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1. Implementation Details
1.1. Deep Visual Hull

We employ a network that is similar to [1] for our
proposed deep visual hull algorithm. The detailed network
structure is shown in Figure 1. The network consists of
two parts: (1) a convolutional neural network for extracting
features from a given view and 3D query points, and
(2) a classification network that consumes the multi-view
features and predicts per-point probability of lying inside
the reconstructed object. The input to our network includes
images from 12 different views. For each view, the input
is a four-channel image, which is the concatenation of the
previously synthesized silhouette mask (one channel) and
the 2D pose map at this view (color-coded in three channels).

The feature extraction network is composed of four
convolutional layers with a kernel size of 5× 5 and channel
sizes of 4, 8, 16, 32, as well as two fully connected layers
with a dimension of 128 and 256 for the hidden layer,
respectively. After each convolutional layer, we also apply
ReLU activation. For each 3D query point, we first project it
onto the image plane of each view and extract the features at
the projected location from the output of each layer as well
as the input layer. The extracted features are concatenated
and passed to the fully connected layers, resulting a 256-
dimension feature vector for each view (Figure 1(a)).

As shown in Figure 1(b), the classification network first
concatenates feature vectors from all input views and then
applies max pooling to obtain a view-independent latent
code of length 256. Finally, the latent code is fed into a four-
layer MLP network for inferring the per-point probability of
staying inside the object surface.

1.2. Baseline Methods

To validate our design choice, we compare our silhouette-
based reconstruction with volumetric reconstruction using
voxels [4]. Additionally, we evaluate our input of silhouette
by comparing with results from RGB input. We describe the
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implementation details of these baseline methods below.
For 2D silhouette synthesis using RGB input, we use

a network architecture based on U-Net [2] by replacing
the original single-channel segmentation with RGB images
in our proposed network. We use the same loss function
and optimizer as our silhouette synthesis network. The
voxel prediction network is based on a stacked hourglass
network [3]. This network takes as input silhouette/image
({1, 3}×256×256), 2D pose (3×256×256), and 3D pose
(304× 64× 64), where the joint heat maps in depth for each
joint are concatenated into the channel dimension (16×19 =
304). Here we use two stacks for both silhouette-input and
RGB-input cases. Following [5], we concatenate the 3D pose
information after a 4x downsampling operation by pooling
in the network. The network predicts an occupancy field of
human body of resolution 64× 64× 64, which is optimized
using a BCE loss Lvol between the ground truth and the
prediction together with an additional reprojection loss from
the front view Lpf and the side view Lps (see Figure 2). The
reprojection loss computes BCE loss between the ground
truth silhouettes and 2D projected voxels along x and z axis
using max operation, constraining the resulting silhouettes
from each view to be consistent with ground truth [4]. The
total loss function is given by

L = Lvol + λp · (Lpf + Lps),

where the relative weight λp is set to 0.1 in our experiments.
We use RMSProp optimizer with a learning rate of 2.0×10−4

and a batch size of 4. Note that this ablation study uses only
frontal views as input for simplicity.

2. Additional Evaluations
2.1. Comparison with Voxel Representation

Figure 3 shows qualitative comparisons between our
silhouette based shape representation and an alternative
voxel based representation. Note that ours is trained using
silhouettes and 2D poses as input, while the voxel regression
uses 2D silhouettes, 3D poses, and 2D poses as input.
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Figure 1: Our network architecture for the deep visual hull computation.

Compared to direct predicting the occupancy of 3D voxels,
our implicit shape representation based on 2D silhouettes
leads to more faithful reconstruction results with much
smaller errors.

2.2. Ablation Study on Silhouette Synthesis

Figure 4 and Table 1 show the ablation study on the design
choice of our silhouette synthesis network. To validate the
importance of 2D pose information of the input view, we
train the same silhouette synthesis network using the same
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Figure 2: Illustration of the baseline voxel regression
network.
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Figure 3: Qualitative evaluation of our silhouette-based
shape representation as compared to direct voxel prediction.

training dataset output w/ input view pose IoU (2D)
RenderPeople single view yes 0.882
RenderPeople single view no 0.875
RenderPeople all views yes 0.806

SURREAL single view yes 0.782

Table 1: Ablation study of our silhouette-based representa-
tion.

configuration but without the 2D pose of the input view. The
reconstruction accuracy is evaluated by computing mean
Intersection over Union (IoU) using the subjects in our test
set from the predefined 12 views spanning every 30 degrees
in yaw axis.

The model without 2D pose from the input view has
difficulty associating loose clothes (e.g., dresses) with the
novel view points, impairing the overall performance (see
the fourth column in Figure 4).

We also train a silhouette synthesis network that predicts
a set of silhouettes from a set of predefined view points
in one go, instead of independently predicting silhouettes
from each view point together with 2D joint information

Figure 4: Qualitative evaluation of different silhouette
synthesis methods. From left to right: silhouette of the
input view, ground-truth silhouette of the target view, results
of our full algorithm, results without 2D pose information,
results from a set of predefined view points, and the ones by
training on the SURREAL dataset [5].

from the target view. The network generates the silhouettes
from the predefined 12 view points at once. All the
other configurations are identical to our main algorithm.
This alternative approach also fails to produce plausible
silhouettes and severely overfits to the training data samples
(see the fifth column of Figure 4).

Lastly, we demonstrate the importance of our clothed
human training dataset to faithfully capture subjects with
various clothes. We train our proposed network on the
SURREAL dataset [5] in which all the subjects are in tightly-
fitting clothes. We randomly select 14, 490 meshes from the
training set of SURREAL and train our silhouette synthesis
network with the same configurations as ours. Due to the
lack of various cloth details, the resulted model is unable to
predict plausible silhouettes with loose clothes (see the last
column of Figure 4).

3. Additional Results

Figure 5 shows our 3D reconstruction results of clothed
human body using test images from synthetic rendered data.
Those test images have not been used for training. For
each image, we show the back-view synthesis result, the
reconstructed 3D geometry with with plain shading, as well
as the fully textured output mesh rendered from a different
view point.

4. Example Training Data

Figure 6 shows a collection of our rendered examples
with both frontal and back views. Our networks are trained
based on these synthetic data and can generalize well to
handle real test images.
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Figure 5: Our 3D reconstruction results of clothed human body using test images from the synthetically rendered data.
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Figure 6: Our synthetically rendered training samples in our dataset.
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