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Shapes & Deformation
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Why deformations?
• Sculpting, customization 

• Character posing, animation

Criteria?
• Intuitive behavior and interface 

• semantics 

• Interactivity



Shapes & Deformation
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• Manually modeled and scanned shape data 
• Continuous and discrete shape representations



Goals
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State of research in shape editing

Discuss practical considerations
• Flexibility 

• Numerical issues 

• Admissible interfaces

Comparison, tradeoffs



Continuous/Analytical Surfaces
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• Tensor product surfaces 
(e.g. Bézier, B-Spline, 
NURBS) 

• Subdivision Surfaces 

• Editability is inherent to the 
representation



Spline Surfaces
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Tensor product surfaces (“curves of curves”)
• Rectangular grid of control points



Spline Surfaces
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Tensor product surfaces (“curves of curves”)
• Rectangular grid of control points 
• Rectangular surface patch



Spline Surfaces
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Tensor product surfaces (“curves of curves”)
• Rectangular grid of control points 
• Rectangular surface patch

Problems:
• Many patches for complex models 
• Smoothness across patch boundaries 
• Trimming for non-rectangular patches



Subdivision Surfaces
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Generalization of spline curves/surfaces
• Arbitrary control meshes 
• Successive refinement (subdivision) 
• Converges to smooth limit surface 
• Connection between splines and meshes



Spline & Subdivision Surfaces
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Basis functions are smooth bumps
• Fixed support 
• Fixed control grid

Bound to control points
• Initial patch layout is crucial 
• Requires experts!

De-couple deformation from surface representation!



Discrete Surfaces: Point Sets, Meshes
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• Flexible 

• Suitable for highly 
detailed scanned data 

• No analytic surface 

• No inherent “editability”

Mesh Editing



Outline
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• Surface-Based Deformation
• Linear Methods
• Non-Linear Methods

• Spatial Deformation



Mesh Deformation
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Global deformation 
with intuitive 

detail preservation



Mesh Deformation
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Local & global 
deformations



Linear Surface-Based Deformation
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• Shell-Based Deformation 

• Multiresolution Deformation 

• Differential Coordinates



Modeling Metaphor
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Modeling Metaphor
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• Mesh deformation by displacement function d 
– Interpolate prescribed constraints 
– Smooth, intuitive deformation 
➡Physically-based principles

d (pi) = di

p ⇥� p + d(p)

d : S � IR3



Shell Deformation Energy
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• Stretching 
– Change of local distances 
– Captured by 1st fundamental form 

• Bending 
– Change of local curvature 
– Captured by 2nd fundamental form 

• Stretching & bending is sufficient 
– Differential geometry: “1st and 2nd fundamental forms 

determine a surface up to rigid motion.”
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Physically-Based Deformation
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• Nonlinear stretching & bending energies 

• Linearize terms → Quadratic energy

⇥
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Physically-Based Deformation
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• Minimize linearized bending energy 

• Variational calculus → Euler-Lagrange PDE 

➡ “Best” deformation that satisfies constraints

�2d := duuuu + 2duuvv + dvvvv = 0 f �(x) = 0

E(d) =
�

S
⇥duu⇥2 + 2 ⇥duv⇥2 + ⇥dvv⇥2 dudv � min

f(x)� min



Deformation Energies
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Initial state

(Thin plate)
�2d = 0

(Membrane)
�d = 0



PDE Discretization

 23

• Euler-Lagrange PDE 

• Laplace discretization
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Linear System
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• Sparse linear system (19 nz/row) 

– Turn into symmetric positive definite system 

• Solve this system each frame 
– Use efficient linear solvers !!! 
– Sparse Cholesky factorization 
– See book for details
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Derivation Steps
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Nonlinear Energy

Quadratic Energy

Linear PDE

Linear Equations

Linearization

Variational Calculus

Discretization



CAD-Like Deformation
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[Botsch & Kobbelt, SIGGRAPH 04]



Facial Animation
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Linear Surface-Based Deformation
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• Shell-Based Deformation 

• Multiresolution Deformation 

• Differential Coordinates



Multiresolution Modeling
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• Even pure translations induce local rotations! 
➡ Inherently non-linear coupling 

• Alternative approach 
– Linear deformation + multi-scale decomposition...

