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Space Deformation

Displacement function defined on the ambient
space 9 9
d: R°— R

Evaluate the function on the points of the
shape embedded in the space

Twist warp
Global and local deformation of solids

[A. Barr, SIGGRAPH 84]




Freeform Deformation

Control object

User defines displacements d. for each element
of the control object

Displacements are interpolated to the entire
space using basis functions B;(x) : R® — R

Basis functions should be
smooth for aesthetic results




Freeform Deformation

[Sederberg & Parry 86]

Control object = lattice

Basis functions B, (x) are
trivariate tensor-product splines:

[ m n




Freeform Deformation

[Sederberg & Parry 86]

Aliasing artifacts

Interpolate deformation constraints?
Only in least squares sense




Limitations of Lattices as Control Objects

Difficult to manipulate

The control object is not
related to the shape of
the edited object

Parts of the shape in
close Euclidean distance
always deform similarly,
even if geodesically far




Wires

[Singh & Fiume 98]

» Control objects are arbitrary space curves

» Can place curves along meaningful features of
the edited object

» Smooth deformations around the curve with
decreasing influence




Handle Metaphor

[RBF, Botsch & Kobbelt 05]

» Wish list for the displacement function d(x):
= Interpolate prescribed constraints
= Smooth, intuitive deformation

(d:R® - R
ﬁ
x — X + d(x)
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Volumetric Energy Minimization

[RBF, Botsch & Kobbelt 05]

Minimize similar energies to surface case
e+ ey 4+ el ey d — i
RS

But displacements function lives in 3D...

Need a volumetric space tessellation?
No, same functionality provided by RBFs!
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Radial Basis Functions

[RBF, Botsch & Kobbelt 05]

Represent deformation by RBFs

d(x) = > w; llle; — x|) + p(x)

J
Triharmonic basis function ¢ (r) = r 3

C’ boundary constraints
Highly smooth / fair interpolation

Idyza |l + [deuyll® + ... + ||ds.2||* dxdydz — min
. Yy
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Radial Basis Functions

[RBF, Botsch & Kobbelt 05]

Represent deformation by RBFs

A(x) = > w; ¢(lle; = x|) + px)

J

RBF fitting

Interpolate displacement constraints
Solve linear SyStem for Wj and p
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Radial Basis Functions

[RBF, Botsch & Kobbelt 05]

Represent deformation by RBFs
d(x) = Y w;e(le; —x|) + p(x)
J

RBF evaluation
Function d transforms points
Jacobian Vd transforms normals

Precompute basis functions
Evaluate on the GPU!
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Local & Global Deformations

[RBF, Botsch & Kobbelt 05]

15



Local & Global Deformations

[RBF, Botsch & Kobbelt 05]

1M vertices
movie
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Space Deformation

Handle arbitrary input
Meshes (also non-manifold)
Point sets
Polygonal soups

SN

3M triangles

10k components
Not oriented
Not manifold

Complexity mainly depends
on the control object, not
the surface
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Space Deformation

» Handle arbitrary input

= Meshes (also non-manifold)
= Point sets

= Polygonal soups

F(z,0,2) = (F(2,4,2),G(2.9,2),H(z,,2))
O EaS'ier to analyze: then the Jacobian is the dlet(::-mi:;.nt@Fl
functions on Euclidean domain .- (s 2 2!

| ot om 0H=

= Volume preservation: |Jacobian| =1 ' ™ ™'
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Space Deformation

The deformation is only loosely aware of the
shape that is being edited

Small Euclidean distance — similar deformation
Local surface detail may be distorted

19



Cage-Based Deformation

[Ju et al. 05]

» Cage = crude version of the input shape
» Polytope (not a lattice)
AN
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Cage-Based Deformation

[Ju et al. 05]

Each point x in space is represented w.r.t.
to the cage elements using coordinate

functions

k
X = Z w;(X) P
i=1
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Cage-Based Deformation

[Ju et al. 05]

Each point x in space is represented w.r.t.
to the cage elements using coordinate
functions

k
X = Z w;(X) P
i=1
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Cage-Based Deformation

[Ju et al. 05]




Generalized Barycentric Coordinates

Lagrange property:  w;(p;) = 0;;
k
Reproduction: VX, sz(x) p; =X
i=1

k
Partition of unity: VX, sz(x) =1
i=1
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Coordinate Functions

» Mean-value coordinates
[Floater 2003, Ju et al. 2005]

= Generalization of barycentric coordinates
= Closed-form solution for w, (x)
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Coordinate Functions

Mean-value coordinates
[Floater, Ju et al. 2005]

Not necessarily positive on non- convex

domains .

