#### **CSCI 621: Digital Geometry Processing**

## 9.1 Surface Parameterization



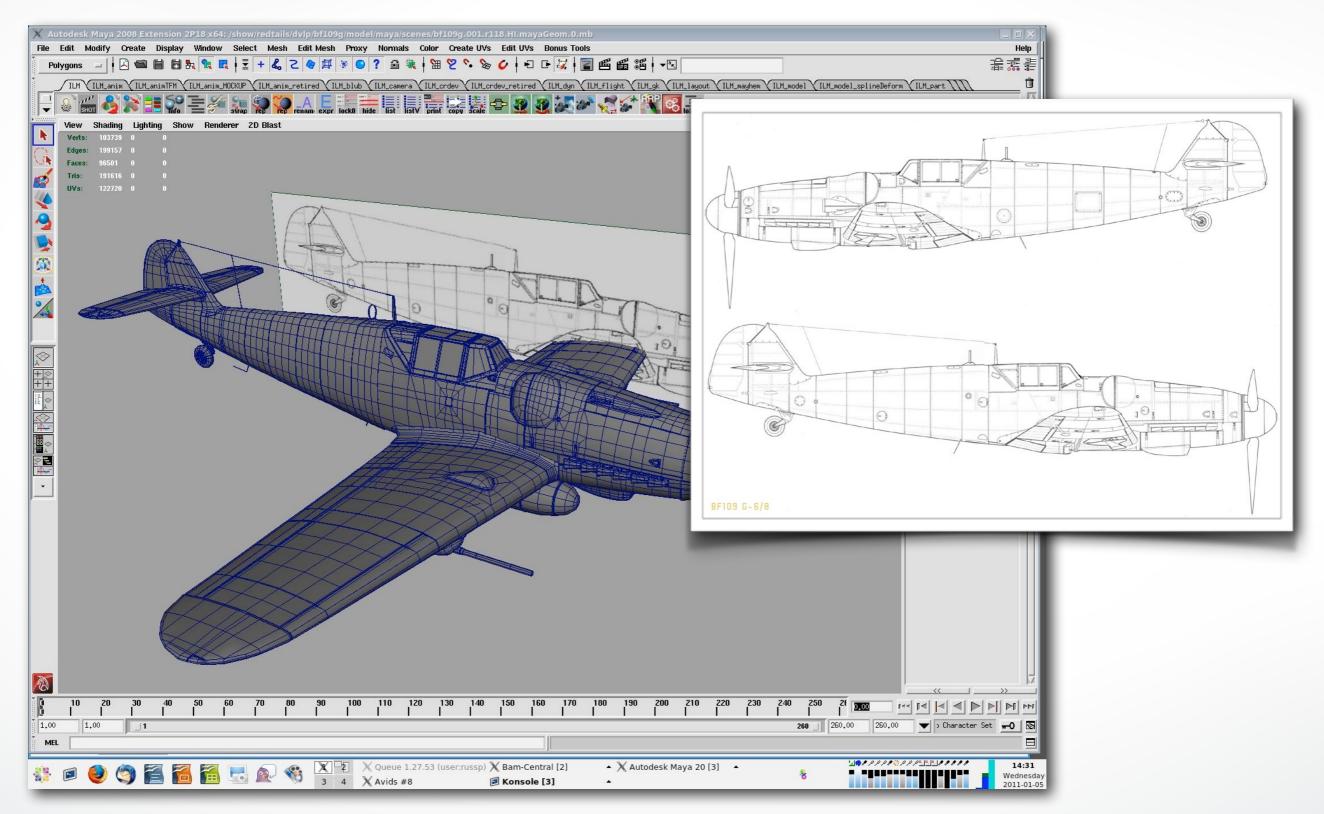
Hao Li

http://cs621.hao-li.com

# Modeling



## Modeling

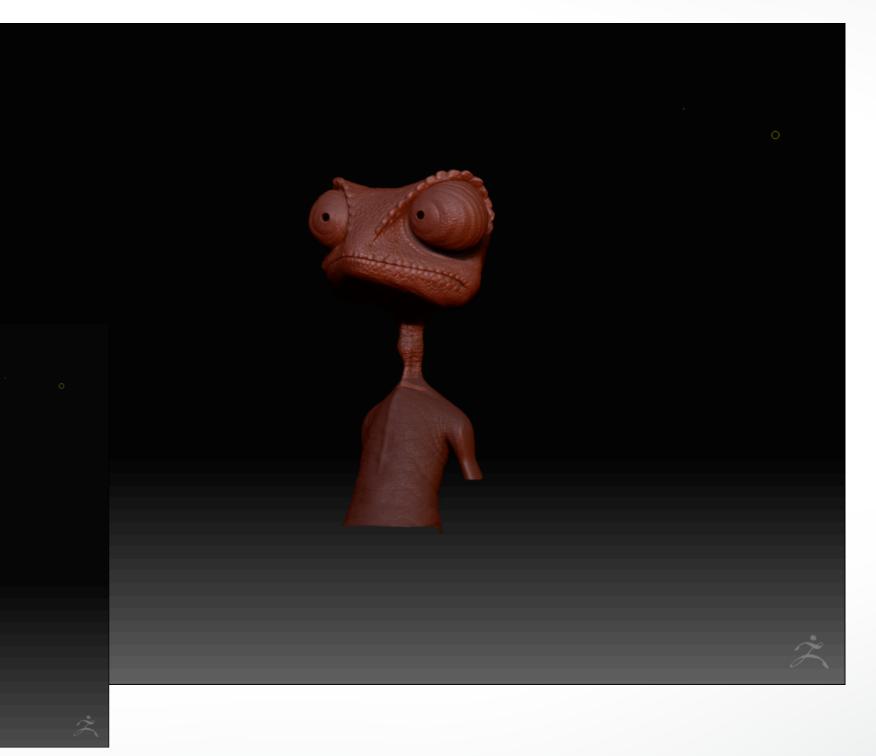


## Viewpaint

The creation of a 3D assets surface, including that surface's color, texture, opacity, and reflectivity (or specularity).

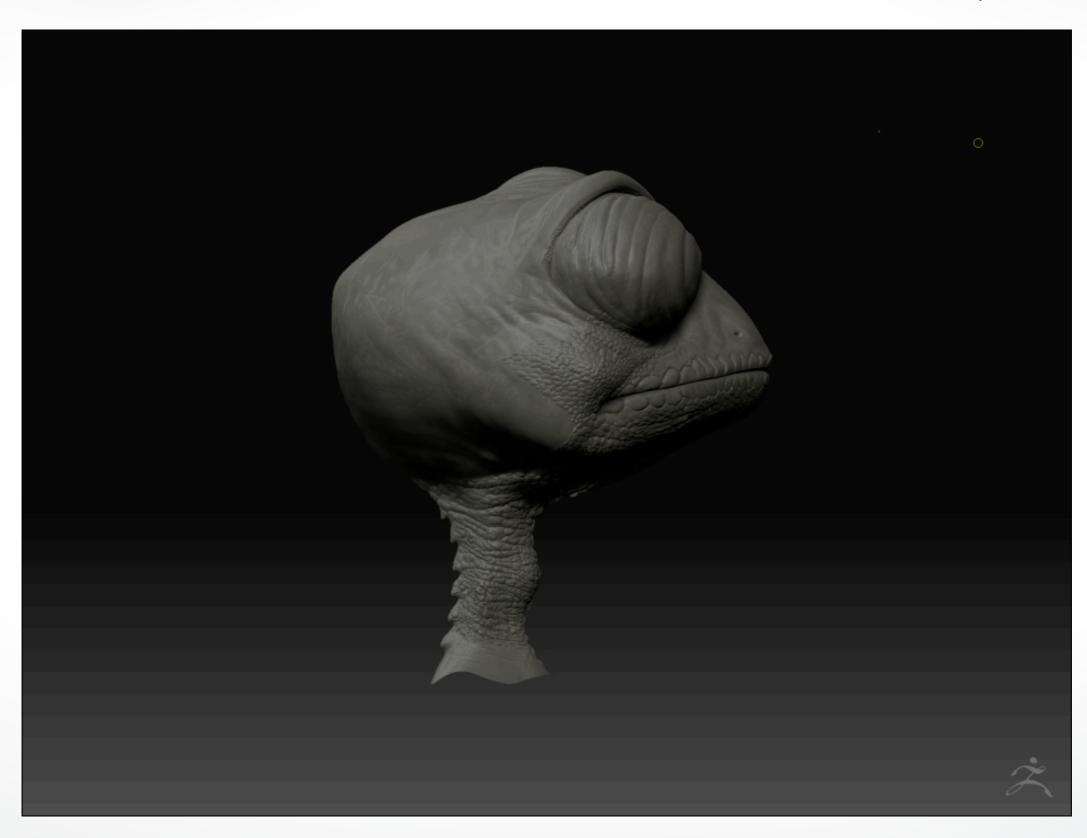
# Viewpaint

Rango: Creating creature scale textures in ZBrush...

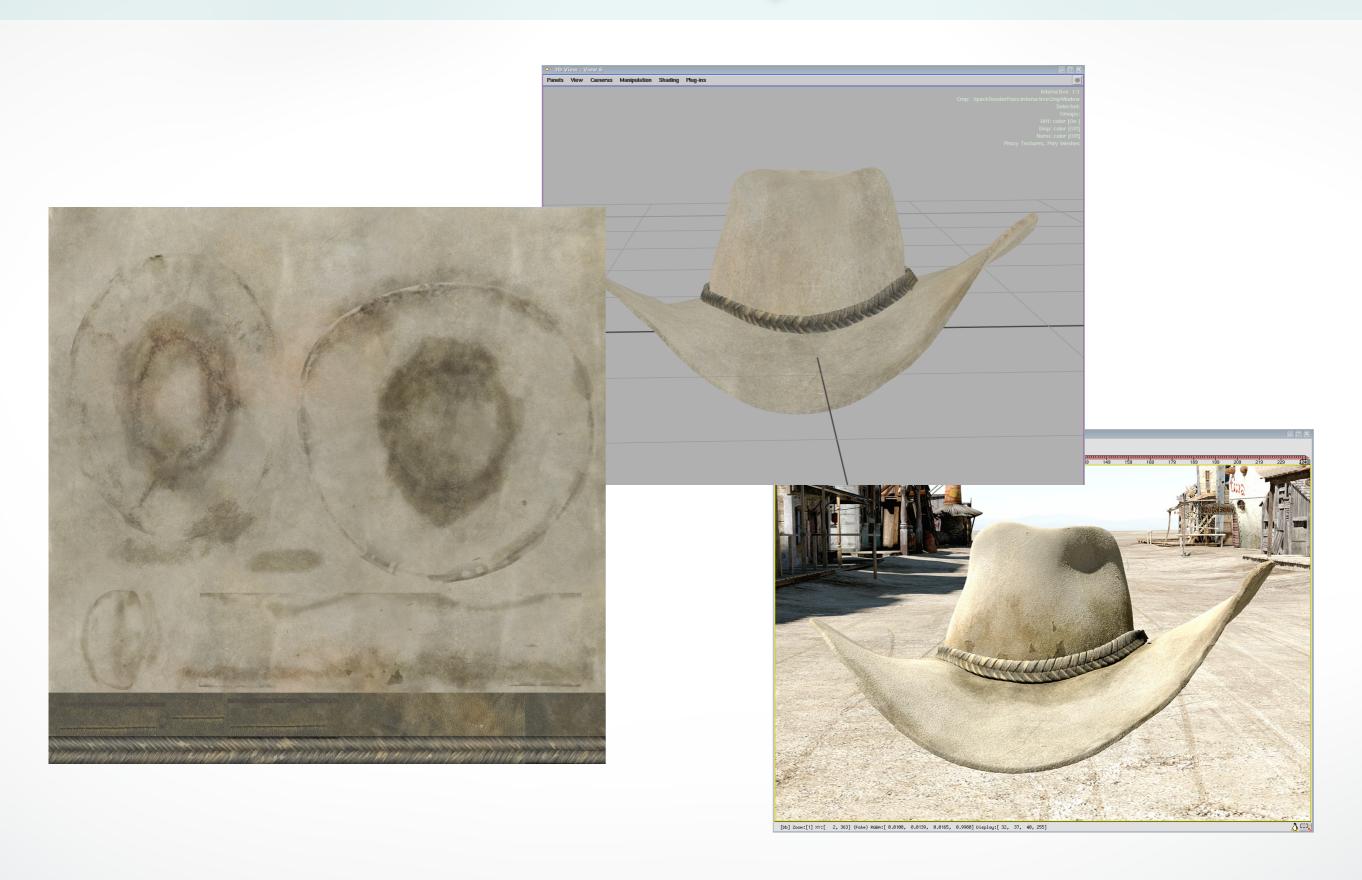


# Viewpaint

(Wrinkle Pass)



