CSCI 621: Digital Geometry Processing

12.2 Space Deformation

Hao Li

http://cs621.hao-li.com

Hoooray!

Last Time

Surface Deformations

Displacement function defined on the ambient space

 $\mathbf{d}: \mathbb{R}^3 \to \mathbb{R}^3$

 Evaluate the function on the points of the shape embedded in the space

$$\mathbf{x}' = \mathbf{x} + \mathbf{d}(\mathbf{x})$$

Twist warp Global and local deformation of solids [A. Barr, SIGGRAPH 84]

Freeform Deformation

- Control object
- User defines displacements d_i for each element of the control object
- Displacements are interpolated to the entire space using basis functions $B_i(\mathbf{x}): \mathbb{R}^3 \to \mathbb{R}$

$$\mathbf{d}(\mathbf{x}) = \sum_{i=1}^{k} \mathbf{d}_i B_i(\mathbf{x})$$

 Basis functions should be smooth for aesthetic results

- Control object = lattice
- Basis functions $B_i(\mathbf{x})$ are trivariate tensor-product splines:

$$\mathbf{d}(x, y, z) = \sum_{i=0}^{l} \sum_{j=0}^{m} \sum_{k=0}^{n} \mathbf{d}_{ijk} N_i(x) N_j(y) N_k(z)$$

- Aliasing artifacts
- Interpolate deformation constraints?
 - Only in least squares sense

Limitations of Lattices as Control Objects

- Difficult to manipulate
- The control object is not related to the shape of the edited object
- Parts of the shape in close Euclidean distance always deform similarly, even if geodesically far

Wires

- Control objects are arbitrary space curves
- Can place curves along meaningful features of the edited object
- Smooth deformations around the curve with decreasing influence

Handle Metaphor

- Wish list for the displacement function d(x):
 - Interpolate prescribed constraints
 - Smooth, intuitive deformation

Volumetric Energy Minimization

[RBF, Botsch & Kobbelt 05]

Minimize similar energies to surface case

$$\int_{\mathbb{R}^3} \|\mathbf{d}_{xx}\|^2 + \|\mathbf{d}_{xy}\|^2 + \dots + \|\mathbf{d}_{zz}\|^2 \ dx \ dy \ dz \to \min$$

- But displacements function lives in 3D...
 - Need a volumetric space tessellation?
 - No, same functionality provided by RBFs!

Radial Basis Functions

[RBF, Botsch & Kobbelt 05]

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \, \varphi(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

- Triharmonic basis function $\varphi(r) = r^3$
 - C² boundary constraints
 - Highly smooth / fair interpolation

$$\int_{\mathbb{R}^3} \|\mathbf{d}_{xxx}\|^2 + \|\mathbf{d}_{xyy}\|^2 + \dots + \|\mathbf{d}_{zzz}\|^2 \ dx \ dy \ dz \to \min$$

Radial Basis Functions

[RBF, Botsch & Kobbelt 05]

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \, \varphi(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

- RBF fitting
 - Interpolate displacement constraints
 - Solve linear system for \mathbf{w}_j and \mathbf{p}

Radial Basis Functions

[RBF, Botsch & Kobbelt 05]

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \, \varphi(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

- RBF evaluation
 - Function d transforms points
 - Jacobian ∇d transforms normals
 - Precompute basis functions
 - Evaluate on the GPU!

Local & Global Deformations

[RBF, Botsch & Kobbelt 05]

Local & Global Deformations

[RBF, Botsch & Kobbelt 05]

1M vertices movie

- Handle arbitrary input
 - Meshes (also non-manifold)
 - Point sets
 - Polygonal soups
 - • •

- 3M triangles
- 10k components
- Not oriented
- Not manifold

- Handle arbitrary input
 - Meshes (also non-manifold)
 - Point sets
 - Polygonal soups

•••

$$\mathbf{F}(x,y,z) = (F(x,y,z), G(x,y,z), H(x,y,z))$$

then the Jacobian is the determinant

- The deformation is only loosely aware of the shape that is being edited
- Small Euclidean distance → similar deformation
- Local surface detail may be distorted

[Ju et al. 05]

- Cage = crude version of the input shape
- Polytope (not a lattice)

[Ju et al. 05]

 Each point x in space is represented w.r.t. to the cage elements using coordinate functions

$$\mathbf{x} = \sum_{i=1}^{k} w_i(\mathbf{x}) \, \mathbf{p}_i$$

[Ju et al. 05]

 Each point x in space is represented w.r.t. to the cage elements using coordinate functions

$$\mathbf{x} = \sum_{i=1}^{k} w_i(\mathbf{x}) \, \mathbf{p}_i$$

[Ju et al. 05]

$$\mathbf{x}' = \sum_{i=1}^k w_i(\mathbf{x}) \, \mathbf{p}_i'$$

Generalized Barycentric Coordinates

Lagrange property:

$$w_i(\mathbf{p}_j) = \delta_{ij}$$

Reproduction:
$$\forall \mathbf{x}, \ \sum_{i=1}^{n} w_i(\mathbf{x}) \ \mathbf{p}_i = \mathbf{x}$$

