Spring 2019

CSCI 621: Digital Geometry Processing

11.2 Surface Deformation I

Acknowledgement

Images and Slides are courtesy of

- Prof. Mario Botsch, Bielefeld University
- Prof. Olga Sorkine, ETH Zurich

Shapes & Deformation

Why deformations?

- Sculpting, customization
- Character posing, animation

Criteria?

- Intuitive behavior and interface
- semantics
- Interactivity

Shapes & Deformation

- Manually modeled and scanned shape data
- Continuous and discrete shape representations

Goals

State of research in shape editing

Discuss practical considerations

- Flexibility
- Numerical issues
- Admissible interfaces

Comparison, tradeoffs

Approach	Pure Translation	120° bend	135° twist	70° bend
Original model				Y
Non-linear prism-based modeling [12]	23.	1		4
Thin shells [10] + deformation transfer [14]	100	1		1
Gradient-based editing [68]	New e			Þ
Implicit Laplacian-based editing [56]	- Star	1		Y
Rotation invariant coordinates [40]	Time .	1		r

Continuous/Analytical Surfaces

- Tensor product surfaces (e.g. Bézier, B-Spline, NURBS)
- Subdivision Surfaces
- Editability is inherent to the representation

Spline Surfaces

Tensor product surfaces ("curves of curves")

Rectangular grid of control points

$$\mathbf{p}(u,v) = \sum_{i=0}^{k} \sum_{j=0}^{l} \mathbf{p}_{ij} N_i^n(u) N_j^n(v)$$

Spline Surfaces

Tensor product surfaces ("curves of curves")

- Rectangular grid of control points
- Rectangular surface patch

Spline Surfaces

Tensor product surfaces ("curves of curves")

- Rectangular grid of control points
- Rectangular surface patch

Problems:

- Many patches for complex models
- Smoothness across patch boundaries
- Trimming for non-rectangular patches

Subdivision Surfaces

Generalization of spline curves/surfaces

- Arbitrary control meshes
- Successive refinement (subdivision)
- Converges to smooth limit surface
- Connection between splines and meshes

Spline & Subdivision Surfaces

Basis functions are smooth bumps

- Fixed support
- Fixed control grid

Bound to control points

- Initial patch layout is crucial
- Requires experts!

De-couple deformation from surface representation!

Discrete Surfaces: Point Sets, Meshes

- Flexible
- Suitable for highly detailed scanned data
- No analytic surface
- No inherent "editability"

Outline

- Surface-Based Deformation
 - Linear Methods
 - Non-Linear Methods
- Spatial Deformation

Mesh Deformation

Mesh Deformation

Linear Surface-Based Deformation

- Multiresolution Deformation
- Differential Coordinates

Modeling Metaphor

Modeling Metaphor

- Mesh deformation by displacement function d
 - Interpolate prescribed constraints
 - Smooth, intuitive deformation
 - Physically-based principles

$$\mathbf{d}: \mathcal{S} \to \mathbb{R}^3$$
$$\mathbf{p} \mapsto \mathbf{p} + \mathbf{d}(\mathbf{p})$$

 $\mathbf{d}\left(\mathbf{p}_{i}\right)=\mathbf{d}_{i}$

Shell Deformation Energy

Stretching

- Change of local distances
- Captured by 1st fundamental form

Bending

- Change of local curvature
- Captured by 2nd fundamental form
- Stretching & bending is sufficient
 - Differential geometry: "1st and 2nd fundamental forms determine a surface up to rigid motion."

 $\mathbf{I} = \begin{bmatrix} \mathbf{x}_u^T \mathbf{x}_u & \mathbf{x}_u^T \mathbf{x}_v \\ \mathbf{x}_v^T \mathbf{x}_u & \mathbf{x}_v^T \mathbf{x}_v \end{bmatrix}$

Physically-Based Deformation

Nonlinear stretching & bending energies

$$\int_{\Omega} k_s \frac{\|\mathbf{I} - \mathbf{I}'\|^2}{|\mathbf{stretching}} + k_b \frac{\|\mathbf{I} - \mathbf{I}'\|^2}{|\mathbf{bending}|^2} du dv$$

• Linearize terms \rightarrow Quadratic energy

$$\int_{\Omega} k_s \underbrace{\left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right)}_{\text{stretching}} + k_b \underbrace{\left(\|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right)}_{\text{bending}} \mathrm{d}u \mathrm{d}v$$

Physically-Based Deformation

Minimize linearized bending energy

$$E(\mathbf{d}) = \iint_{\mathcal{S}} \|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \,\mathrm{d}u \,\mathrm{d}v \to \min$$
$$\underbrace{f(x) \to \min}$$

