
While the human skull has relatively good reflectance
properties, it is affected by many concavities and self-
occlusions. Acquiring the shape of the guardian lion is
also difficult because of its high frequency and dark granite
texture, which yields many small holes in the reconstruc-
tion. The mesh of the skull has 41 k vertices and 79 k tri-
angles and the lion 28 k vertices and 53 k triangles. Both
shapes were acquired using patterns with 200 stripes and
d = 5. Clustering as presented in Section 3.2 computed
549 partitions in 43 s (skull) and 818 partitions in 23 s (lion).
The correspondences computed with presorted dik in Algo-
rithm 1 took 1 min 25 s (skull) and 2 min 56 s (lion) instead
of 9 min 42 s (skull) and 19 min 6 s (lion) without sorting.
We used τh = 2 and τv = 40 for the surface reconstruc-
tion of both objects, which was followed by 20 iterations of

Laplacian smoothing. Their complete reconstruction times
were below 5 min and no additional manual post process-
ing was required. All experiments were performed on a
1.8 GHz PowerPC 970 FX with 768 MB RAM.

Currently, we see two main areas of improvement in our
approach. As our algorithm for stripe pattern generation has
an exponential runtime, we are interested in finding a more
efficient way to compute it. Another question would be how
to efficiently perform the stripe boundary clustering without
depending on the scanline order.
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