• Partition of unity:
$$\forall \mathbf{x}, \ \sum_{i=1}^{n} w_i(\mathbf{x}) = 1$$

- Mean-value coordinates [Floater 2003, Ju et al. 2005]
 - Generalization of barycentric coordinates
 - Closed-form solution for $w_i(\mathbf{x})$

 Mean-value coordinates [Floater, Ju et al. 2005]

Not necessarily positive on non-convex

domains

- Harmonic coordinates (<u>Joshi et al. 2007</u>)
 - Harmonic functions $h_i(\mathbf{x})$ for each cage vertex \mathbf{p}_i
 - Solve $\Delta h = 0$

subject to: h_i linear on the boundary s.t. $h_i(\mathbf{p}_j) = \delta_{ij}$

- Harmonic coordinates (<u>Joshi et al. 2007</u>)
 - Harmonic functions $h_i(\mathbf{x})$ for each cage vertex \mathbf{p}_i
 - Solve $\Delta h = 0$
 - subject to: h_i linear on the boundary s.t. $h_i(\mathbf{p}_j) = \delta_{ij}$
- Volumetric Laplace equation
- Discretization, no closed-form

Harmonic coordinates (<u>Joshi et al. 2007</u>)

Green coordinates (<u>Lipman et al. 2008</u>)

 Observation: previous vertex-based basis functions always lead to affine-

invariance!

Green coordinates (<u>Lipman et al. 2008</u>)

Correction: Make the coordinates depend

on the cage faces as well

- Green coordinates (<u>Lipman et al. 2008</u>)
- Closed-form solution
- Conformal in 2D, quasi-conformal in 3D

- Green coordinates (<u>Lipman et al. 2008</u>)
- Closed-form solution
- Conformal in 2D, quasi-conformal in 3D

Alternative interpretation in 2D via holomorphic functions and extension to point handles: Weber et al. Eurographics 2009

Cage-Based Methods: Summary

Pros:

- Nice control over volume
 - Squish/stretch

Cons:

 Hard to control details of embedded surface

Non-Linear Space Deformation

- Involve nonlinear optimization
- Enjoy the advantages of space warps
- Additionally, have shape-preserving properties

As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

- Points or segments as control objects
- First developed in 2D and later extended to 3D by Zhu and Gortler (2007)

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

■ Attach an affine transformation to each point \mathbf{x} $\in \mathbb{R}^3$:

$$A_{x}(p) = M_{x}p + t_{x}$$

The space warp:

$$\mathbf{x} \to \mathbf{A}_{\mathbf{x}}(\mathbf{x})$$

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

- lacktriangle Handles \mathbf{p}_i are displaced to \mathbf{q}_i
- The local transformation at x:

$$A_{\mathbf{x}}(\mathbf{p}) = M_{\mathbf{x}}\mathbf{p} + \mathbf{t}_{\mathbf{x}}$$
 s.t.

$$\sum_{i=1}^k w_i(\mathbf{x}) \|\mathbf{A}_{\mathbf{x}}(\mathbf{p}_i) - \mathbf{q}_i\|^2 \implies \min$$

The weights depend on x:

$$w_i(\mathbf{x}) = ||\mathbf{p}_i - \mathbf{x}||^{-2\alpha}$$

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

No additional restriction on $A_x(\cdot)$ – affine local transformations

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to similarity

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_{\mathbf{x}}(\cdot)$ to similarity

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to rigid

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to rigid

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

Examples

Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07]

- No linear expression for similarity in 3D
- Instead, can solve for the minimizing rotation

$$\underset{R \in SO(3)}{\operatorname{arg\,min}} \sum_{i=1}^{k} w_i(\mathbf{x}) \| \mathbf{R} \mathbf{p}_i - \mathbf{q}_i \|^2$$

by polar decomposition of the 3×3 covariance matrix

Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07]

• Zhu and Gortler also replace the Euclidean distance in the weights by "distance within the shape"

 $w_i(\mathbf{x}) = d(\mathbf{p}_i, \mathbf{x})^{-2\alpha}$

Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07]

More results

- Surface handles as interface
- Underlying graph to represent the deformation; nodes store rigid transformations
- Decoupling of handles from def.

Deformation Graph

Optimization Procedure

Embedded Deformation [Sumner et al. 07]

Select & drag vertices of embedded object.

Optimization finds $\mbox{deformation parameters } R_j \mbox{ , } \boldsymbol{t}_j.$

Embedded Deformation [Sumner et al. 07]

$$\min_{\mathbf{R}_1,\mathbf{t}_1,\ldots,\mathbf{R}_m,\mathbf{t}_m}$$

$$\min_{\mathbf{R}_1,\mathbf{t}_1,\ldots,\mathbf{R}_m,\mathbf{t}_m} w_{\text{rot}} E_{\text{rot}} + w_{\text{reg}} E_{\text{reg}} + w_{\text{con}} E_{\text{con}}$$

Graph parameters Rotation term

Regularization term

Constraint term

Select & drag vertices of embedded object.

