CSCI 621: Digital Geometry Processing

7.2 Surface Reconstruction

Hao Li
http://cs621.hao-li.com

Surface Reconstruction

physical model

captured point cloud

reconstructed model

Input Data

Set of irregular sample points

- with or without normals
- examples: multi-view stereo, union of range scan vertices

Set of range scans

- each scan is a regular quad or trimesh
- normal vectors can be obtained through local connectivity

Problem

Given a set of points $\mathcal{P}=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\}$ with $\mathbf{p}_{i} \in \mathbb{R}^{3}$

Problem

Find a manifold surface $\mathcal{S} \subset \mathbb{R}^{3}$ which approximates \mathcal{P}

Two Approaches

Explicit

Implicit

Local surface

connectivity estimation

Point interpolation

Signed distance function estimation

Mesh approximation

Two Approaches

Explicit

Implicit

- Ball pivoting algorithm
- Delaunay triangulation
- Alpha shapes
- Zippering...
- Image space triangulation

Explicit Reconstruction

- Connect sample points by triangles
- Exact interpolation of sample points
- Bad for noisy or misaligned data
- Can lead to holes or non-manifold situations

Implicit Reconstruction

Given a set of points $\mathcal{P}=\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right\}$ with $\mathbf{p}_{i} \in \mathbb{R}^{3}$
Find a manifold surface $\mathcal{S} \subset \mathbb{R}^{3}$ which approximates \mathcal{P}
where $\mathcal{S}=\{\mathbf{x} \mid d(\mathbf{x})=0\}$ with $d(\mathbf{x})$ a signed distance function

Data Flow

Point cloud

Signed distance function estimation

$$
d(\mathbf{x}) \downarrow
$$

Evaluation of distances on uniform grid

$$
d(\mathbf{i}), \mathbf{i}=[i, j, k] \in \mathbb{Z}^{3} \downarrow
$$

Mesh extraction via marching cubes

Mesh

Implicit Surface Reconstruction Methods

Mainly differ in their signed distance function

Implicit Reconstruction

- Estimate signed distance function (SDF)
- Extract Zero isosurface by Marching Cubes
- Approximation of input points
- Result is closed two-manifold surface

Outline

- Explicit Reconstruction
- Zippering range scans
- Implicit Reconstruction
- SDF from point clouds
- SDF from range scans
- Poisson surface reconstruction

Explicit Reconstruction

"Zipper" several scans to one single model

Explicit Reconstruction

"Zipper" several scans to one single model

Project \& insert boundary vertices

Explicit Reconstruction

"Zipper" several scans to one single model

Intersect boundary edges

Explicit Reconstruction

"Zipper" several scans to one single model

Discard overlap region

Explicit Reconstruction

"Zipper" several scans to one single model

Locally optimize triangulation

Explicit Reconstruction

"Zipper" several scans to one single model
Problems for intricate geometries...

Mesh Zippering Summary

Pros:

- Preserves regular structure of each scan
- No additional data structures

Cons:

- Zippering can be numerically difficult
- Problems with complex, noisy, incomplete data

Outline

- Explicit Reconstruction
- Zippering range scans
- Implicit Reconstruction
- SDF from point clouds
- SDF from range scans
- Poisson surface reconstruction

Implicit Reconstruction

- Estimate signed distance function (SDF)
- Extract Zero isosurface by Marching Cubes
- Approximation of input points
- Watertight manifold by construction

Signed Distance Function

Construct SDF from point samples

- Distance to points is not enough
- Need inside/outside information
- Requires normal vectors

Normal Estimation

Find normal \mathbf{n}_{i} for each sample point \mathbf{p}_{i}

- Examine local neighborhood for each point
- Set of k nearest neighbors
- Compute best approximating tangent plane
- Covariance analysis
- Determine normal orientation
- Minimal Spanning Tree propagation

Normal Estimation

Find normal \mathbf{n}_{i} for each sample point \mathbf{p}_{i}

- Examine local neighborhood for each point
- Set of k nearest neighbors
- Compute best approximating tangent plane
- Covariance analysis
- Determine normal orientation
- Minimal Spanning Tree propagation

-

Normal Estimation

Find closest point of a query point

- Find closest point of a query point
- Brute force: $O(n)$ complexity

Use Hierarchical BSP tree

- Binary space partitioning tree (general version of kD-tree)
- Recursively partition 3D space by planes
- Tree should be balanced, put plane at median
- $\log (n)$ tree levels, complexity $\log (n)$

Normal Estimation

Find normal \mathbf{n}_{i} for each sample point \mathbf{p}_{i}

- Examine local neighborhood for each point
- Set of k nearest neighbors
- Compute best approximating tangent plane
- Covariance analysis
- Determine normal orientation
- Minimal Spanning Tree propagation