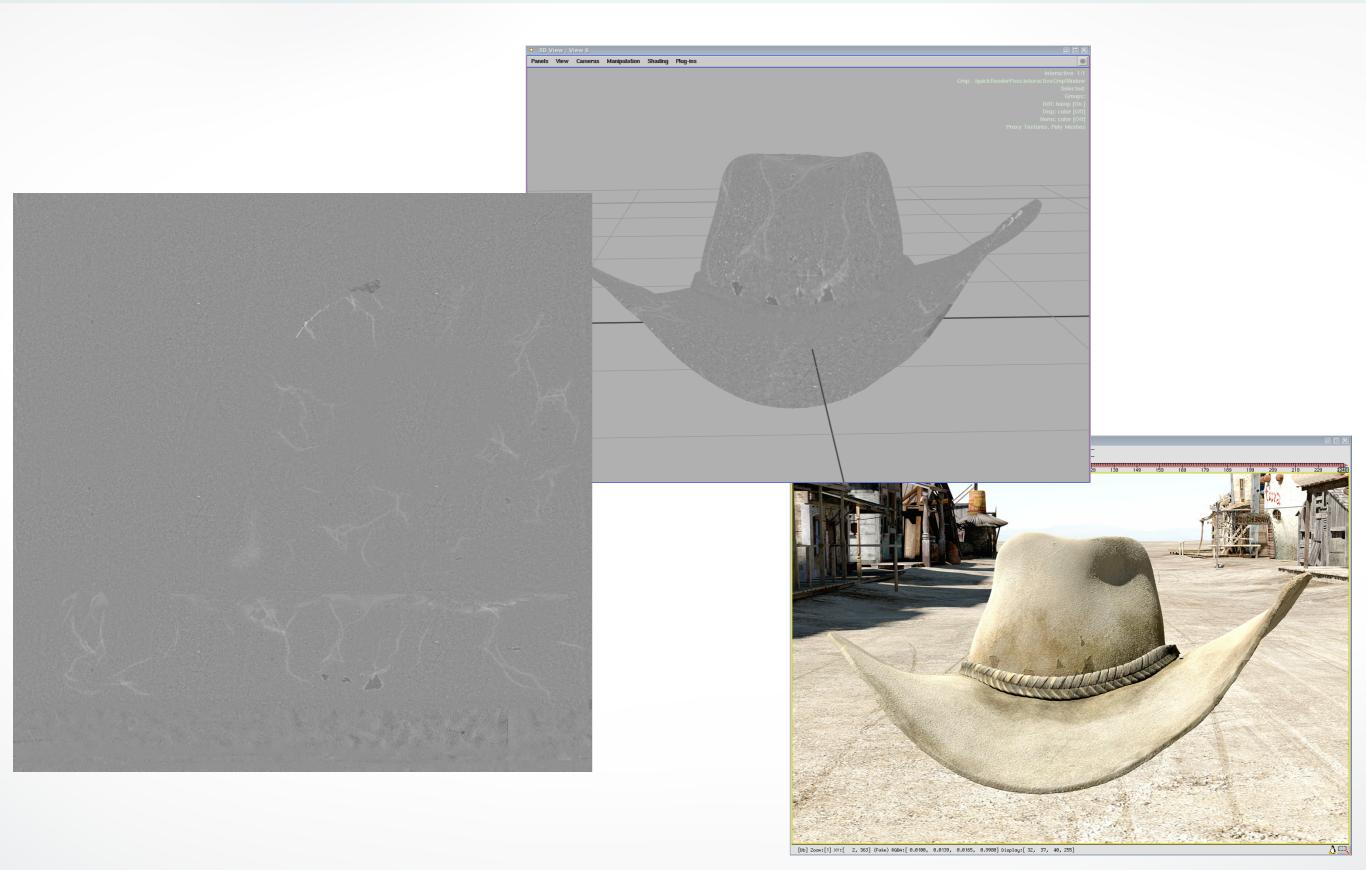
# Color Maps



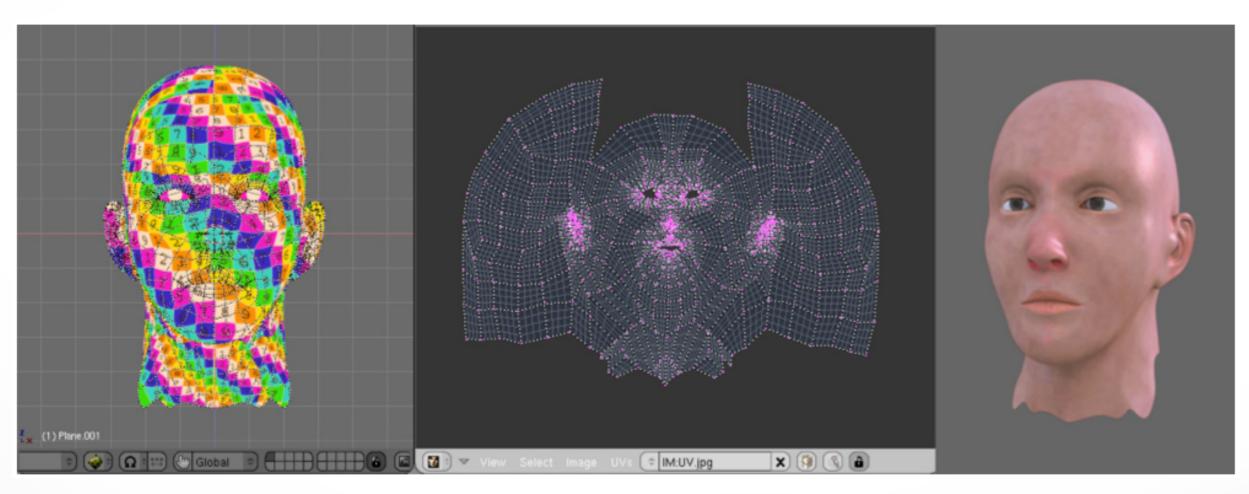
# Wet Maps



# bump Maps

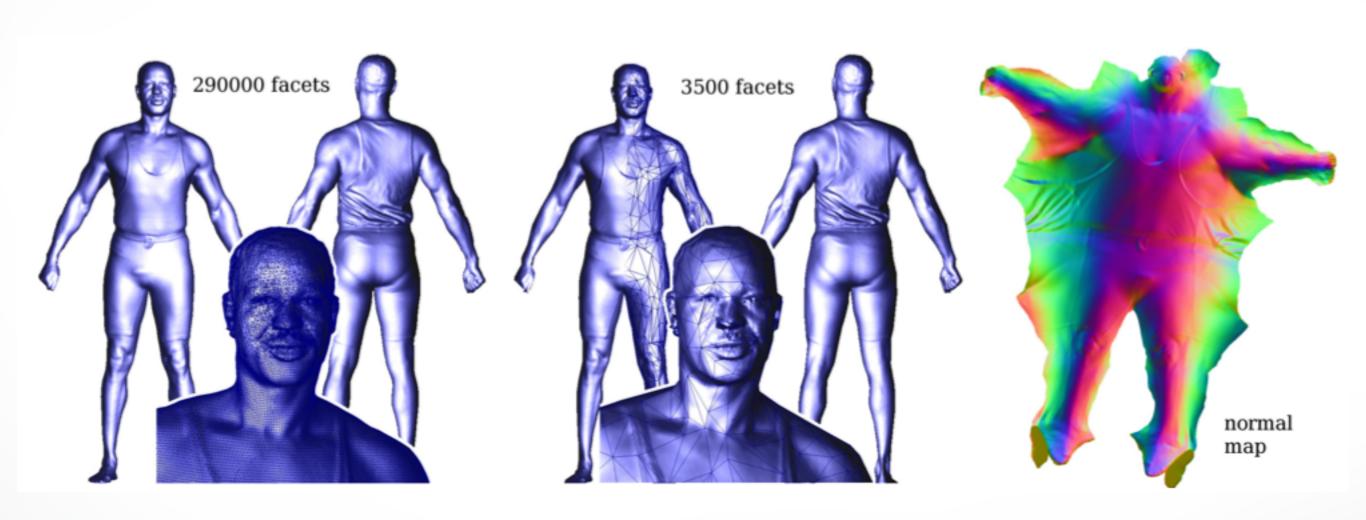


#### **Texture Mapping**



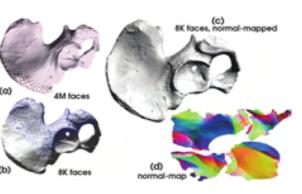
Levy et al.: Least squares conformal maps for automatic texture atlas generation, SIGGRAPH 2002.