• Variational calculus \rightarrow Euler-Lagrange PDE

$$\Delta^2 \mathbf{d} := \mathbf{d}_{uuuu} + 2\mathbf{d}_{uuvv} + \mathbf{d}_{vvvv} = 0$$

$$f'(x) = 0$$

"Best" deformation that satisfies constraints

Deformation Energies

PDE Discretization

• Euler-Lagrange PDE

Laplace discretization

$$\Delta \mathbf{d}_{i} = \frac{1}{2A_{i}} \sum_{j \in \mathcal{N}_{i}} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{d}_{j} - \mathbf{d}_{i})$$
$$\Delta^{2} \mathbf{d}_{i} = \Delta(\Delta \mathbf{d}_{i})$$
$$\mathbf{x}_{j} \quad \mathbf{x}_{j} \quad \mathbf{x}_{i}$$

Linear System

Sparse linear system (19 nz/row)

$$\begin{pmatrix} \Delta^2 \\ \mathbf{0} \ \mathbf{I} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{I} \end{pmatrix} \begin{pmatrix} \vdots \\ \mathbf{d}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \delta \mathbf{h}_i \end{pmatrix}$$

Turn into symmetric positive definite system

- Solve this system each frame
 - Use efficient linear solvers !!!
 - Sparse Cholesky factorization
 - See book for details

Derivation Steps

CAD-Like Deformation

[Botsch & Kobbelt, SIGGRAPH 04]

Facial Animation

Linear Surface-Based Deformation

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

Multiresolution Modeling

- Even pure translations induce local rotations!
 - Inherently non-linear coupling
- Alternative approach
 - Linear deformation + multi-scale decomposition...

Multiresolution Editing

Frequency decomposition

Add high frequency details, stored in local frames

Multiresolution Editing

Normal Displacements

- Neighboring displacements are not coupled
 - Surface bending changes their angle
 - Leads to volume changes or self-intersections

- Neighboring displacements are not coupled
 - Surface bending changes their angle
 - Leads to volume changes or self-intersections

- Neighboring displacements are not coupled
 - Surface bending changes their angle
 - Leads to volume changes or self-intersections
- Multiresolution hierarchy difficult to compute
 - Complex topology
 - Complex geometry
 - Might require more hierarchy levels

Linear Surface-Based Deformation

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

- 1. Manipulate *differential coordinates* instead of *spatial* coordinates
 - Gradients, Laplacians, local frames
 - Intuition: Close connection to surface normal
- 2. Find mesh with desired differential coords
 - Cannot be solved exactly
 - Formulate as energy minimization

• Which differential coordinate δ_i ?

- Gradients
- Laplacians

. . .

- How to get local transformations $T_i(\boldsymbol{\delta}_i)$?
 - Smooth propagation
 - Implicit optimization

Manipulate gradient of a function (e.g. a surface)

$$\mathbf{g} = \nabla \mathbf{f} \qquad \mathbf{g} \mapsto \mathbf{T}(\mathbf{g})$$

Find function f' whose gradient is (close to) g'=T(g)

$$\mathbf{f}' = \underset{\mathbf{f}}{\operatorname{argmin}} \int_{\Omega} \|\nabla \mathbf{f} - \mathbf{T}(\mathbf{g})\|^2 \, \mathrm{d}u \mathrm{d}v$$

• Variational calculus \rightarrow Euler-Lagrange PDE

$$\Delta \mathbf{f}' = \operatorname{div} \mathbf{T}(\mathbf{g})$$

Consider piecewise linear coordinate function

$$\mathbf{p}(u,v) = \sum_{v_i} \mathbf{p}_i \cdot \phi_i(u,v)$$

• Its gradient is

$$\nabla \mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \nabla \phi_i(u, v)$$

Consider piecewise linear coordinate function

$$\mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \phi_i(u, v)$$

• Its gradient is

$$\nabla \mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \nabla \phi_i(u, v)$$

• It is constant per triangle

$$\nabla \mathbf{p}|_{f_j} =: \mathbf{g}_j \in \mathbb{R}^{3 \times 3}$$

Gradient of coordinate function p

$$\begin{pmatrix} \mathbf{g}_1 \\ \vdots \\ \mathbf{g}_F \end{pmatrix} = \underbrace{\mathbf{G}}_{(3F \times V)} \begin{pmatrix} \mathbf{p}_1^T \\ \vdots \\ \mathbf{p}_V^T \end{pmatrix}$$

Manipulate per-face gradients

$$\mathbf{g}_j \;\mapsto\; \mathbf{T}_j(\mathbf{g}_j)$$

- Reconstruct mesh from new gradients
 - Overdetermined $(3F \times V)$ system
 - Weighted least squares system
 - Linear Poisson system $\Delta \mathbf{p}' = \operatorname{div} \mathbf{T}(\mathbf{g})$

$$\begin{array}{c} \left(\mathbf{G}^{T} \mathbf{D} \mathbf{G} \right) \cdot \left(\begin{array}{c} \mathbf{p}_{1}^{\prime} \\ \vdots \\ \mathbf{p}_{V}^{\prime} \end{array} \right) = \left(\mathbf{G}^{T} \mathbf{D} \right) \cdot \left(\begin{array}{c} \mathbf{T}_{1}(\mathbf{g}_{1}) \\ \vdots \\ \mathbf{D} \end{array} \right) \\ \operatorname{div} \nabla = \Delta \left(\begin{array}{c} \mathbf{p}_{1}^{\prime} \\ \vdots \\ \mathbf{p}_{V}^{\prime} \end{array} \right) \quad \operatorname{div} \left(\begin{array}{c} \mathbf{T}_{1}(\mathbf{g}_{1}) \\ \vdots \\ \mathbf{T}_{F}(\mathbf{g}_{F}) \end{array} \right)$$