0

Plane Fitting

Fit a plane with center \mathbf{c} and normal \mathbf{n} to a set of points $\left\{\mathbf{p}_{1}, \ldots, \mathbf{p}_{m}\right\}$

Minimize least squares error

$$
E(\mathbf{c}, \mathbf{n})=\sum_{i=1}^{m}\left(\mathbf{n}^{T}\left(\mathbf{p}_{i}-\mathbf{c}\right)\right)^{2}
$$

Subject to non-linear constraint

$$
\|\mathbf{n}\|=1
$$

Plane Fitting

Reformulate error function

$$
\begin{aligned}
E(\mathbf{c}, \mathbf{n}) & =\sum_{i=1}^{m}\left(\mathbf{n}^{T}\left(\mathbf{p}_{i}-\mathbf{c}\right)\right)^{2} \\
& =\sum_{i=1}^{m}\left(\mathbf{n}^{T} \hat{\mathbf{p}}_{i}\right)^{2} \quad\left(\text { with } \hat{\mathbf{p}}_{i}:=\mathbf{p}_{i}-\mathbf{c}\right) \\
& =\sum_{i=1}^{m} \hat{\mathbf{p}}_{i}^{T} \mathbf{n} \mathbf{n}^{T} \hat{\mathbf{p}}_{i} \quad(\text { version } 1) \\
& =\sum_{i=1}^{m} \mathbf{n}^{T} \hat{\mathbf{p}}_{i} \hat{\mathbf{p}}_{i}^{T} \mathbf{n} \quad(\text { version } 2)
\end{aligned}
$$

Determine c from version 1

Derivative of $E(\mathbf{c}, \mathbf{n})$ w.r.t. \mathbf{c} has to vanish

$$
\frac{\partial E(\mathbf{c}, \mathbf{n})}{\partial \mathbf{c}}=\sum_{i=1}^{m}-2 \mathbf{n n}^{T} \hat{\mathbf{p}}_{i}=-2 \mathbf{n n}^{T} \sum_{i=1}^{m} \hat{\mathbf{p}}_{i} \stackrel{!}{=} 0
$$

This is only possible for

$$
\sum_{i=1}^{m} \hat{\mathbf{p}}_{i}=0 \Rightarrow \mathbf{c}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{p}_{i}
$$

Plane center is barycenter of points \mathbf{p}_{i}

Determine n from version 2

Represent \mathbf{n} in basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$

$$
\mathbf{n}=\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3}
$$

Since \mathbf{n} has unit length we get

$$
1=\mathbf{n}^{\top} \mathbf{n}=\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}
$$

Insert into energy formulation

$$
\mathbf{n}^{T} \mathbf{C n}=\alpha_{1}^{2} \lambda_{1}+\alpha_{2}^{2} \lambda_{2}+\alpha_{3}^{2} \lambda_{3} \geq \alpha_{1}^{2} \lambda_{3}+\alpha_{2}^{2} \lambda_{3}+\alpha_{3}^{2} \lambda_{3}=\lambda_{3}
$$

Minimum is achieved for $\alpha_{1}=\alpha_{2}=0, \alpha_{3}=1 \quad \Rightarrow \quad \mathbf{n}=\mathbf{e}_{3}$

Principal Component Analysis

Plane center is barycenter of points

$$
\mathbf{c}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{p}_{i}
$$

Normal is eigenvector w.r.t. smallest eigenvalue of covariance matrix

$$
\mathbf{C}=\sum_{i=1}^{m}\left(\mathbf{p}_{i}-\mathbf{c}\right)\left(\mathbf{p}_{i}-\mathbf{c}\right)^{T}
$$

Normal Estimation

Find normal \mathbf{n}_{i} for each sample point \mathbf{p}_{i}

- Examine local neighborhood for each point
- Set of k nearest neighbors
- Compute best approximating tangent plane
- Covariance analysis
- Determine normal orientation
- Minimal Spanning Tree propagation

0

Normal Orientation

Riemannian graph connects neighboring points

- Edge ($i j$) exists if $\mathbf{p}_{i} \in k \mathrm{NN}\left(\mathbf{p}_{j}\right)$ or $\mathbf{p}_{j} \in k \mathrm{NN}\left(\mathbf{p}_{i}\right)$

Propagate normal orientation through graph

- For neighbors $\mathbf{p}_{i}, \mathbf{p}_{j}$ Flip \mathbf{n}_{j} if $\mathbf{n}_{i}^{\top} \mathbf{n}_{j}<0$
- Fails at sharp edges/corners

Propagate along "save" paths (parallel normals)

- Minimum spanning tree with angle-based edge weights

$$
w_{i j}=1-\left|\mathbf{n}_{i}^{\top} \mathbf{n}_{j}\right|
$$

Normal Estimation

Find normal \mathbf{n}_{i} for each sample point \mathbf{p}_{i}

- Examine local neighborhood for each point
- Set of k nearest neighbors
- Compute best approximating tangent plane
- Covariance analysis
- Determine normal orientation
- Minimal Spanning Tree propagation