#### **Normal Mapping**

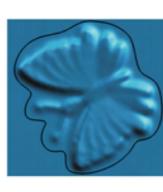














Texture Mapping

Normal Mapping

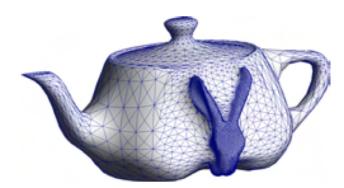
Detail Transfer







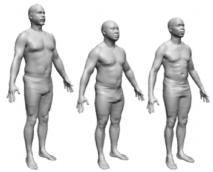




Morphing

Mesh Completion

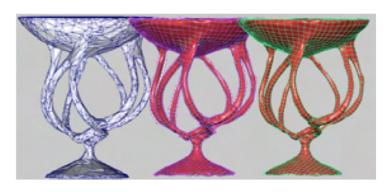
Editing



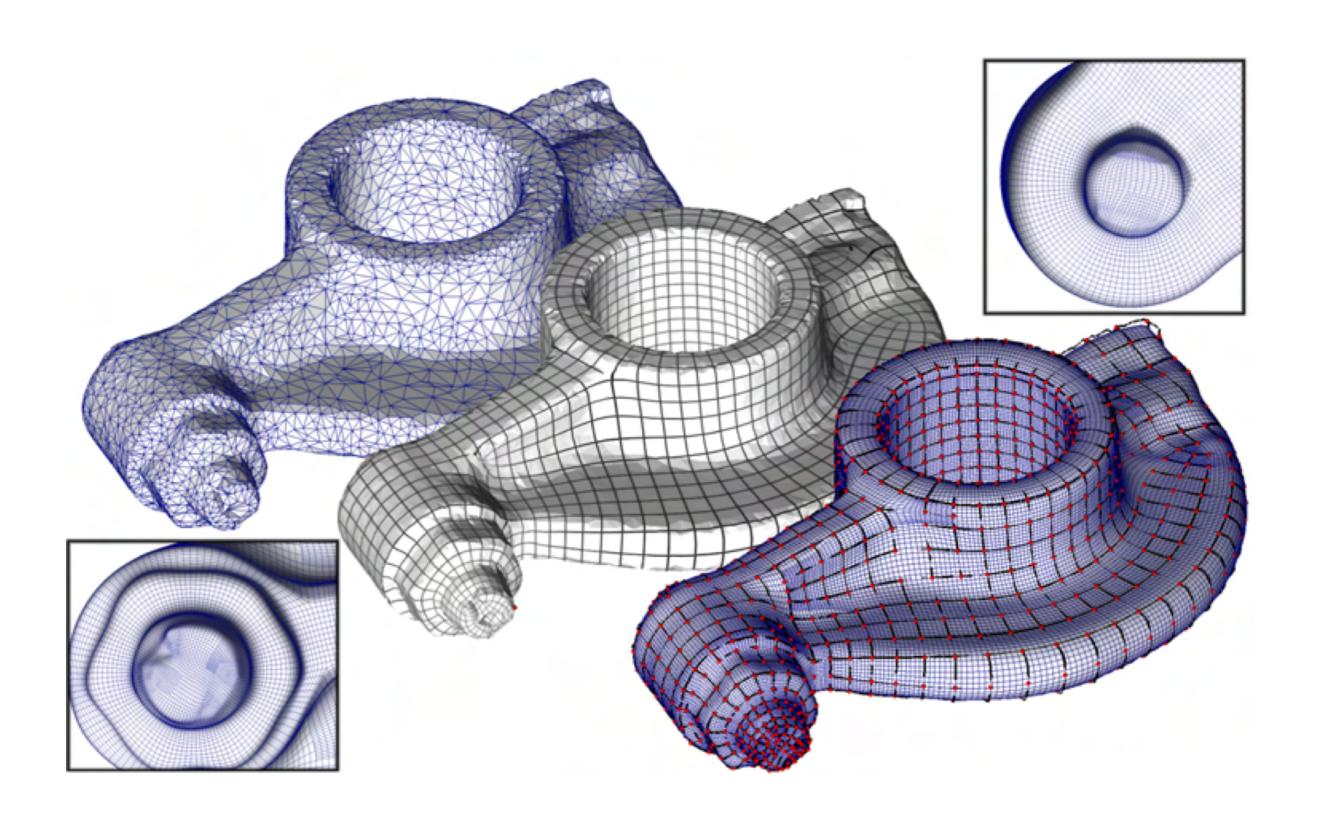


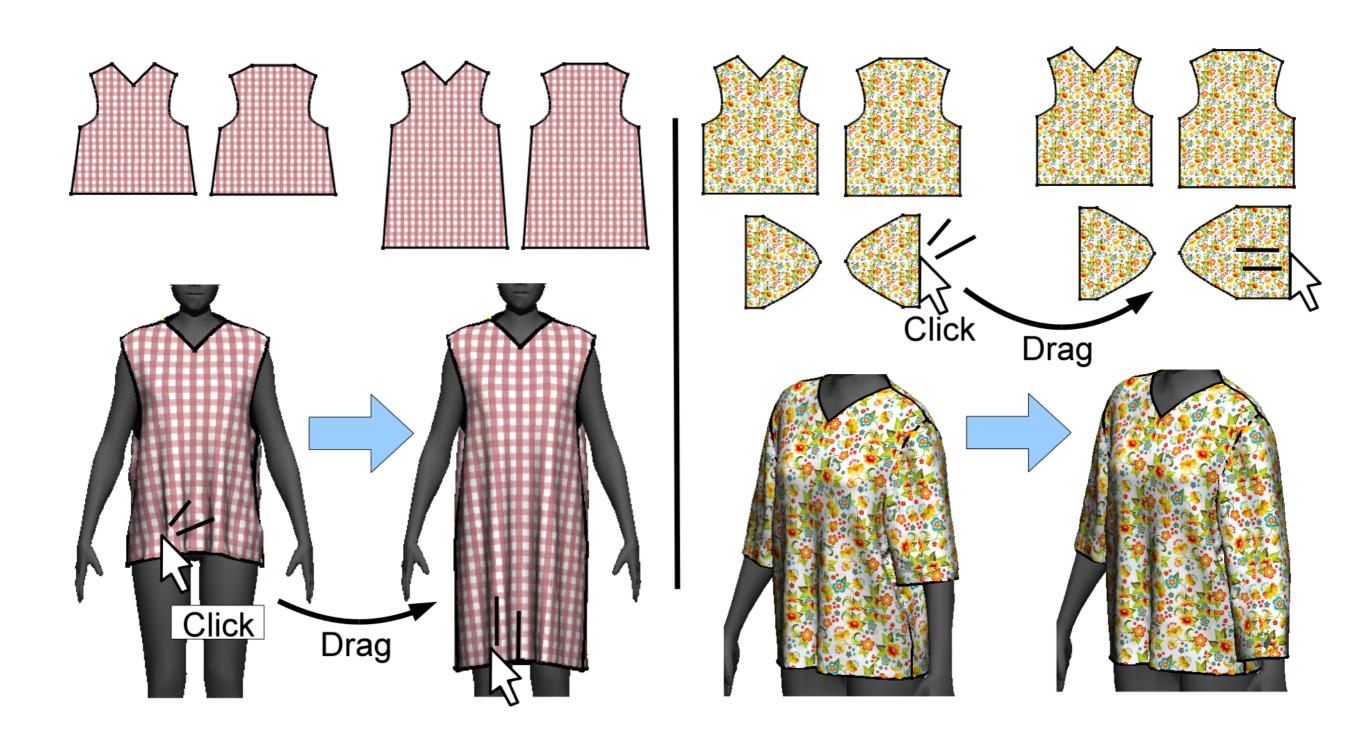


Remeshing



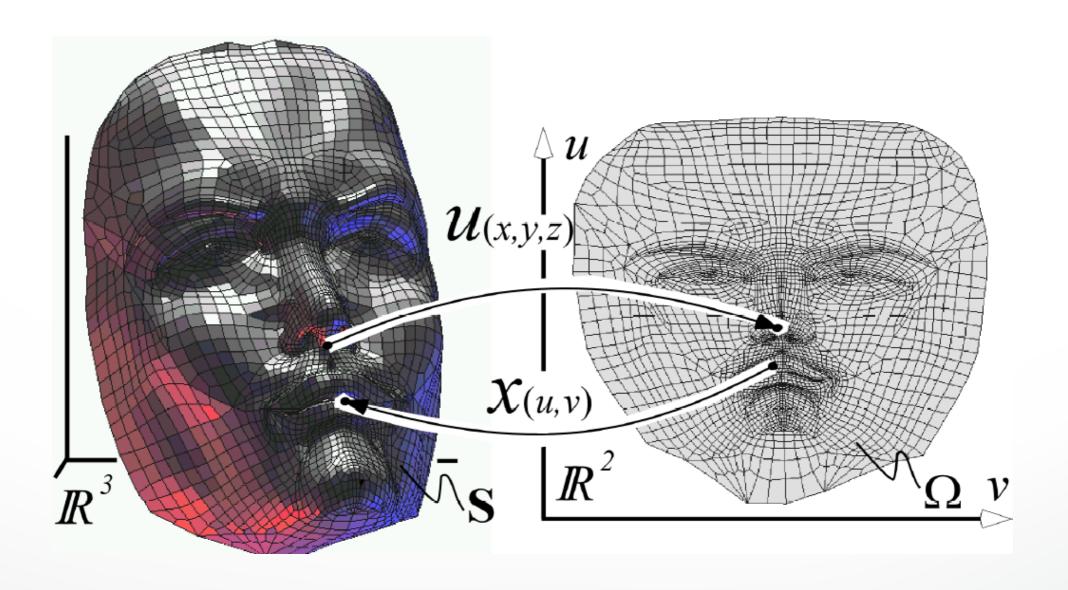
Surface Fitting



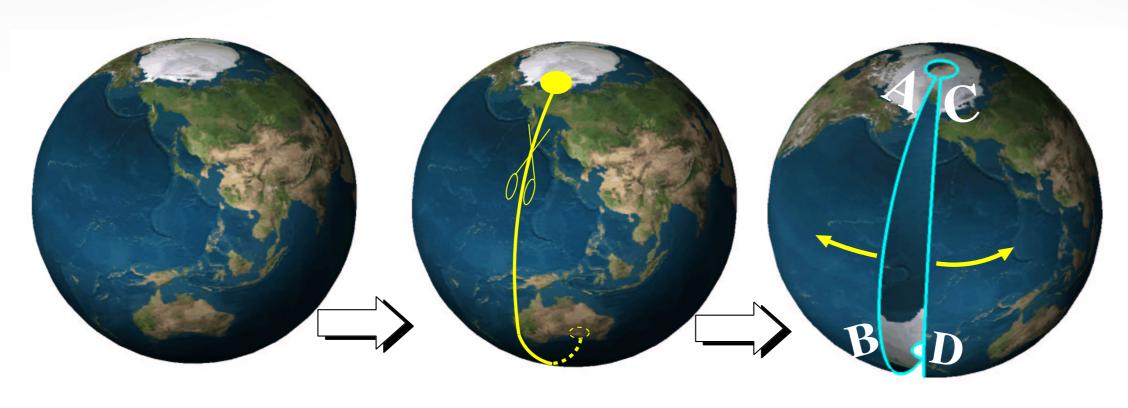


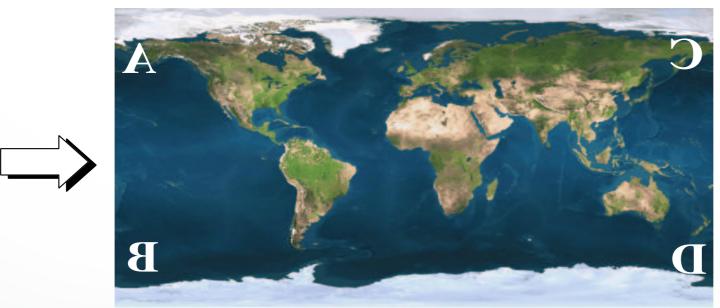
#### **Mesh Parameterization**

# Find a 1-to-1 mapping between given surface mesh and 2D parameter domain

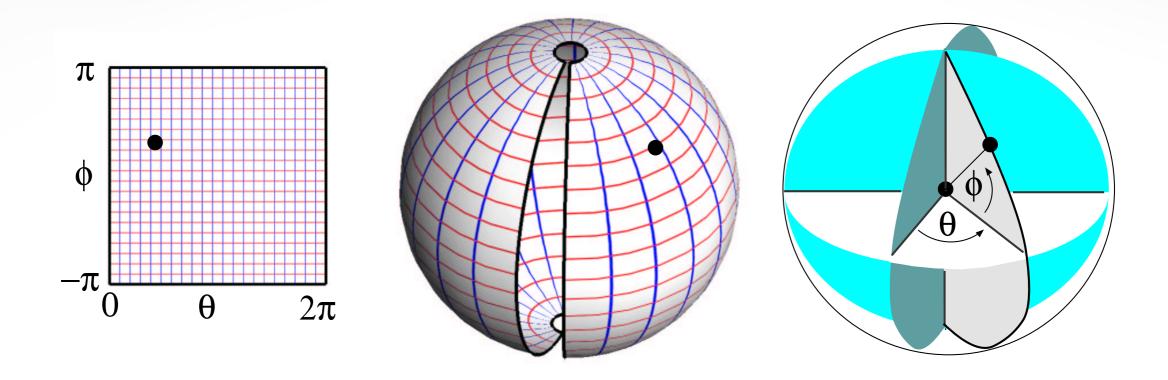


## **Unfolding Earth**





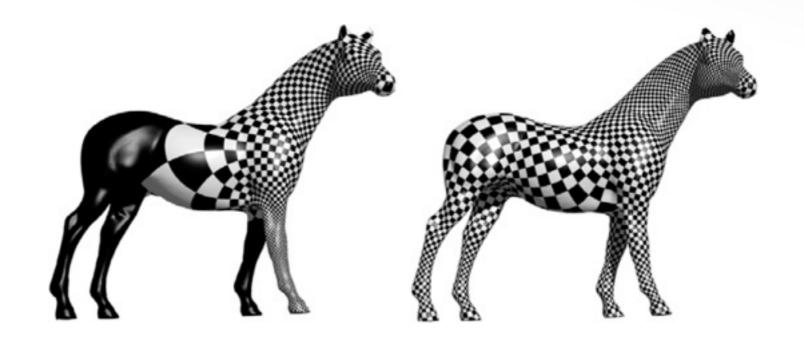
## **Spherical Coordinates**



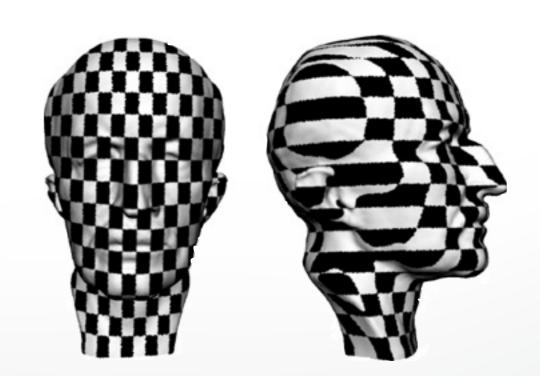
$$\begin{bmatrix} \theta \\ \phi \end{bmatrix} \mapsto \begin{bmatrix} \sin \theta \sin \phi \\ \cos \theta \sin \phi \\ \cos \phi \end{bmatrix}$$

## **Desirable Properties**

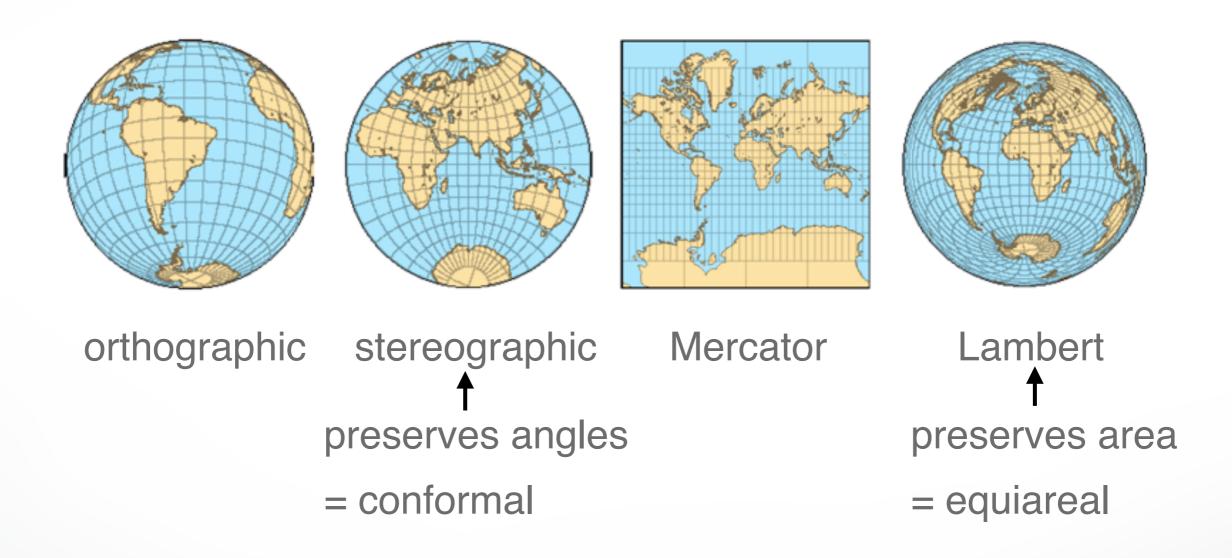
#### Low distortion



#### Bijective mapping

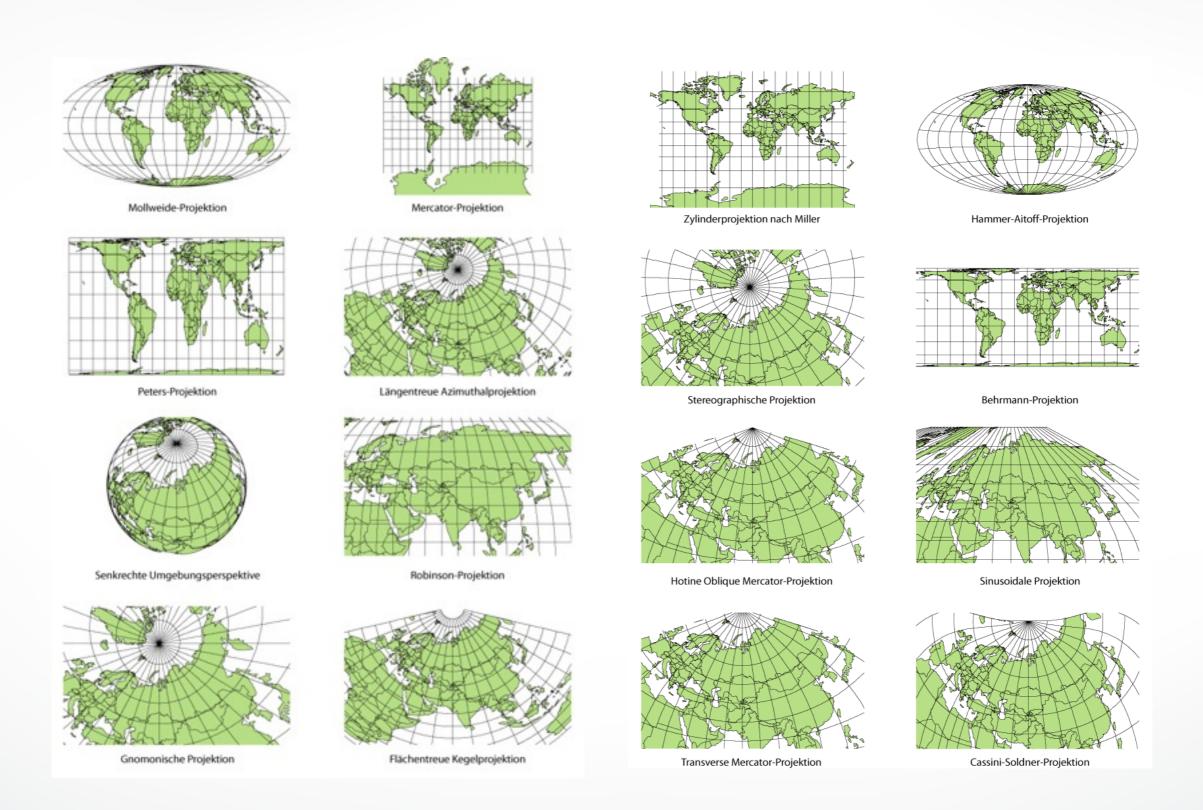