Original NonlinearLinear



Multiresolution Editing
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Frequency decomposition

Change low 
frequencies

Add high frequency details,  
stored in local frames



Multiresolution Editing
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Normal Displacements
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Limitations
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• Neighboring displacements are not coupled 
– Surface bending changes their angle 
– Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear



Limitations
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Normal Displ. NonlinearOriginal

• Neighboring displacements are not coupled 
– Surface bending changes their angle 
– Leads to volume changes or self-intersections



Limitations
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• Neighboring displacements are not coupled 
– Surface bending changes their angle 
– Leads to volume changes or self-intersections 

• Multiresolution hierarchy difficult to compute 
– Complex topology 
– Complex geometry 
– Might require more hierarchy levels



Linear Surface-Based Deformation

 36

• Shell-Based Deformation 

• Multiresolution Deformation 

• Differential Coordinates



Differential Coordinates
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1. Manipulate differential coordinates instead of 
spatial coordinates 
– Gradients, Laplacians, local frames 
– Intuition: Close connection to surface normal 

2. Find mesh with desired differential coords 
– Cannot be solved exactly 
– Formulate as energy minimization



Differential Coordinates
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Original Rotated  Diff-Coords Reconstructed Mesh



Differential Coordinates
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• Which differential coordinate δi? 
– Gradients 
– Laplacians 
– ... 

• How to get local transformations  Ti (δi)? 
– Smooth propagation 
– Implicit optimization 
– ...



Gradient-Based Editing
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• Manipulate gradient of a function  (e.g. a surface) 

• Find function f’ whose gradient is (close to) g’=T(g) 

• Variational calculus → Euler-Lagrange PDE

g = �f g ⇥� T(g)

f � = argmin
f

�

�
⇥⇤f �T(g)⇥2 dudv

�f � = div T(g)



Gradient-Based Editing
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• Consider piecewise linear coordinate function 

• Its gradient is

p(u, v) =
�

vi

pi · �i(u, v)
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Gradient-Based Editing
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• Consider piecewise linear coordinate function 

• Its gradient is 

• It is constant per triangle

p(u, v) =
�

vi

pi · �i(u, v)

⇥p(u, v) =
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⇤p|fj
=: gj � IR3�3



Gradient-Based Editing
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• Gradient of coordinate function p 

• Manipulate per-face gradients

gj ⇥� Tj(gj)
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Gradient-Based Editing
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divdiv∇ = ∆

• Reconstruct mesh from new gradients 
– Overdetermined (3F × V) system 

– Weighted least squares system 
➡Linear Poisson system

GT DG ·
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Laplacian-Based Editing
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• Manipulate Laplacians field of a surface 

• Find surface whose Laplacian is (close to) δ’=T(l)

• Variational calculus yields Euler-Lagrange PDE

p� = argmin
p

�

�
⇥�p�T(l)⇥2 dudv

�2p� = �T(l)

l = �(p) , l ⇥� T(l)

soft constraints



Differential Coordinates
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• Which differential coordinate δi  ? 
– Gradients 
– Laplacians 
– ... 

• How to get local transformations Ti (δi) ? 
– Smooth propagation 
– Implicit optimization 
– ...
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1.Compute handle’s deformation gradient 

2.Extract rotation and scale/shear components 

3.Propagate damped rotations over ROI

Smooth Propagation



Deformation Gradient
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• Handle has been transformed affinely 

• Deformation gradient is 

• Extract rotation R and scale/shear S

T(x) = Ax + t

�T(x) = A

A = U�VT � R = UVT , S = V�VT

SVD



Smooth Propagation
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• Construct smooth scalar field [0,1] 
• s(x)=1:  Full deformation (handle) 
• s(x)=0:  No deformation (fixed part) 
• s(x)∈(0,1): Damp handle transformation (in between)



Limitations

 50

• Differential coordinates work well for rotations 
– Represented by deformation gradient 

• Translations don’t change deformation gradient 
– Translations don’t change differential coordinates 
– “Translation insensitivity”



Implicit Optimization
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• Optimize for positions pi’ & transformations Ti

• Linearize rotation/scale → one linear system
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Laplacian Surface Editing
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Connection to Shells?
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• Neglect local transformations Ti for a moment...

�2(p + d) = �2p

�2d = 0

• Basic formulations equivalent! 

• Differ in detail preservation 
- Rotation of Laplacians 
- Multi-scale decomposition

�
⇤�p� � l⇤2 ⇥ min �2p� = �l

p� = p + d
l = �p

�
⇥duu⇥2 + 2 ⇥duv⇥2 + ⇥dvv⇥2 � min



Linear Surface-Based Deformation
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• Shell-Based Deformation 

• Multiresolution Deformation 

• Differential Coordinates



Next Time
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Non-Linear 

Surface Deformations
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