Optimization finds

deformation parameters \mathbf{R}_i , \mathbf{t}_i .

Embedded Deformation [Sumner et al. 07]

$$\min_{\mathbf{R}_1,\mathbf{t}_1,\ldots,\mathbf{R}_m,\mathbf{t}_m} w_{\text{rot}} \mathbf{E}_{\text{rot}} + w_{\text{reg}} \mathbf{E}_{\text{reg}} + w_{\text{con}} \mathbf{E}_{\text{con}}$$

Rot(**R**) =
$$(\mathbf{c}_1 \cdot \mathbf{c}_2)^2 + (\mathbf{c}_1 \cdot \mathbf{c}_3)^2 + (\mathbf{c}_2 \cdot \mathbf{c}_3)^2 + (\mathbf{c}_1 \cdot \mathbf{c}_1 - 1)^2 + (\mathbf{c}_2 \cdot \mathbf{c}_2 - 1)^2 + (\mathbf{c}_3 \cdot \mathbf{c}_3 - 1)^2$$

$$E_{\text{rot}} = \sum_{j=1}^{m} \text{Rot}(\mathbf{R}_{j})$$

For detail preservation, features should rotate and not scale or skew.

Embedded Deformation [Sumner et al. 07]

$$\min_{\mathbf{R}_1,\mathbf{t}_1,\ldots,\mathbf{R}_m,\mathbf{t}_m} w_{\text{rot}} \mathbf{E}_{\text{rot}} + w_{\text{reg}} \mathbf{E}_{\text{reg}} + w_{\text{con}} \mathbf{E}_{\text{con}}$$

$$E_{\text{reg}} = \sum_{j=1}^{m} \sum_{k \in \mathbb{N}(j)} \alpha_{jk} \left\| \mathbf{R}_{j} (\mathbf{g}_{k} - \mathbf{g}_{j}) + \mathbf{g}_{j} + \mathbf{t}_{j} - (\mathbf{g}_{k} + \mathbf{t}_{k}) \right\|_{2}^{2}$$

where node j thinks where node knode k should go

actually goes

Neighboring nodes should agree on where they transform each other.

$$\min_{\mathbf{R}_1,\mathbf{t}_1,\ldots,\mathbf{R}_m,\mathbf{t}_m} w_{\text{rot}} \mathbf{E}_{\text{rot}} + w_{\text{reg}} \mathbf{E}_{\text{reg}} + w_{\text{con}} \mathbf{E}_{\text{con}}$$

Results on Polygon Soups

Results on Giant Mesh

Detail Preservation

Discussion

- Decoupling of deformation complexity and model complexity
- Nonlinear energy optimization results comparable to surface-based approaches

Projects

Geometry Processing Project

Goal

- Small research project
- 1 week for project proposal, deadline April 2
 - choose between 3 options: A,B, or C
- >1 month for project, deadline May 07
- group, size up to 2
- contributes 30% to the final grade.
- send to <u>zenghuan@usc.edu</u>

Scope

A) For the disciplined

- Deformation Project, we will provide a framework
- You will implement a surface-based linear deformation algorithm (bending minimizing deformation).

B) For the creative [+10 points]

- Imagine an interesting topic around geometry processing or related to your PhD research or something you always wanted to do, and write a proposal.
- If it gets approved, you are good to go.

C) For the bad ass [+10 points]

- Implement a Siggraph, SGP, SCA, or Eurographics Paper.
- Geometry processing related of course ;-)

Project Submission

Deliverables for A)

- Source Code, Binary, Data
- Text files describing the project, how to run it.

Deliverables for B) and C)

- Short Presentation will be held May 7th (length TBD)
- Video / Figures
- Documentation (pdf, doc, txt file): 2 or more pages, short paper style, be rigorous and organized, must include at least abstract, methodology, and results.

Project Proposal

Structure

- Title
- Motivation
- Goal
- Proposed Method
- References

Format

- authors' names/student IDs
- 1-2 pages
- .doc, .pdf, .txt
- figures

Deformation Framework for A)

- Inherit from MeshViewer with user interface:
 - 'p': pick a handle
 - 'd': drag a handle (last one with starting code)
 - 'm': move the mesh

Deformation Framework for A)

add handle picking code to

```
DeformationViewer::mouse()
```

add deformation codes to

```
DeformationViewer::deform mesh()
```

- add extra classes and files if needed
- gmm is provided to solve linear systems

Some ideas for B) or C)

- registration: articulated / deformable motions...
- **shape matching**: RANSAC, spin images, spherical harmonics...
- Smoothing: implicit surface fairing...
- parameterization: harmonic/conformal mapping...
- remeshing: anisotropic, quad mesh...
- deformation: As-rigid-as-possible, gradient-based...

•

http://cs621.hao-li.com

Thanks!