## Cartography



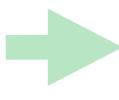
Floater, Hormann: Surface Parameterization: A Tutorial and Survey, Advances in Multiresolution for Geometric Modeling, 2005

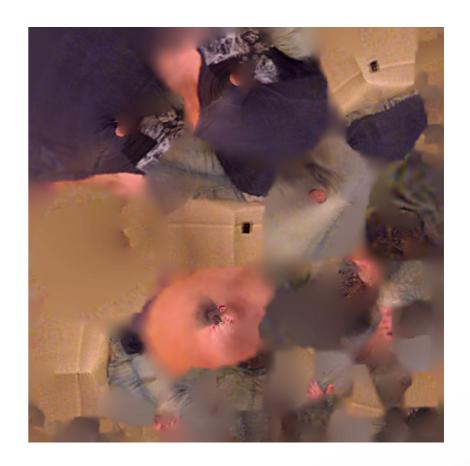
## More Maps



## Demo: Parameterization







#### Recall: Differential Geometry

#### Parametric surface representation

$$\mathbf{x}: \Omega \subset \mathbb{R}^2 \to \mathcal{S} \subset \mathbb{R}^3$$

$$(u,v) \mapsto \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}$$

#### Regular if

- Coordinate functions x,y,z are smooth
- Tangents are linearly independent

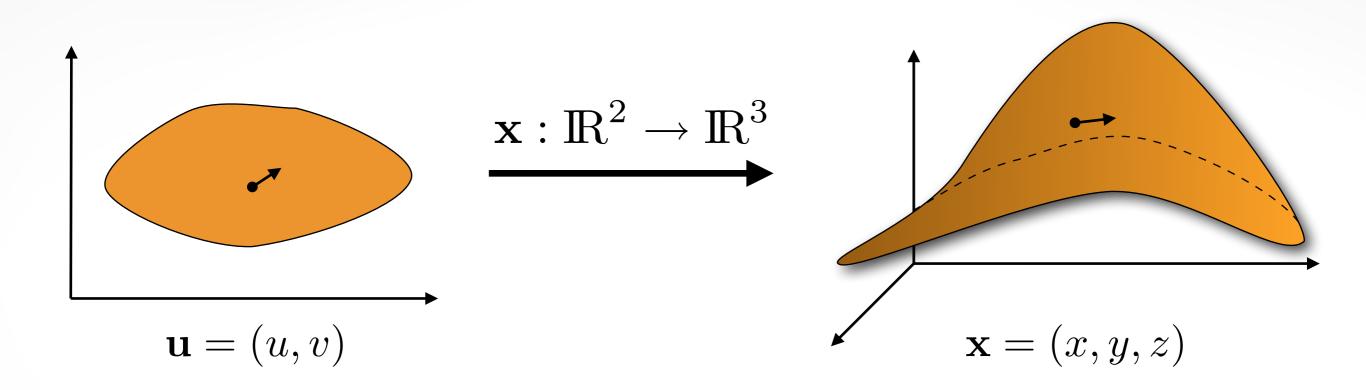
$$\mathbf{x}_u \times \mathbf{x}_v \neq \mathbf{0}$$

#### **Definitions**

#### A regular parameterization $\mathbf{x}:\Omega \to S$ is

- Conformal (angle preserving), if the angle of every pair of intersecting curves on S is the same as that of the corresponding pre-images in  $\Omega$ .
- Equiareal (area preserving) if every part of  $\Omega$  is mapped onto a part of S with the same area
- Isometric (length preserving), if the length of any arc on S is the same as that of its pre-image in  $\Omega$ .

