CSCI 621: Digital Geometry Processing

Acknowledgement

Images and Slides are courtesy of

- Prof. Mario Botsch, Bielefeld University
- Prof. Olga Sorkine, ETH Zurich

Shapes \& Deformation

Why deformations?

- Sculpting, customization
- Character posing, animation

Criteria?

- Intuitive behavior and interface
- semantics

- Interactivity

Shapes \& Deformation

- Manually modeled and scanned shape data
- Continuous and discrete shape representations

Goals

State of research in shape editing

Discuss practical considerations

- Flexibility
- Numerical issues
- Admissible interfaces

Comparison, tradeoffs

Continuous/Analytical Surfaces

- Tensor product surfaces (e.g. Bézier, B-Spline, NURBS)

- Subdivision Surfaces

- Editability is inherent to the representation

Spline Surfaces

Tensor product surfaces ("curves of curves")

- Rectangular grid of control points

$$
\mathbf{p}(u, v)=\sum_{i=0}^{k} \sum_{j=0}^{l} \mathbf{p}_{i j} N_{i}^{n}(u) N_{j}^{n}(v)
$$

Spline Surfaces

Tensor product surfaces ("curves of curves")

- Rectangular grid of control points
- Rectangular surface patch

Spline Surfaces

Tensor product surfaces ("curves of curves")

- Rectangular grid of control points
- Rectangular surface patch

Problems:

- Many patches for complex models
- Smoothness across patch boundaries
- Trimming for non-rectangular patches

Subdivision Surfaces

Generalization of spline curves/surfaces

- Arbitrary control meshes
- Successive refinement (subdivision)
- Converges to smooth limit surface
- Connection between splines and meshes

Spline \& Subdivision Surfaces

Basis functions are smooth bumps

- Fixed support

- Fixed control grid

Bound to control points

- Initial patch layout is crucial
- Requires experts!

De-couple deformation from surface representation!

Discrete Surfaces: Point Sets, Meshes

- Flexible
- Suitable for highly detailed scanned data
- No analytic surface
- No inherent "editability"

Mesh Editing

Outline

- Surface-Based Deformation
- Linear Methods
- Non-Linear Methods
- Spatial Deformation

Mesh Deformation

Global deformation with intuitive detail preservation

Mesh Deformation

Linear Surface-Based Deformation

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

Modeling Metaphor

Modeling Metaphor

- Mesh deformation by displacement function d
- Interpolate prescribed constraints
- Smooth, intuitive deformation
-Physically-based principles
$\mathbf{d}\left(\mathbf{p}_{i}\right)=\mathbf{d}_{i}$

Shell Deformation Energy

- Stretching
- Change of local distances
- Captured by $1^{\text {st }}$ fundamental form
- Bending
- Change of local curvature
- Captured by $2^{\text {nd }}$ fundamental form
- Stretching \& bending is sufficient
- Differential geometry: "1st and $2^{\text {nd }}$ fundamental forms determine a surface up to rigid motion."

Physically-Based Deformation

- Nonlinear stretching \& bending energies

$$
\int_{\Omega} k_{s} \underbrace{\left\|\mathbf{I}-\mathbf{I}^{\prime}\right\|^{2}}_{\text {stretching }}+k_{b} \underbrace{\left\|\mathbf{I I}-\mathbf{I I}^{\prime}\right\|^{2}}_{\text {bending }} \mathrm{d} u \mathrm{~d} v
$$

- Linearize terms \rightarrow Quadratic energy

$$
\int_{\Omega} k_{s} \underbrace{\left(\left\|\mathbf{d}_{u}\right\|^{2}+\left\|\mathbf{d}_{v}\right\|^{2}\right)}_{\text {stretching }}+k_{k} \underbrace{\left(\left\|\mathbf{d}_{u u}\right\|^{2}+2\left\|\mathbf{d}_{u v}\right\|^{2}+\left\|\mathbf{d}_{v v}\right\|^{2}\right)}_{\text {bending }} \mathrm{d} u \mathrm{~d} v
$$