Normal Estimation

Distance from tangent planes [Hoppe 92]

- Points + normals determine local tangent planes
- Use distance from closest point's tangent plane
- Linear approximation in Voronoi cell
- Simple and efficient, but SDF is only \mathcal{C}^{-1}

Hoppe '92 Reconstruction

150 samples

reconstruction on 50^{3} grid

Smooth SDF Approximation

Scattered data interpolation problem

- On-surface constraints
- Avoid trivial solution $\operatorname{dist}\left(\mathbf{p}_{i}\right)=0$
- Off-surface constraints dist $\equiv 0$ $\operatorname{dist}\left(\mathbf{p}_{i}+\mathbf{n}_{i}\right)=1$

Radial basis functions (RBFs)

- Well suited for smooth interpolation
- Sum of shifted, weighted kernel functions

$$
\operatorname{dist}(\mathbf{x})=\sum_{i} w_{i} \cdot \varphi\left(\left\|\mathbf{x}-\mathbf{c}_{i}\right\|\right)
$$

RBF Interpolation

Interpolate on- and off-surface constraints

$$
\operatorname{dist}\left(\mathbf{x}_{j}\right)=\sum_{i=1}^{n} w_{i} \cdot \varphi\left(\left\|\mathbf{x}_{j}-\mathbf{c}_{i}\right\|\right) \stackrel{!}{=} d_{j}, \quad j=1, \ldots, n
$$

Choose centers \mathbf{c}_{i} as constrained points \mathbf{x}_{i}

Solve symmetric linear system for weights w_{i}

$$
\left(\begin{array}{ccc}
\varphi\left(\left\|\mathbf{x}_{\mathbf{1}}-\mathbf{x}_{1}\right\|\right) & \cdots & \varphi\left(\left\|\mathbf{x}_{\mathbf{1}}-\mathbf{x}_{n}\right\|\right) \\
\vdots & \ddots & \vdots \\
\varphi\left(\left\|\mathbf{x}_{\mathbf{n}}-\mathbf{x}_{1}\right\|\right) & \cdots & \varphi\left(\left\|\mathbf{x}_{\mathbf{n}}-\mathbf{x}_{n}\right\|\right)
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)=\left(\begin{array}{c}
d_{1} \\
\vdots \\
d_{n}
\end{array}\right)
$$

RBF Interpolation

Wendland basis functions

$$
\varphi(r)=\left(1-\frac{r}{\sigma}\right)_{+}^{4}\left(4 \frac{r}{\sigma}+1\right)
$$

- Compactly supported in $[0, \sigma]$
- Leads to sparse, symm. pos. def. linear system
- Resulting SDF is \mathcal{C}^{2} smooth
- But surface is not necessarily fair
- Not suited for highly irregular sampling

Comparison

Hoppe '92
Compact RBF Wendland C2

RBF Basis Functions

Triharmonic basis functions

$$
\phi(r)=r^{3}
$$

- Globally supported function
- Leads to dense linear system
- SDF is \mathcal{C}^{2} smooth
- Provably optimal fairness (see smoothing lecture)

$$
\int_{\mathbb{R}^{3}}\left(\frac{\partial^{3} \text { dist }}{\partial x \partial x \partial x}\right)^{2}+\left(\frac{\partial^{3} \text { dist }}{\partial x \partial x \partial y}\right)^{2}+\cdots+\left(\frac{\partial^{3} \text { dist }}{\partial z \partial z \partial z}\right)^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \rightarrow \min
$$

- Works well for irregular sampling

Comparison

Hoppe '92

Compact RBF Wendland C²

Global RBF Triharmonic

Complexity Considerations

Solve the linear system for RBF weights

- Hard to solve for large number of samples

Compactly supported RBFs

- Sparse linear system
- Efficient CG or sparse Cholesky solver (later...)

Greedy RBF fitting [Carr01]

- Start with a few RBFs only
- Add more RBFs in region of large error

SDF From Points

Pros:

- Result is a closed 2-manifold surface
- Suitable for noisy input data

Cons:

- Solve linear system of RBF weights
- Result is uniformly over-tessellated \rightarrow mesh decimation
- Can contain poorly shaped triangles \rightarrow remeshing

Outline

- Explicit Reconstruction
- Zippering range scans
- Implicit Reconstruction
- SDF from point clouds
- SDF from range scans
- Poisson surface reconstruction

Weighted Average of SDFs

Individual SDFs of each scan: $d_{i}(\mathbf{x})$

- Distance along scanner's line of sight

Respective weighting functions: $w_{i}(\mathbf{x})$

- Take scanning angle into account

Global SDF as weighted average

$$
D(\mathbf{x})=\frac{\sum_{i} w_{i}(\mathbf{x}) d_{i}(\mathbf{x})}{\sum_{i} w_{i}(\mathbf{x})}
$$