#### **Distortion Analysis**



#### Jacobian transforms infinitesimal vectors

$$\mathbf{dx} = \mathbf{J}\mathbf{du} \qquad \qquad \mathbf{J} = \begin{pmatrix} x_u & x_v \\ y_u & y_v \\ z_u & z_v \end{pmatrix}$$

$$\|\mathbf{d}\mathbf{x}\|^2 = (\mathbf{d}\mathbf{u})^T \mathbf{J}^T \mathbf{J} \, \mathbf{d}\mathbf{u} = (\mathbf{d}\mathbf{u})^T \mathbf{I} \, \mathbf{d}\mathbf{u}$$

#### First Fundamental Form

#### Characterizes the surface locally

$$\mathbf{I} = \begin{pmatrix} \mathbf{x}_u^T \mathbf{x}_u & \mathbf{x}_u^T \mathbf{x}_v \\ \mathbf{x}_u^T \mathbf{x}_v & \mathbf{x}_v^T \mathbf{x}_v \end{pmatrix}$$

#### Allows to measure on the surface

- Angles  $\cos \theta = \left( \operatorname{d}\mathbf{u}_1^T \mathbf{I} \operatorname{d}\mathbf{u}_2 \right) / \left( \left\| \operatorname{d}\mathbf{u}_1 \right\| \cdot \left\| \operatorname{d}\mathbf{u}_2 \right\| \right)$
- Length  $\mathrm{d}s^2 = \mathrm{d}\mathbf{u}^T \mathbf{I} \mathrm{d}\mathbf{u}$
- Area  $dA = \det(\mathbf{I}) du dv$

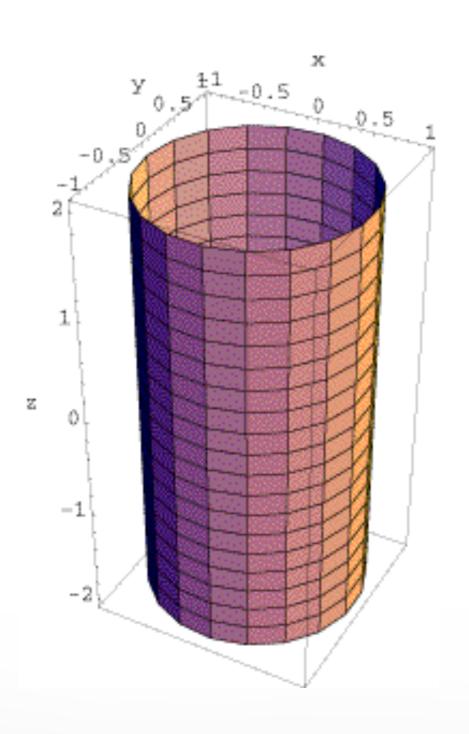
## **Isometric Maps**

A regular parameterization  $\mathbf{x}(u,v)$  is isometric, iff its first fundamental form is the identity:

$$\mathbf{I}(u,v) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

A surface has an isometric parameterization iff it has zero Gaussian curvature

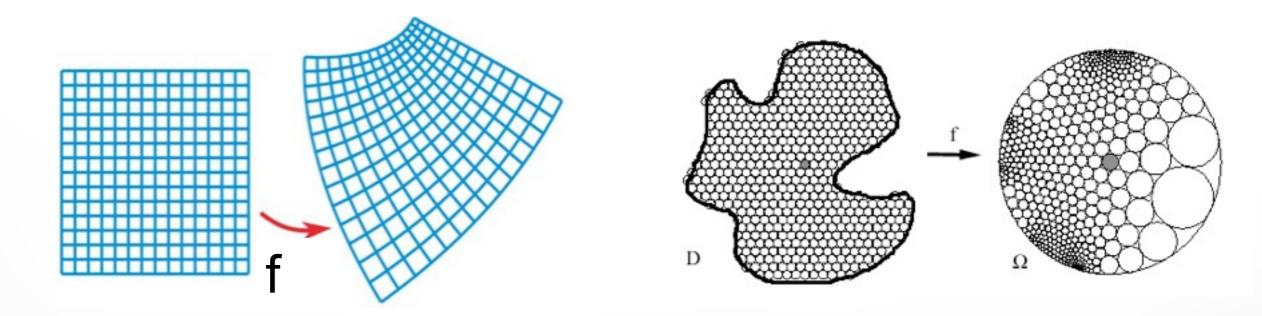
# Cylinder



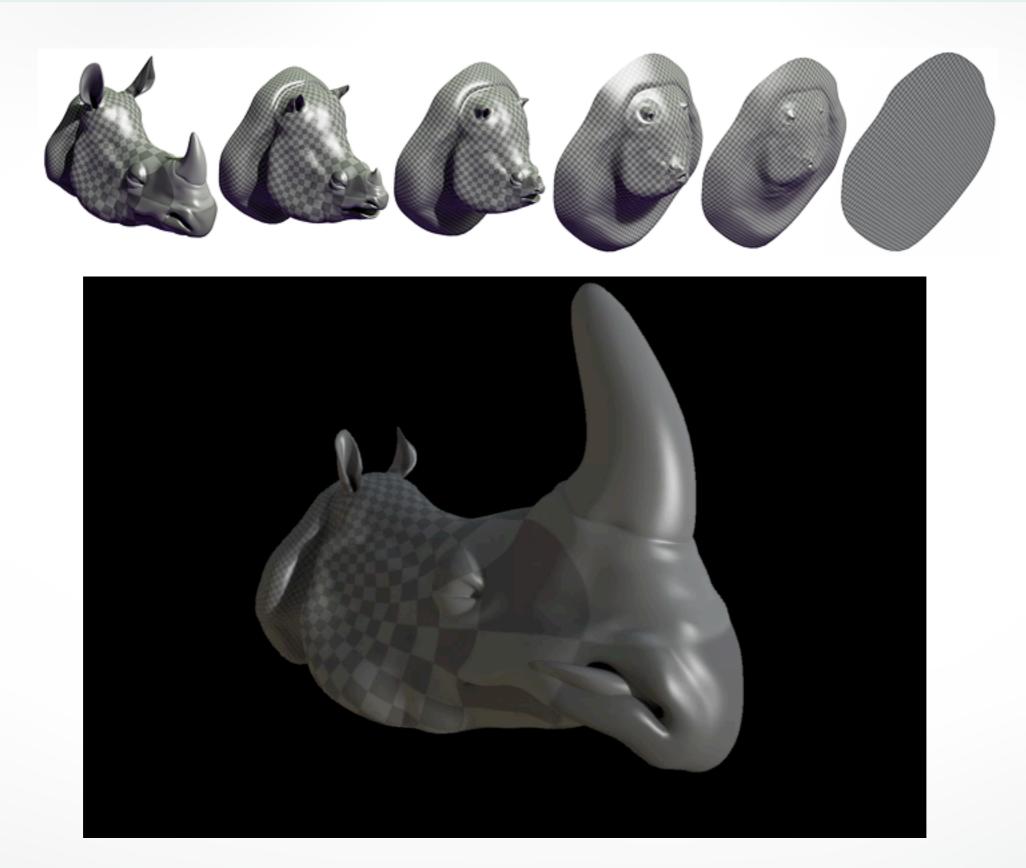
## Conformal Maps (A-Similar-AP)

A regular parameterization  $\mathbf{x}(u,v)$  is conformal, iff its first fundamental form is a scalar multiple of the identity:

$$\mathbf{I}(u,v) = s(u,v) \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$



## **Conformal Flow**

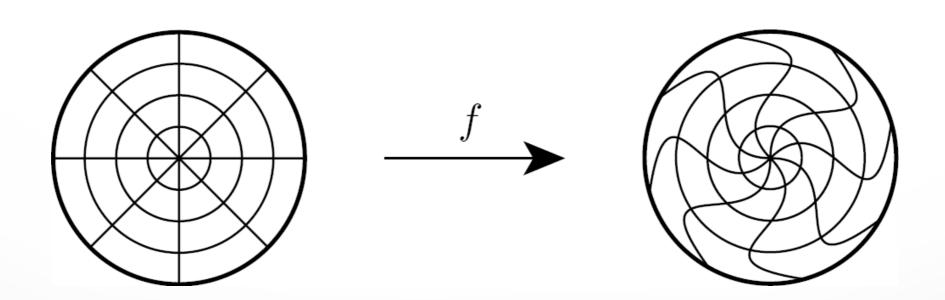


Crane et al. Spin Transformations of Discrete Surfaces, ACM Siggraph 2011

#### **Equiareal Maps**

A regular parameterization  $\mathbf{x}(u,v)$  is equiareal, iff the determinant of its first fundamental form is 1:

$$\det(\mathbf{I}(u,v)) = 1$$



## Relationships

An isometric parameterization is conformal and equiareal, and vice versa:

isometric ⇔ conformal + equiareal

Isometric is ideal, but rare. In practice, people try to compute:

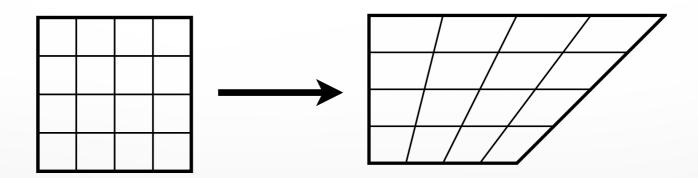
- Conformal
- Equiareal
- Some balance between the two

## **Harmonic Maps**

• A regular parameterization  $\mathbf{x}(u,v)$  is harmonic, iff it satisfies

$$\Delta \mathbf{x}(u,v) = 0$$

- isometric ⇒ conformal ⇒ harmonic
- Easier to compute than conformal, but does not preserve angles



#### **Harmonic Maps**

A harmonic map minimizes the Dirichlet energy

$$\int_{\Omega} \|\nabla \mathbf{x}\|^2 = \int_{\Omega} \|\mathbf{x}_u\|^2 + \|\mathbf{x}_v\|^2 \, \mathrm{d}u \, \mathrm{d}v$$

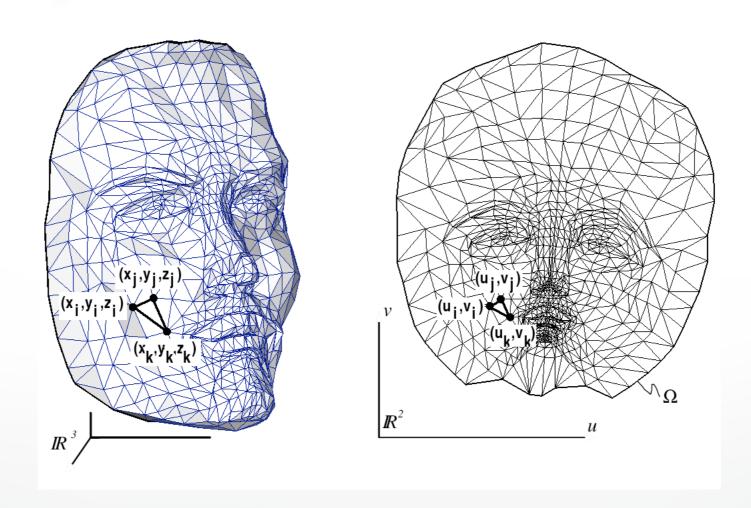
Variational calculus then tells us that

$$\Delta \mathbf{x}(u,v) = 0$$

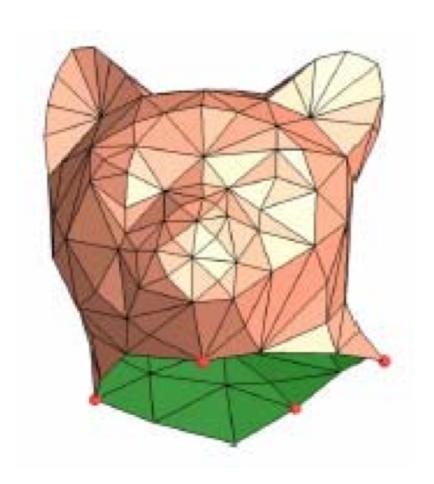
• If  $\mathbf{x}:\Omega\to S$  is harmonic and maps the boundary  $\partial\Omega$  of a convex region  $\Omega\subset\mathbb{R}^2$  homeomorphically onto the boundary  $\partial S$ , then  $\mathbf{x}$  is one-to-one.