Physically-Based Deformation

- Minimize linearized bending energy

$$
E(\mathbf{d})=\int_{\mathcal{S}}\left\|\mathbf{d}_{u u}\right\|^{2}+2\left\|\mathbf{d}_{u v}\right\|^{2}+\left\|\mathbf{d}_{v v}\right\|^{2} \mathrm{~d} u \mathrm{~d} v \rightarrow \min
$$

- Variational calculus \rightarrow Euler-Lagrange PDE

$$
\Delta^{2} \mathbf{d}:=\mathbf{d}_{u u u u}+2 \mathbf{d}_{u u v v}+\mathbf{d}_{v v v v}=0 \quad f^{\prime}(x)=0
$$

" "Best" deformation that satisfies constraints

Deformation Energies

Initial state

$\Delta^{2} \mathbf{d}=0$
(Thin plate)

PDE Discretization

- Euler-Lagrange PDE

$$
\begin{aligned}
\Delta^{2} \mathbf{d} & =\mathbf{0} \\
\mathbf{d} & =\mathbf{0} \\
\mathbf{d} & =\delta \mathbf{h}
\end{aligned}
$$

- Laplace discretization

$$
\begin{aligned}
& \Delta \mathbf{d}_{i}=\frac{1}{2 A_{i}} \sum_{j \in \mathcal{N}_{i}}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right)\left(\mathbf{d}_{j}-\mathbf{d}_{i}\right) \\
& \Delta^{2} \mathbf{d}_{i}=\Delta\left(\Delta \mathbf{d}_{i}\right)
\end{aligned}
$$

Linear System

- Sparse linear system (19 nz/row)

$$
\left(\begin{array}{ccc}
\Delta^{2} & \\
0 & \mathrm{I} & 0 \\
0 & 0 & \mathrm{I}
\end{array}\right)\left(\begin{array}{c}
\vdots \\
\mathrm{d}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\delta \mathbf{h}_{i}
\end{array}\right)
$$

- Turn into symmetric positive definite system
- Solve this system each frame
- Use efficient linear solvers !!!
- Sparse Cholesky factorization
- See book for details

Derivation Steps

Nonlinear Energy

\downarrow Linearization

Quadratic Energy

\downarrow Variational Calculus
Linear PDE
\downarrow Discretization
Linear Equations

CAD-Like Deformation

[Botsch \& Kobbelt, SIGGRAPH 04]

Facial Animation

Linear Surface-Based Deformation

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

Multiresolution Modeling

- Even pure translations induce local rotations!
- Inherently non-linear coupling
- Alternative approach
- Linear deformation + multi-scale decomposition...

Original

Linear

Nonlinear

Multiresolution Editing

Frequency decomposition

Change low frequencies

Add high frequency details, stored in local frames

Multiresolution Editing

Normal Displacements

Limitations

- Neighboring displacements are not coupled
- Surface bending changes their angle
- Leads to volume changes or self-intersections

Original

Normal Displ.

Nonlinear

Limitations

- Neighboring displacements are not coupled
- Surface bending changes their angle
- Leads to volume changes or self-intersections

Limitations

- Neighboring displacements are not coupled
- Surface bending changes their angle
- Leads to volume changes or self-intersections
- Multiresolution hierarchy difficult to compute
- Complex topology
- Complex geometry
- Might require more hierarchy levels

Linear Surface-Based Deformation

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

Differential Coordinates

1. Manipulate differential coordinates instead of spatial coordinates

- Gradients, Laplacians, local frames
- Intuition: Close connection to surface normal

2. Find mesh with desired differential coords

- Cannot be solved exactly
- Formulate as energy minimization

Differential Coordinates

Original

Differential Coordinates

- Which differential coordinate $\boldsymbol{\delta}_{i}$?
- Gradients
- Laplacians
- ...
- How to get local transformations $\mathrm{T}_{i}\left(\boldsymbol{\delta}_{i}\right)$?
- Smooth propagation
- Implicit optimization
- ...