@h"m'
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Coordinate Functions

Harmonic coordinates (Joshi et al. 2007)
Harmonic functions /(x) for each cage vertex p,

Solve A /=0

subject to: 4, linear on the boundary s.t. 4;(p,) = 9;

]

MVC
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Coordinate Functions

Harmonic coordinates (Joshi et al. 2007)
Harmonic functions /4 (x) for each cage vertex p,

Solve A /=0

subject to: 4, linear on the boundary s.t. 4;(p,) = 9;
Volumetric Laplace equation
Discretization, no closed-form g




Coordinate Functions

» Harmonic coordinates (Joshi et al. 2007)
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Coordinate Functions

Green coordinates (Lipman et al. 2008)

Observation: previous vertex-based basis
functions always lead to affine-

invariance! il
a Al "(.\ o
q . ';\",'_." { >7 ;'l' / ‘\, » -\/)1' |
| LR \-‘3* &' X *1 | \\\,‘ |
| \Xx X \ >/ = N/ 1y
| AV ™ )
/ _ /
— E wz(X)Pz |
1=1
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Coordinate Functions

Green coordinates (Lipman et al. 2008)

Correction: Make the coordinates depend
on the cage faces as well

| A/ l
(W WL
\ - )‘\‘,\!.f;.: |
k \ m |
O ST e S
i=1 j=1
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Coordinate Functions

Green coordinates (Lipman et al. 2008)
Closed-form solution
Conformal in 2D, quasi-conformal in 3D

GC MVC GC
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Coordinate Functions

Green coordinates (Lipman et al. 2008)
Closed-form solution
Conformal in 2D, quasi-conformal in 3D

Alternative interpretation in 2D via holomorphic functions
and extension to point handles : Weber et al. Eurographics 2009

33



Cage-Based Methods: Summary

Pros:

Nice control over volume
Squish/stretch

Ccons:

Hard to control details of embedded
surface
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Non-Linear Space Deformation

" |nvolve nonlinear optimization
" Enjoy the advantages of space warps
" Additionally, have shape-preserving
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As-Rigid-As-Possible Deformation

2006]

Moving-Least-Squares (MLS) approach [Schaefer et al

ints or segments as control objects

" Po
= F

irst developed in 2D and later extended to 3D

by Zhu and Gortler (2007)
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Attach an affine

transformation to each point x
ER’:

'f‘u \}
il Hm}) /) i
’J :

R
)})L

A

A(p)=M;p + t,

" The space warp:
X = A(X)




As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Handles p, are displaced to q,
® The local transformation at x:
Adp)=Mp +t, st

Y w[Ap)-q,

" The weights depend on x:

w, (x) = ||p, — x|

2 .
— 1NIn




As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= No additional restriction on A (+) — affine
local transformations
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A, (+) to similarity
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A, (+) to similarity

a b
M =

X
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A,(*) to rigid
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A,(*) to rigid

a b
M, =
b

Solve for M, like
similarity and then

normalize h
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

" Examples
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07]

" No linear expression for similarity in 3D
" |nstead, can solve for the minimizing rotation

2

k
arg min E w, (x)HRpi -(.

RESO(3) 41

by polar decomposition of the 3x3 covariance
matrix
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07]

" Zhu and Gortler also replace the Euclidean
distance in the weights by “distance within

the shape” g,
Wi ) =d(p;, X) )

N -
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07]

" More results
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As-Rigid-As-Possible Deformation

Embedded Deformation [Sumner et al. 07]

= Surface handles as interface

» Underlying graph to represent the
deformation; nodes store rigid transformations

" Decoupling of handles from detf.

Deformation Graph Optimization Procedure
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Deformation Graph

Embedded Deformation [Sumner et al. 07]
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Deformation Graph

Embedded Deformation [Sumner et al. 07]
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Deformation Graph

Embedded Deformation [Sumner et al. 07]

Begin with an embedded object.
Nodes selected via uniform sampling; located at g]

One rigid transformation for each node. Rj , tj

Each node deforms nearby space.

Edges connect nodes of overlapping
influence.
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Deformation Graph

Embedded Deformation [Sumner et al. 07]

Begin with an embedded object.
Nodes selected via uniform sampling; located at g]

One rigid transformation for each node. Rj , tj

Each node deforms nearby space.