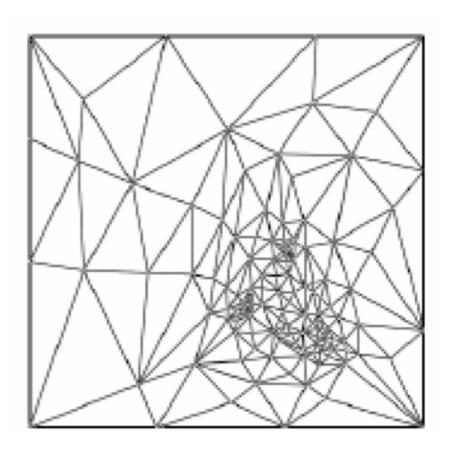
#### **Parameterization Goal**

- Piecewise linear mapping of a discrete 3D triangle mesh onto a planar 2D polygon
- Slightly different situation: Given a 3D mesh, compute the inverse parameterization



## Floater's Parameterization





#### Floater's Parameterization

- For Quadrilateral Patch
- Fix the parameters of the boundary vertices on a unit square
- Derive the bijection  ${\bf u}$  for each of the interior vertices  ${\bf v}_i$  by solving

$$u(v_i) = \sum_{k \in v(i)} \lambda_{i,k} u(v_k)$$

where  $\lambda_{i,k}$  satisfies shape preserving criteria

and 
$$\sum_{k \in V(i)} \lambda_{i,k} = 1, i = 1,2,...,n$$

### Floater's Algorithm

- Compute for each i the  $\lambda_{i,k}$ ,  $k \in v(i)$ 
  - Compute a local parameterization for v(i) that preserves the aspect ratio of the angle and length
  - Compute  $\lambda_{i,k}$ ,  $k \in v(i)$  that satisfies

Shape preserving criteria

and 
$$\sum_{k \in \nu(i)} \lambda_{i,k} = 1$$
,  $i = 1, 2, ..., n$ 

• Solve the sparse equation for  $u(v_i), i = 1 \dots n$ 

$$u(v_i) = \sum_{k \in v(i)} \lambda_{i,k} u(v_k)$$

### **Discrete Harmonic Maps**

- Map the boundary  $\partial S$  homeomorphically to some (convex) polygon  $\partial \Omega$  in the parameter plane
- Minimize the Dirichlet energy of u by solving the corresponding Euler-Lagrange PDE

$$\Delta_{\mathcal{S}} \mathbf{u} = 0$$

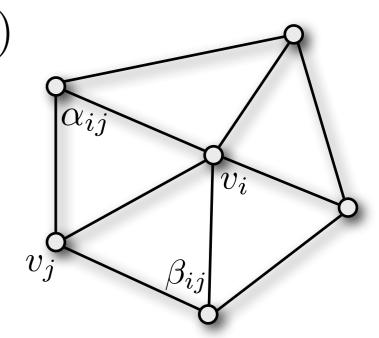
- Requires discretization of Laplace-Beltrami
- Compare to surface fairing

### **Discrete Harmonic Maps**

System of linear equations

$$\forall v_i \in \mathcal{S} : \sum_{v_j \in \mathcal{N}_1(v_i)} w_{ij} \left( \mathbf{u}(v_j) - \mathbf{u}(v_i) \right)$$

$$w_{ij} = \cot \alpha_{ij} + \cot \beta_{ij}$$



- Properties of system matrix:
  - Symmetric + positive definite → unique solution
  - Sparse → efficient solvers

### Discrete Harmonic Maps

- But...
  - Does the same theory hold for discrete harmonic maps as for harmonic maps?
  - In other words, is it possible for triangles to flip or become degenerate?

If the linear equations are satisfied

$$\sum_{v_j \in \mathcal{N}_1(v_i)} w_{ij} \left( \mathbf{u}(v_j) - \mathbf{u}(v_i) \right)$$

and if the weights satisfy

$$w_{ij} > 0 \quad \wedge \quad \sum_{v_i \in \mathcal{N}_1(v_i)} w_{ij} = 1$$

then we get a convex combination mapping.

• Each  $\mathbf{u}(v_i)$  is a convex combination of  $\mathbf{u}(v_j)$ 

$$\mathbf{u}(v_i) = \sum_{v_j \in \mathcal{N}_1(v_i)} w_{ij} \mathbf{u}(v_j)$$

• If  $\mathbf{u}: S \to \Omega$  is a convex combination map that maps the boundary  $\partial S$  homeomorphically to the boundary  $\partial \Omega$  of a convex region  $\Omega \subset \mathbb{R}^2$ , then  $\mathbf{u}$  is one-to-one.

Uniform barycentric weights

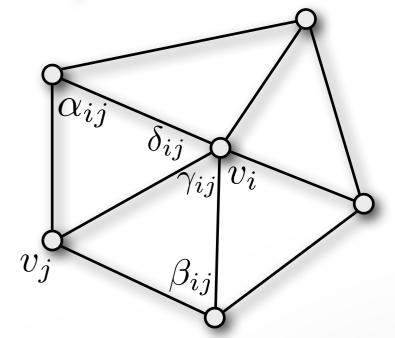
$$w_{ij} = 1/\text{valence}(v_i)$$

• Cotangent weights ( > 0 if  $\alpha_{ij} + \beta_{ij} < \pi$  )

$$w_{ij} = \cot(\alpha_{ij}) + \cot(\beta_{ij})$$

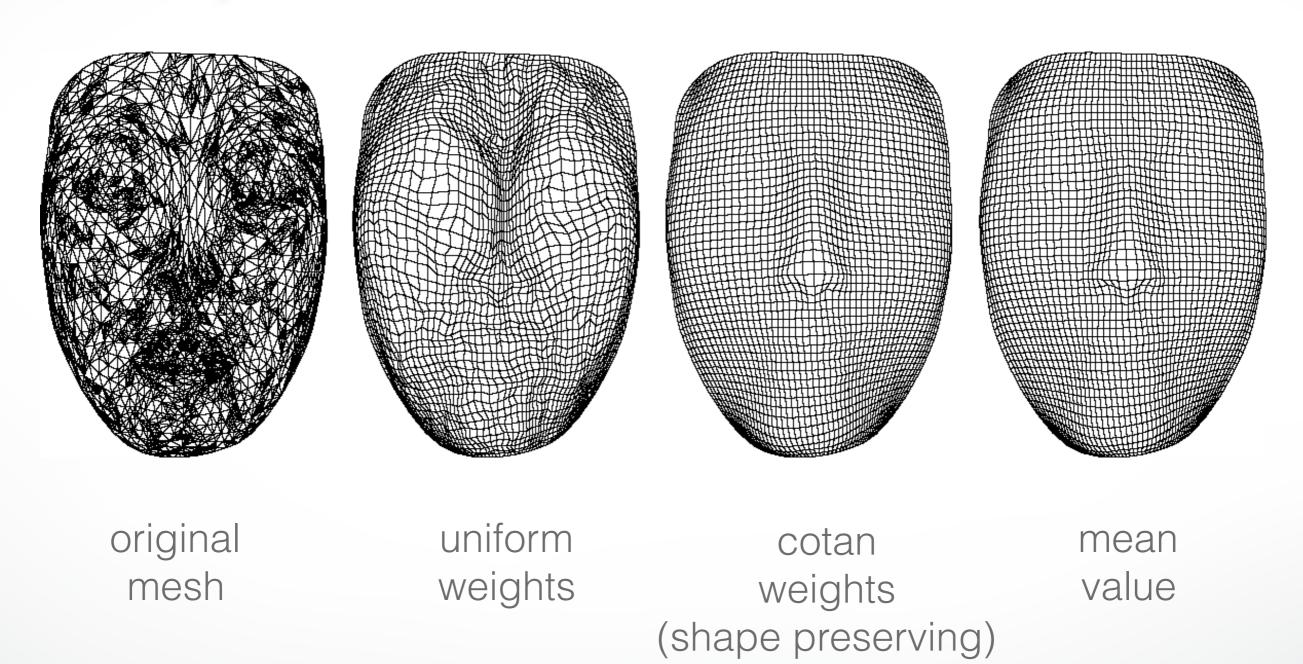
Mean value weights

$$w_{ij} = \frac{\tan(\delta_{ij}/2) + \tan(\gamma_{ij}/2)}{\|\mathbf{p}_j - \mathbf{p}_i\|}$$



(no negative weights, even for obtuse angles)

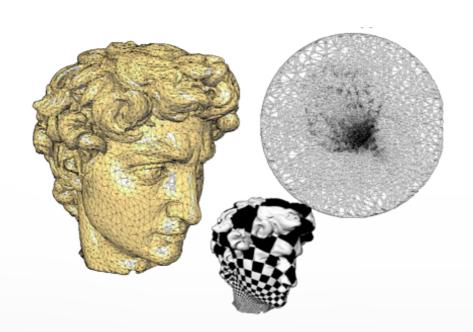
### Comparison



### **Fixing the Boundary**

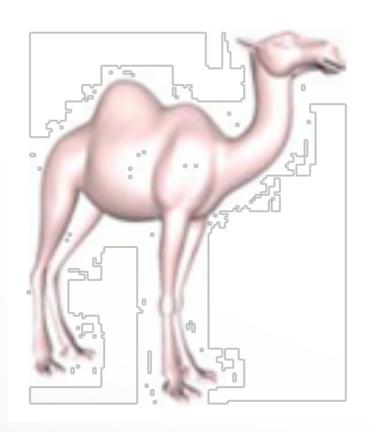
- Choose a simple convex shape
  - Triangle, square, circle
- Distribute points on boundary
  - Use chord length parameterization

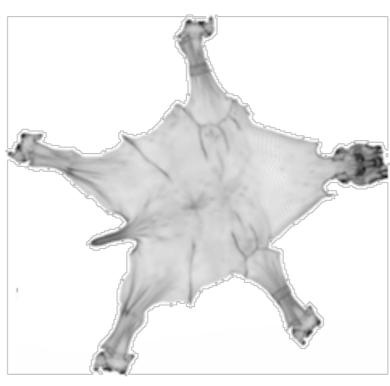
Fixed boundary can create high distortion