Gradient-Based Editing

- Manipulate gradient of a function (e.g. a surface)

$$
\mathbf{g}=\nabla \mathbf{f} \quad \mathbf{g} \mapsto \mathbf{T}(\mathbf{g})
$$

- Find function \mathbf{f}^{\prime} whose gradient is (close to) $\mathbf{g}^{\prime}=\mathrm{T}(\mathbf{g})$

$$
\mathbf{f}^{\prime}=\underset{\mathbf{f}}{\operatorname{argmin}} \int_{\Omega}\|\nabla \mathbf{f}-\mathbf{T}(\mathbf{g})\|^{2} \mathrm{~d} u \mathrm{~d} v
$$

- Variational calculus \rightarrow Euler-Lagrange PDE

$$
\Delta \mathbf{f}^{\prime}=\operatorname{div} \mathbf{T}(\mathbf{g})
$$

Gradient-Based Editing

- Consider piecewise linear coordinate function

$$
\mathbf{p}(u, v)=\sum_{v_{i}} \mathbf{p}_{i} \cdot \phi_{i}(u, v)
$$

- Its gradient is

$$
\nabla \mathbf{p}(u, v)=\sum_{v_{i}} \mathbf{p}_{i} \cdot \nabla \phi_{i}(u, v)
$$

Gradient-Based Editing

- Consider piecewise linear coordinate function

$$
\mathbf{p}(u, v)=\sum_{v_{i}} \mathbf{p}_{i} \cdot \phi_{i}(u, v)
$$

- Its gradient is

$$
\nabla \mathbf{p}(u, v)=\sum_{v_{i}} \mathbf{p}_{i} \cdot \nabla \phi_{i}(u, v)
$$

- It is constant per triangle

$$
\left.\nabla \mathbf{p}\right|_{f_{j}}=: \mathbf{g}_{j} \in \mathbb{R}^{3 \times 3}
$$

Gradient-Based Editing

- Gradient of coordinate function \mathbf{p}

$$
\left(\begin{array}{c}
\mathbf{g}_{1} \\
\vdots \\
\mathbf{g}_{F}
\end{array}\right)=\underbrace{\mathbf{G}}_{(3 F \times V)}\left(\begin{array}{c}
\mathbf{p}_{1}^{T} \\
\vdots \\
\mathbf{p}_{V}^{T}
\end{array}\right)
$$

- Manipulate per-face gradients

$$
\mathbf{g}_{j} \mapsto \mathbf{T}_{j}\left(\mathbf{g}_{j}\right)
$$

Gradient-Based Editing

- Reconstruct mesh from new gradients
- Overdetermined ($3 F \times V$) system
- Weighted least squares system
\Rightarrow Linear Poisson system $\Delta \mathbf{p}^{\prime}=\operatorname{div} \mathbf{T}(\mathbf{g})$

$$
\underset{\operatorname{div} \nabla=\Delta}{\mathbf{G}^{T} \mathbf{D G}} \cdot\left(\begin{array}{c}
\mathbf{p}_{1}^{\prime}{ }^{T} \\
\vdots \\
\mathbf{p}_{V}^{\prime}{ }^{T}
\end{array}\right)=\underset{\operatorname{div}}{\mathbf{G}^{T} \mathbf{D}} \cdot\left(\begin{array}{c}
\mathbf{T}_{1}\left(\mathbf{g}_{1}\right) \\
\vdots \\
\mathbf{T}_{F}\left(\mathbf{g}_{F}\right)
\end{array}\right)
$$

Laplacian-Based Editing

- Manipulate Laplacians field of a surface

$$
\mathbf{l}=\Delta(\mathbf{p}), \quad \mathbf{l} \mapsto \mathbf{T}(\mathbf{l})
$$

- Find surface whose Laplacian is (close to) $\boldsymbol{\delta}$ ' $=\mathbf{T}(\mathbf{l})$

$$
\mathbf{p}^{\prime}=\underset{\mathbf{p}}{\operatorname{argmin}} \int_{\Omega}\|\Delta \mathbf{p}-\mathbf{T}(\mathbf{l})\|^{2} \mathrm{~d} u \mathrm{~d} v
$$