Edges connect nodes of overlapping
influence.
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Deformation Graph

Embedded Deformation [Sumner et al. 07]

point x transformed by node j

X —Ew (x)[R (x-g;)+g +t, ]

W, (X) = (l—Hx—ng/d

max )
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Optimization

Embedded Deformation [Sumner et al. 07]

Select & drag vertices of embedded
object.
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Optimization

Embedded Deformation [Sumner et al. 07]

Select & drag vertices of embedded
object.

Optimization finds

deformation parameters Rj , tj'
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Optimization
Embedded Deformation [Sumner et al. 07]

R min WrotErot T WregE T WconEcon
1>t Rt

Graph Rotation Regularization Constraint
parameters term term term

Select & drag vertices of embedded
object.

Optimization finds

deformation parameters Rj , tj'
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Optimization
Embedded Deformation [Sumner et al. 07]

R min WrotErot T Wre gE T WconEcon
1 ,tl 90 o .,Rm ,tm

Rot(R) = (¢, °Cz)2 +(c, °C3)2 + (¢, 'C3)2 +

(¢, ¢, =1)" +(cy ¢, =) +(c;-¢; = 1)’

3

Rot(R ;)

7=l

For detail preservation,
features should rotate and

not scale or skew.
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Optimization
Embedded Deformation [Sumner et al. 07]

R min WrotErot T WregE T WconEcon
I TR L S

E., é E R (g -8 ) +g, +t, (g, +t).

j=1 k&EN(J

where node j thinks where node &
node k should go actually goes

Neighboring nodes should
agree on where they transform
each other.

58



Optimization
Embedded Deformation [Sumner et al. 07]

R min WrotErot T WregE T WconEcon
19t19”’9Rm9tm

- 2
Econ = Hvindex(l) _qu2
=

N w Handle vertices should go

\ where the user puts them.
}
' ®5 ’ _
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Optimization
Embedded Deformation [Sumner et al. 07]

E

min w
R..t,...R, .t

+ W Ereg T WconEcon

rot — rot reg
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Results on Polygon Soups

Embedded Deformation [Sumner et al. 07]
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Results on Giant Mesh

Embedded Deformation [Sumner et al. 07]
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Detail Preservation

Embedded Deformation [Sumner et al. 07]
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Discussion

Embedded Deformation [Sumner et al. 07]

" Decoupling of deformation complexity and
model complexity

" Nonlinear energy optimization — results
comparable to surface-based approaches
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Projects



Geometry Processing Project

Goal

e Small research project

1 week for project proposal, deadline April 2

 choose between 3 options: A,B, or C
>1 month for project, deadline May 07
group, size up to 2

contributes 30% to the final grade.

send to zenghuan@usc.edu
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Scope
A) For the disciplined

* Detformation Project, we will provide a framework
* You will implement a surface-based linear deformation
algorithm (lbending minimizing deformation).

B) For the creative [+10 points]

* |Imagine an interesting topic around geometry processing
or related to your PhD research or something you always
wanted to do, and write a proposal.

* |t it gets approved, you are good to go.

C) For the bad ass [+10 points]

* |Implement a Siggraph, SGP, SCA, or Eurographics Paper.

* (Geometry processing related of course ;-)
67



Project Submission

Deliverables for A)
e Source Code, Binary, Data

* Text tiles describing the project, how to run it.

Deliverables for B) and C)
e Short Presentation will be held May 7th (length TBD)
* Video / Figures

 Documentation (pdf, doc, txt file): 2 or more pages, short
paper style, be rigorous and organized, must include at
least abstract, methodology, and results.



Project Proposal

Structure Format
e Title * authors’ names/student IDs
* Motivation * 1-2 pages
* Goal * .doc, .pdf, .txt
* Proposed Method * figures

e References
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Deformation Framework for A)
* |nherit from MeshViewer with user interface:
e ‘p’:pick ahandle
e ‘d’: drag a handle (last one with starting code)

e ‘m’: move the mesh
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Deformation Framework for A)

add handle picking code to

DeformationViewer: :mouse ()

add deformation codes to

Deformests 1 onijiewyes 3y ydeFeonmm mnesin ()
add extra classes and files if needed

gmm is provided to solve linear systems
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Some ideas for B) or C)

registration: articulated / deformable motions...

shape matching: RANSAC, spin images, spherical

harmonics...

Smoothing: implicit surface fairing...
parameterization: harmonic/conformal mapping...
remeshing: anisotropic, quad mesh...

deformation: As-rigid-as-possible, gradient-based...
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