# **Open Boundary Mappings**

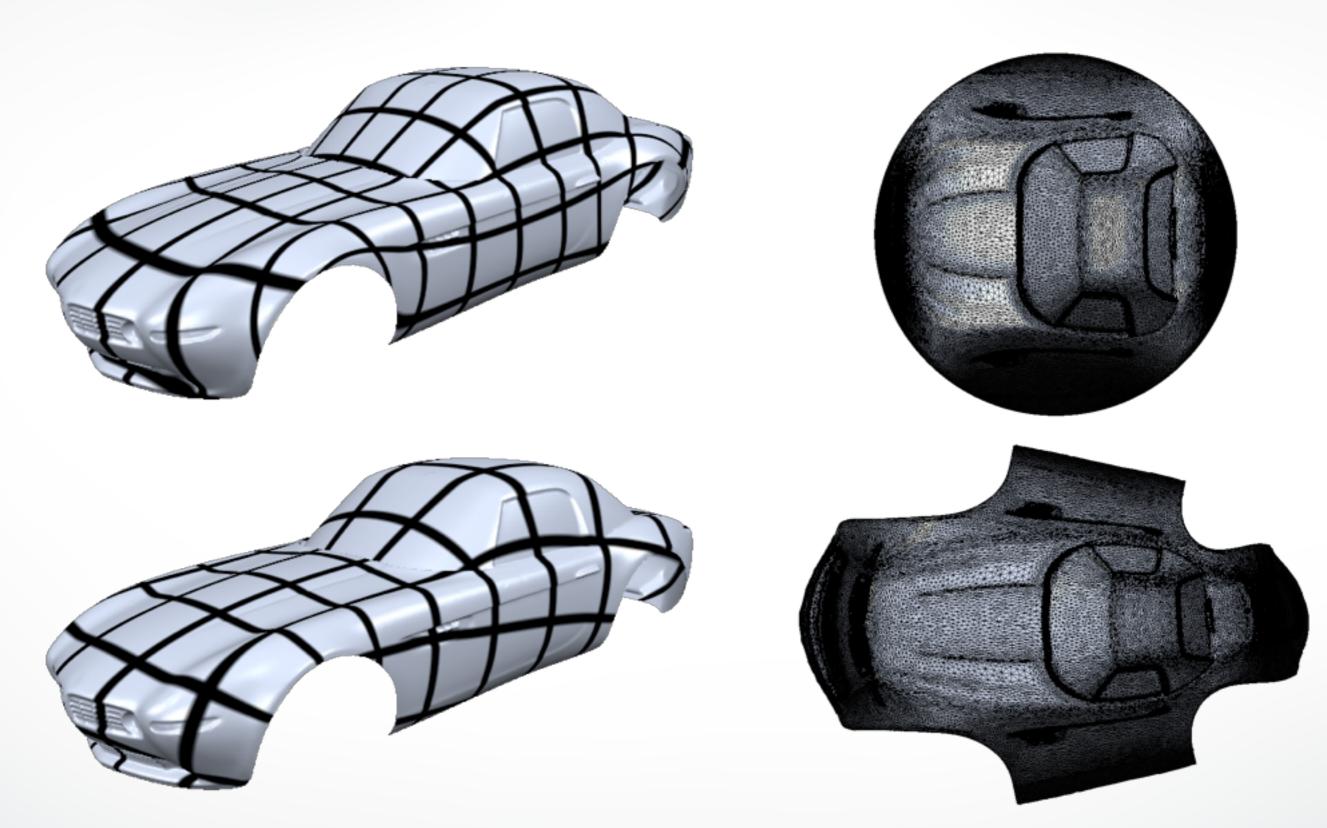
- Include boundary vertices in the optimization
- Produces mappings with lower distortion





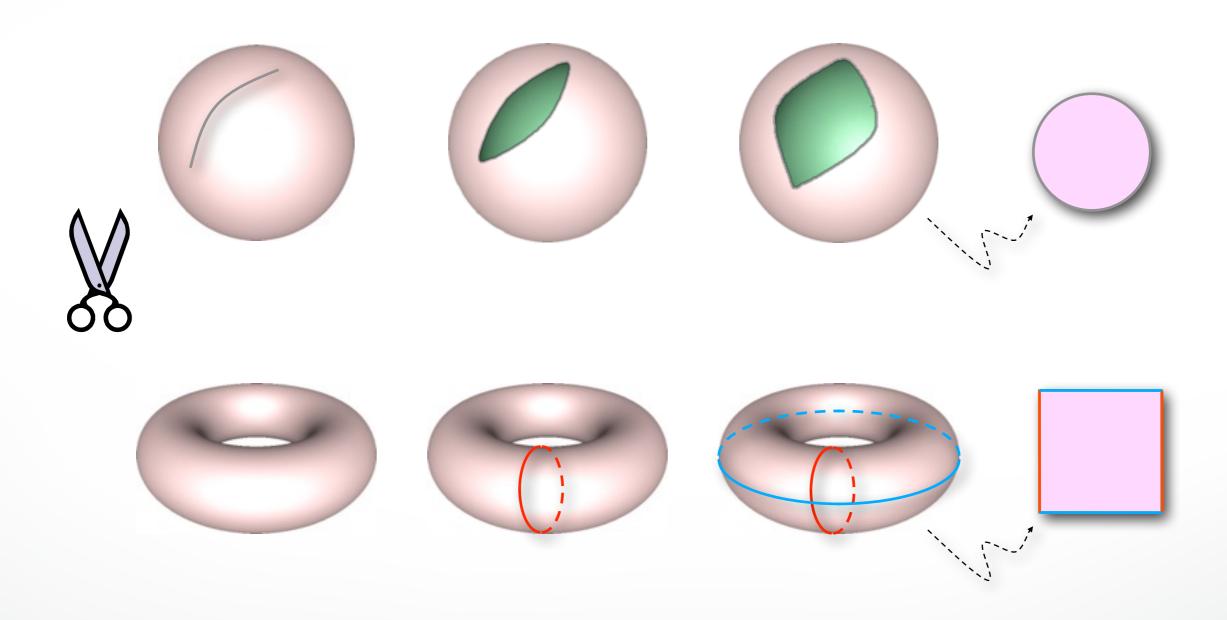


# **Open Boundary Mappings**

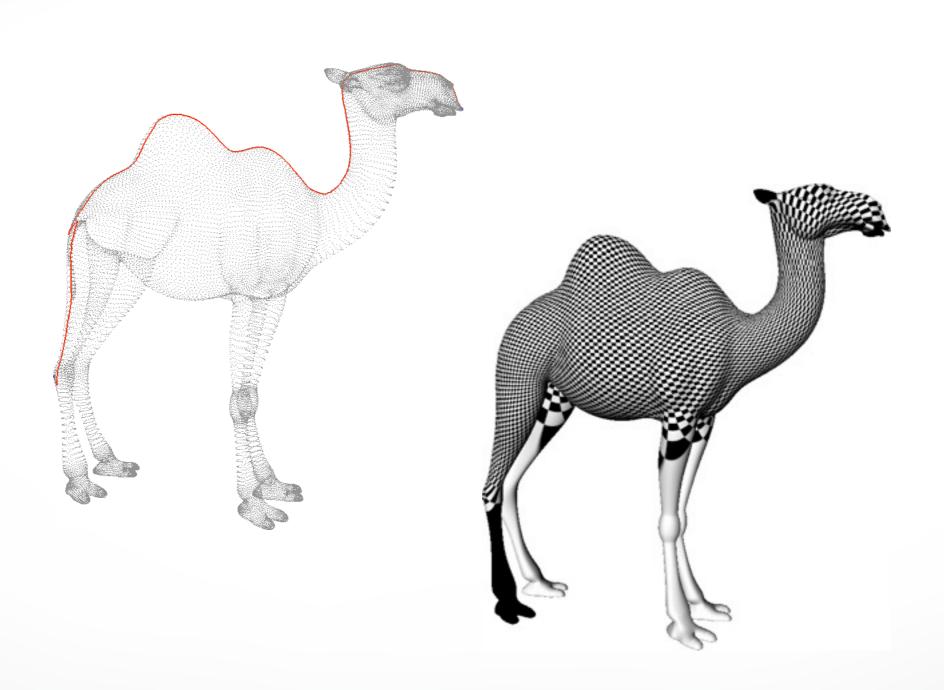


### Need disk-like topology

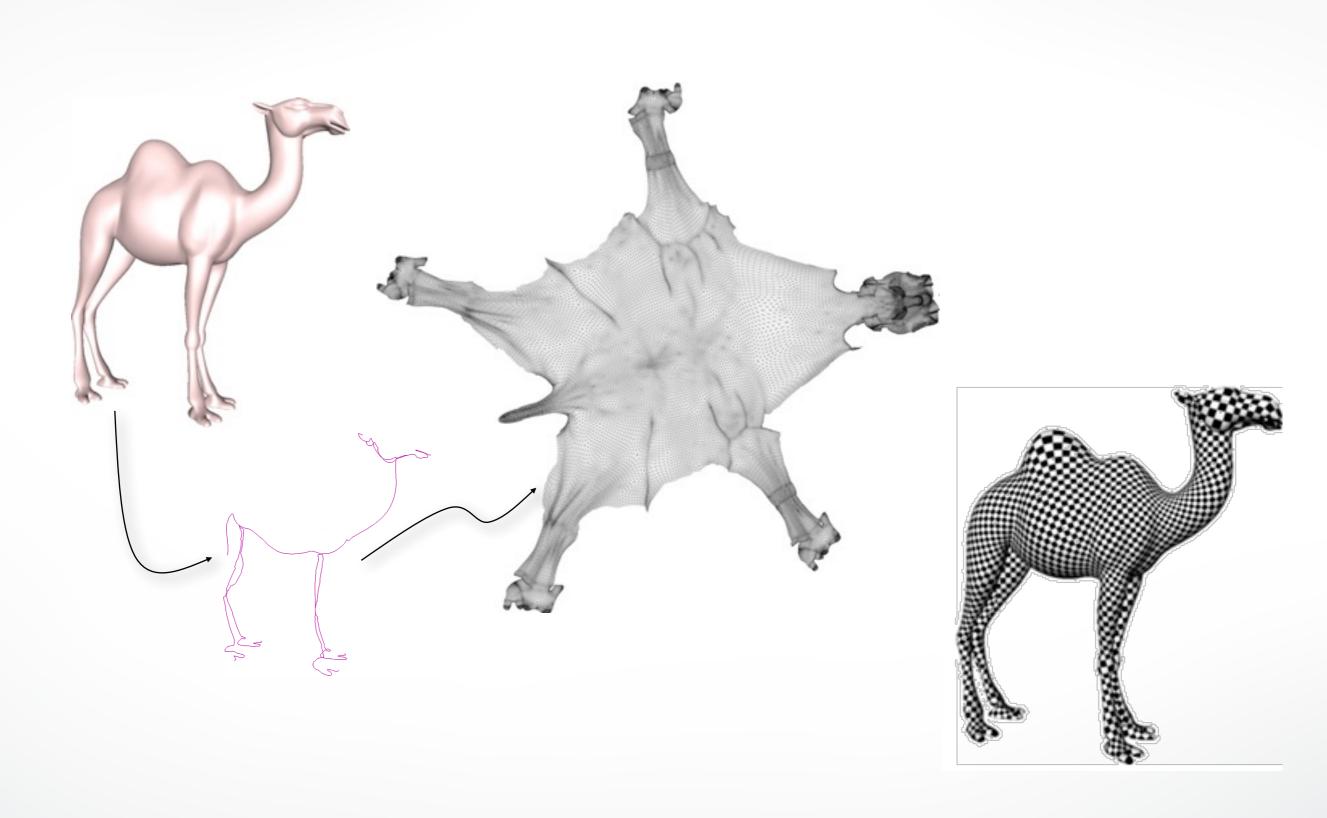
Introduce cuts on the mesh



# Naive Cut, Numerical Problems

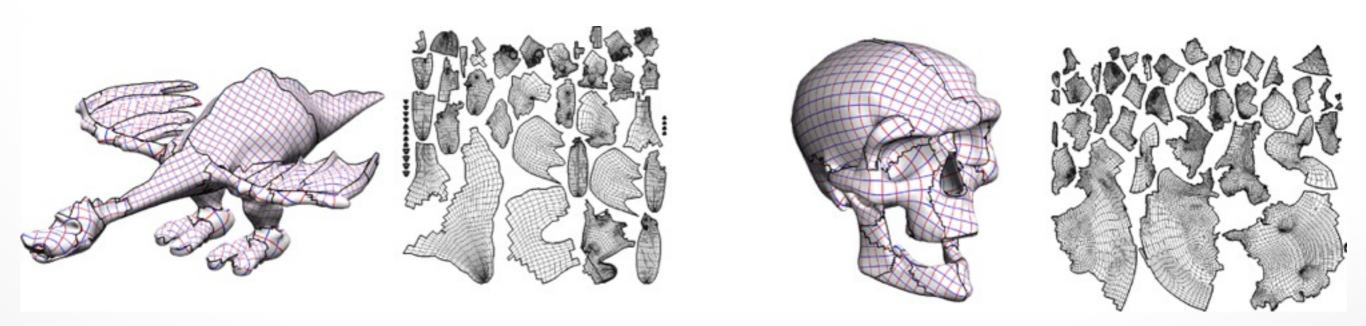


# **Smart Cut, Free Boundary**



#### **Texture Atlas Generation**

- Split model into number of patches (atlas)
  - because higher genus models cannot be mapped onto plane and/or
  - because distortion, the number of patches will be too high eventually