- Variational calculus yields Euler-Lagrange PDE

$$
\Delta^{2} \mathbf{p}^{\prime}=\Delta \mathbf{T}(\mathbf{l})
$$

soft constraints

Differential Coordinates

- Which differential coordinate $\boldsymbol{\delta}_{i}$?
- Gradients
- Laplacians
- ...
- How to get local transformations $\mathrm{T}_{i}\left(\boldsymbol{\delta}_{i}\right)$?
- Smooth propagation
- Implicit optimization
- ...

Smooth Propagation

1. Compute handle's deformation gradient
2. Extract rotation and scale/shear components
3. Propagate damped rotations over ROI

Deformation Gradient

- Handle has been transformed affinely

$$
\mathbf{T}(\mathbf{x})=\mathbf{A} \mathbf{x}+\mathbf{t}
$$

- Deformation gradient is

$$
\nabla \mathbf{T}(\mathbf{x})=\mathbf{A}
$$

- Extract rotation \mathbf{R} and scale/shear \mathbf{S}

$$
\mathbf{A}=\underset{\text { SVD }}{\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}} \Rightarrow \mathbf{R}=\mathbf{U} \mathbf{V}^{T}, \mathbf{S}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{V}^{T}
$$

Smooth Propagation

- Construct smooth scalar field $[0,1]$
- $s(\mathbf{x})=1: \quad$ Full deformation (handle)
- $s(\mathbf{x})=0: \quad$ No deformation (fixed part)
- $s(\mathbf{x}) \in(0,1)$: Damp handle transformation (in between)

Limitations

- Differential coordinates work well for rotations
- Represented by deformation gradient
- Translations don't change deformation gradient
- Translations don't change differential coordinates
- "Translation insensitivity"

Implicit Optimization

- Optimize for positions $\mathbf{p}_{i}{ }^{\prime}$ \& transformations \mathbf{T}_{i}

$$
\Delta^{2}\left(\begin{array}{c}
\vdots \\
\mathbf{p}_{i}^{\prime} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\Delta \mathbf{T}_{i}\left(\mathbf{l}_{i}\right) \\
\vdots
\end{array}\right) \leftrightarrow \quad \mathbf{T}_{i}\left(\mathbf{p}_{i}-\mathbf{p}_{j}\right)=\mathbf{p}_{i}^{\prime}-\mathbf{p}_{j}^{\prime}
$$

- Linearize rotation/scale \rightarrow one linear system

$$
\mathbf{R} \mathbf{x} \approx \mathbf{x} \mathbf{F}_{i}\left(\mathbf{r}=x\left(\begin{array}{c}
s \\
r_{\overline{3}} \\
-r_{2}
\end{array}\left(\begin{array}{cc}
-\eta_{3} & r_{2} r_{3} \\
s_{3} & -r_{1} \\
r_{1} r_{2} & s_{1}
\end{array}\right) \begin{array}{c}
r_{2} \\
-r_{1} \\
1
\end{array}\right) \mathbf{x}\right.
$$

Laplacian Surface Editing

Connection to Shells?

- Neglect local transformations \mathbf{T}_{i} for a moment...

$$
\int\left\|\Delta \mathbf{p}^{\prime}-\mathbf{l}\right\|^{2} \rightarrow \min \longrightarrow \Delta^{2} \mathbf{p}^{\prime}=\Delta \mathbf{l}
$$

- Basic formulations equivalent!
- Differ in detail preservation
- Rotation of Laplacians
- Multi-scale decomposition
$\int\left\|\mathbf{d}_{u u}\right\|^{2}+2\left\|\mathbf{d}_{u v}\right\|^{2}+\left\|\mathbf{d}_{v v}\right\|^{2} \rightarrow \min \longleftarrow \Delta^{2} \mathbf{d}=0$

Linear Surface-Based Deformation

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

Next Time

Non-Linear

Surface Deformations

http://cs621.hao-li.com

Thanks!