Laplacian-Based Editing

Manipulate Laplacians field of a surface

$$\mathbf{l} = \Delta(\mathbf{p}) \ , \ \mathbf{l} \mapsto \mathbf{T}(\mathbf{l})$$

• Find surface whose Laplacian is (close to) $\delta' = T(I)$

$$\mathbf{p}' = \underset{\mathbf{p}}{\operatorname{argmin}} \int_{\Omega} \|\Delta \mathbf{p} - \mathbf{T}(\mathbf{l})\|^2 \, \mathrm{d}u \mathrm{d}v$$

Variational calculus yields Euler-Lagrange PDE

$$\Delta^2 \mathbf{p}' = \Delta \mathbf{T}(\mathbf{l})$$

soft constraints

- Which differential coordinate δ_i ?
 - Gradients
 - Laplacians

. . .

- How to get local transformations $T_i(\delta_i)$?
 - Smooth propagation
 - Implicit optimization

Smooth Propagation

- 1. Compute handle's deformation gradient
- 2. Extract rotation and scale/shear components
- 3. Propagate damped rotations over ROI

Deformation Gradient

Handle has been transformed <u>affinely</u>

$$\mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{t}$$

• Deformation gradient is

$$\nabla \mathbf{T}(\mathbf{x}) = \mathbf{A}$$

Extract rotation R and scale/shear S

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \quad \Rightarrow \quad \mathbf{R} = \mathbf{U} \mathbf{V}^T, \ \mathbf{S} = \mathbf{V} \mathbf{\Sigma} \mathbf{V}^T$$

Smooth Propagation

- Construct smooth scalar field [0,1]
 - *s*(**x**)=1: Full deformation (handle)
 - $s(\mathbf{x})=0$: No deformation (fixed part)
 - $s(\mathbf{x}) \in (0,1)$: Damp handle transformation (in between)

- Differential coordinates work well for rotations
 - Represented by deformation gradient
- Translations don't change deformation gradient
 - Translations don't change differential coordinates
 - "Translation insensitivity"

Implicit Optimization

• Optimize for positions \mathbf{p}_i ' & transformations \mathbf{T}_i

$$\Delta^{2} \begin{pmatrix} \vdots \\ \mathbf{p}'_{i} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \Delta \mathbf{T}_{i}(\mathbf{l}_{i}) \\ \vdots \end{pmatrix} \iff \mathbf{T}_{i}(\mathbf{p}_{i} - \mathbf{p}_{j}) = \mathbf{p}'_{i} - \mathbf{p}'_{j}$$

- Linearize rotation/scale \rightarrow one linear system

$$\mathbf{R}\mathbf{x} \approx \mathbf{x} \mathbf{T}_{i} (\mathbf{r} \approx \begin{pmatrix} s & \begin{pmatrix} -\mathbf{n}_{3} & \mathbf{r}_{2}\mathbf{r}_{3} \\ \mathbf{r}_{3} & -\mathbf{n}_{1} \\ \mathbf{r}_{1}\mathbf{r}_{2} & \mathbf{s}_{1} \end{pmatrix} \begin{pmatrix} \mathbf{r}_{2} & \mathbf{r}_{1} \\ \mathbf{r}_{1}\mathbf{r}_{2} & \mathbf{s}_{1} \end{pmatrix} \mathbf{x}$$

Laplacian Surface Editing

Enter filname: feline.ply2 Reload	
	<pre> Info +) Export files +) Editing Edit params Free ring radius 0.5 Fixed ring radius 0.06 Handle radius 0.03 ROI selection type Euclidean radius Geodesic radius Geodesic radius System data System data Settings +) Store result Save to JuV Matrix size: 0 Geometry sources and Visualization +) </pre>
Blue Light Golden Light White Light Red Light	<u>Lights</u> +

Connection to Shells?

Neglect local transformations T_i for a moment...

$$\int \left\| \Delta \mathbf{p}' - \mathbf{l} \right\|^2 \to \min \longrightarrow \Delta^2 \mathbf{p}' = \Delta \mathbf{l}$$

- Basic formulations equivalent!
- Differ in detail preservation
 - Rotation of Laplacians

J

- Multi-scale decomposition

$$\int \left\| \mathbf{d}_{uu} \right\|^2 + 2 \left\| \mathbf{d}_{uv} \right\|^2 + \left\| \mathbf{d}_{vv} \right\|^2 \to \min \quad \boldsymbol{\longleftarrow} \quad \Delta^2 \mathbf{d} = 0$$

 $\mathbf{p}' = \mathbf{p} + \mathbf{d}$ $\mathbf{l} = \Delta \mathbf{p}$

Linear Surface-Based Deformation

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

Next Time

Non-Linear

Surface Deformations

http://cs621.hao-li.com

Thanks!