Levy, Petitjean, Ray, Maillot: Least Squares Conformal Maps for Automatic Texture Atlas Generation, SIGGRAPH, 2002

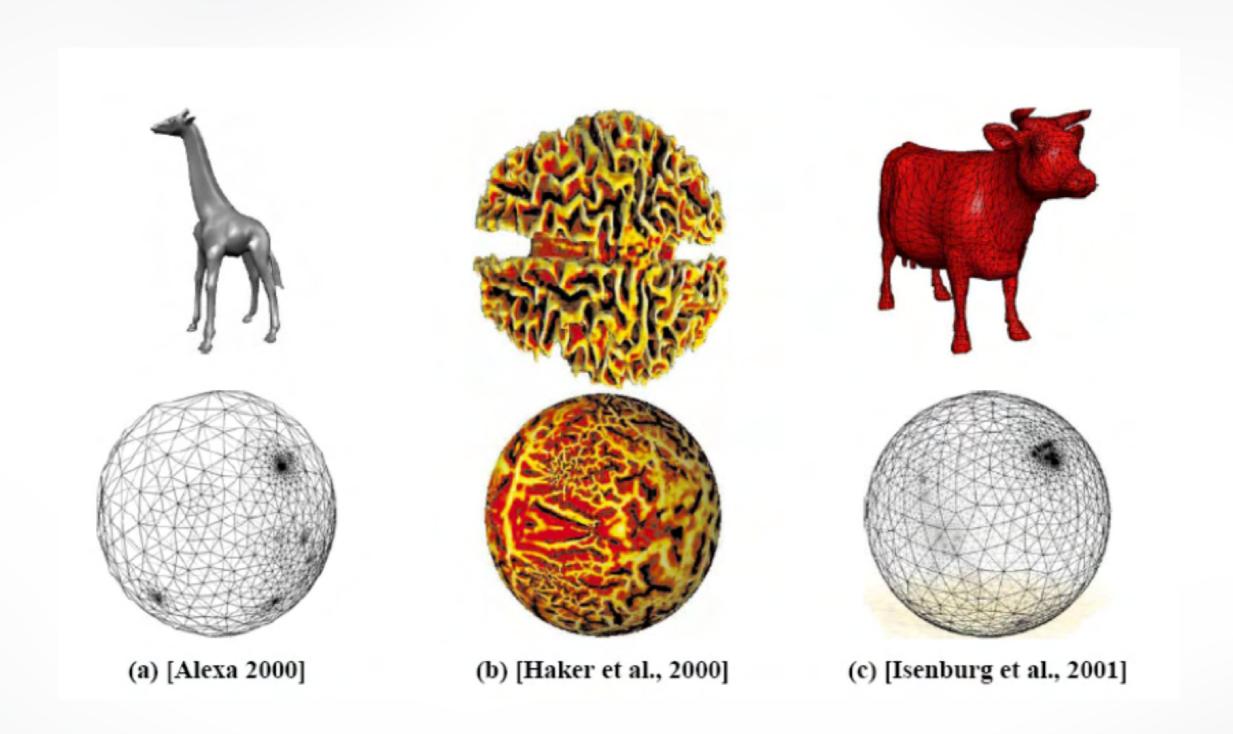
#### **Texture Atlas Generation**

- Split model into number of patches (atlas)
  - because higher genus models cannot be mapped onto plane and/or
  - because distortion, the number of patches will be too high eventually



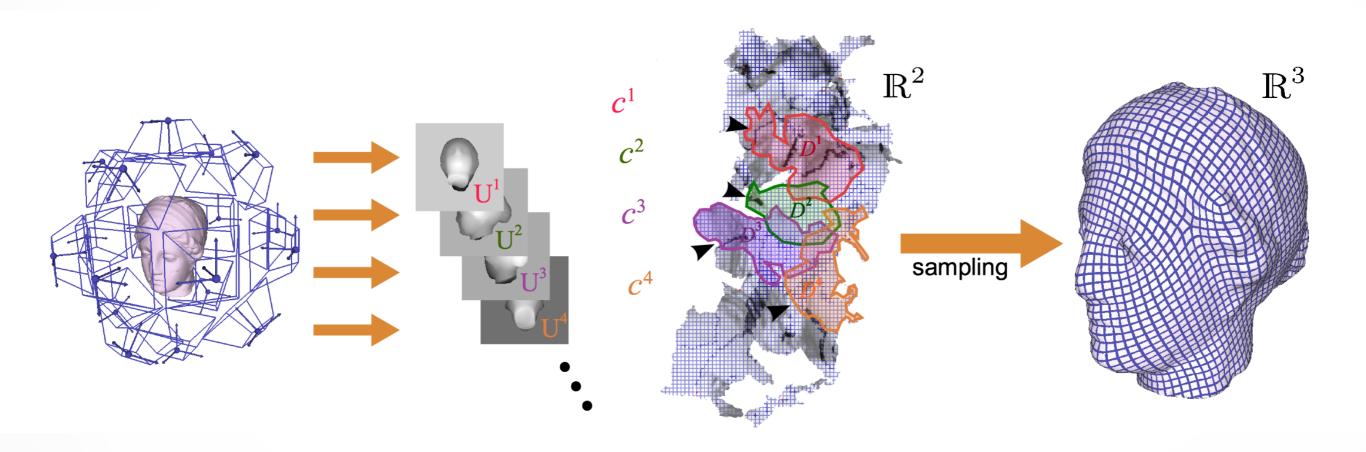
Levy, Petitjean, Ray, Maillot: Least Squares Conformal Maps for Automatic Texture Atlas Generation, SIGGRAPH, 2002

### **Non-Planar Domains**

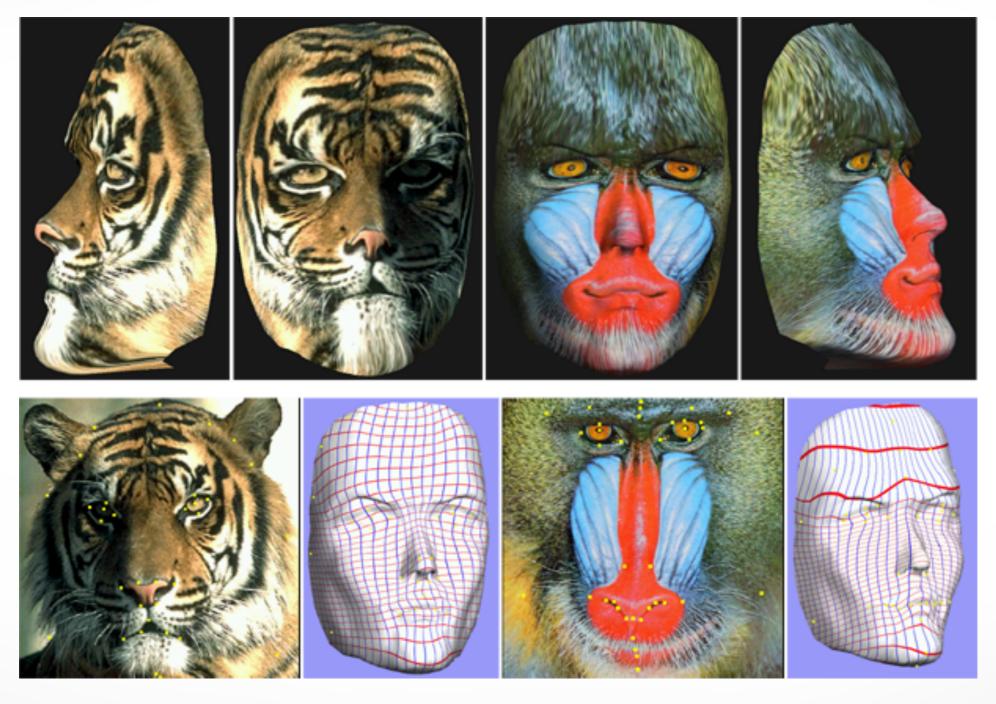


seamless, continuous parameterization of genus-0 surfaces

## Global Parameterization – Range Images



### **Constrained Parameterizations**

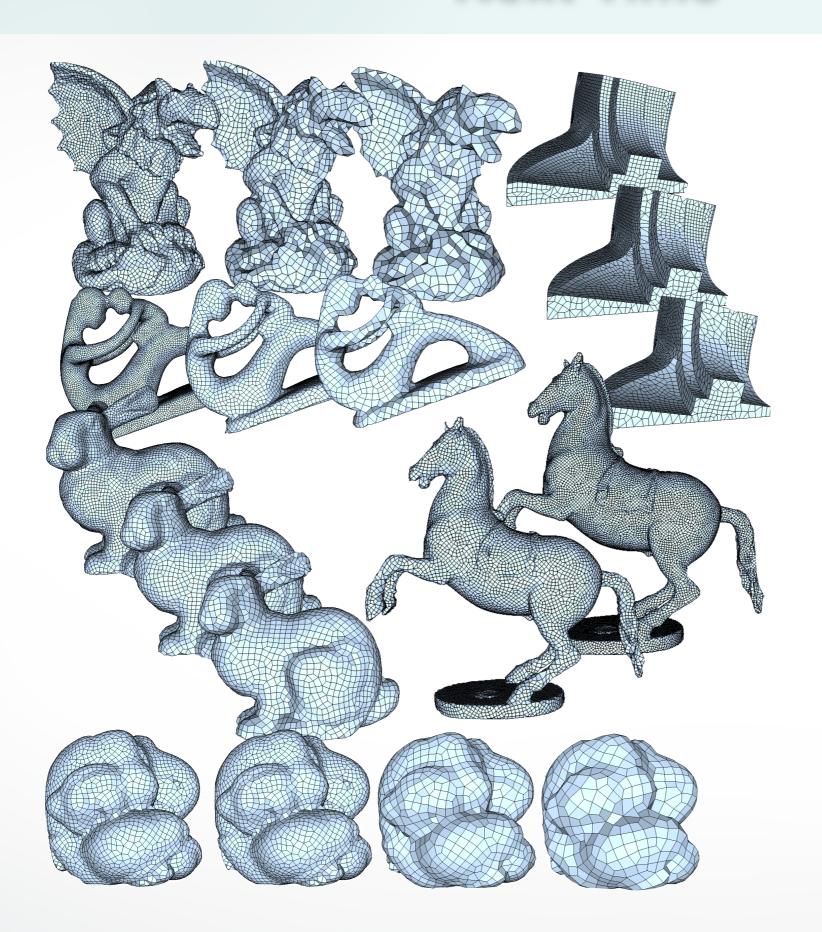


Levy: Constraint Texture Mapping, SIGGRAPH 2001.

#### Literature

- Book, Chapter 5
- Hormann et al.: Mesh Parameterization, Theory and Practice,
   Siggraph 2007 Course Notes
- Floater and Hormann: Surface Parameterization: a tutorial and survey, advances in multiresolution for geometric modeling, Springer 2005
- Hormann, Polthier, and Sheffer, Mesh Parameterization: Theory and Practice, SIGGRAPH Asia 2008 Course Notes

# **Next Time**



#### Decimation

#### http://cs621.hao-li.com

# Thanks!