Weighted Average of SDFs

[Curless,Levoy96]

Automatic Hole Filling

Classify grid voxel into three states

- Empty:

Between scanner and surface (space carving)

- Unseen: Behind surface
- Near surface: Close to scanned surface

Marching Cubes automatically fill holes

[Curless,Levoy96]

Volumetric Reconstruction

Happy Buddha: from original to hardcopy

Digital Michelangelo Project

1G sample points $\rightarrow 8 \mathrm{M}$ triangles

4G sample points $\rightarrow 8 \mathrm{M}$ triangles

SDF From Range Scans

Pros:

- Result is a closed 2-manifold surface
- Can take scanning information into account

Cons:

- Result is uniformly over-tesselated \rightarrow mesh decimation
- Can contain poorly shaped triangles \rightarrow remeshing

References

Reconstruction from point sets

- Hoppe et al.: Surface Reconstruction from Unorganized Points, SIGGRAPH 1992
- Carr etl a.: Reconstruction and representation of 3D objects with radial basis functions, SIGGRAPH 2001

Reconstruction of range scans

- Curless, Levoy: A Volumetric Method for Building Complex Models from Range Images, SIGGRAPH 1996.
- Levoy et al.: Digital Michalangelo Project: 3D Scanning of Large Statues, SIGGRAPH 2000.

Outline

- Explicit Reconstruction
- Zippering range scans
- Implicit Reconstruction
- SDF from point clouds
- SDF from range scans
- Poisson surface reconstruction

Poisson Surface Reconstruction

- Michael Kazhdan, M. Bolitho, and H. Hoppe, SGP 2006
- Source Code available at:
- http://www.cs.jhu.edu/~misha/
- Implementation included in Meshlab

Poisson Surface Reconstruction

Indicator Function

- reconstruct the surface by solving for the indicator function of the shape

$$
\chi_{M}(p)= \begin{cases}1 & \text { if } p \in M \\ 0 & \text { if } p \notin M\end{cases}
$$

Challenge

How to construct the indicator function?

Oriented points

Indicator function χ_{M}

Gradient Relationship

There is a relationship between the normal field and gradient of indicator function

Oriented points

Indicator gradient $\nabla \chi_{M}$

Integration

Represent the points by a vector field \vec{V}

Find the function χ whose gradient best approximates \vec{V}

$$
\min _{\chi}\|\nabla \chi-\vec{V}\|
$$

Integration as a Poisson Problem

Represent the points by a vector field \vec{V}

Find the function χ whose gradient best approximates \vec{V}

$$
\min _{\chi}\|\nabla \chi-\vec{V}\|
$$

Applying the divergence operator, we can transform this into a Poisson problem:

$$
\nabla \times(\nabla \chi)=\nabla \times \vec{V} \Leftrightarrow \Delta \chi=\nabla \times \vec{V}
$$

Implementation: Adaptive Octree

Given the Points:

- Set Octree
- Compute vector field
- Compute indicator function
- Extract iso-surface

Implementation: Adaptive Octree

Given the Points:

- Set Octree
- Compute vector field
- Compute indicator function
- Extract iso-surface

Implementation: Vector Field

Given the Points:

- Set Octree
- Compute vector field
- Define a function space
- Splat the samples
- Compute indicator function
- Extract iso-surface

Implementation: Vector Field

Given the Points:

- Set Octree
- Compute vector field
- Define a function space
- Splat the samples
- Compute indicator function
- Extract iso-surface

Implementation: Vector Field

Given the Points:

- Set Octree
- Compute vector field
- Define a function space
- Splat the samples
- Compute indicator function
- Extract iso-surface

Implementation: Vector Field

Given the Points:

- Set Octree
- Compute vector field
- Define a function space
- Splat the samples
- Compute indicator function
- Extract iso-surface

Implementation: Vector Field

Given the Points:

- Set Octree
- Compute vector field
- Define a function space
- Splat the samples
- Compute indicator function
- Extract iso-surface

Implementation: Vector Field

Given the Points:

- Set Octree
- Compute vector field
- Define a function space
- Splat the samples
- Compute indicator function
- Extract iso-surface

Implementation: Vector Field

Given the Points:

- Set Octree
- Compute vector field
- Define a function space
- Splat the samples
- Compute indicator function
- Extract iso-surface

Implementation: Vector Field

Given the Points:

- Set Octree
- Compute vector field
- Define a function space
- Splat the samples
- Compute indicator function
- Extract iso-surface

Implementation: Indicator Function

Given the Points:

- Set Octree
- Compute vector field
- Compute indicator function
- Compute divergence
- Solve Poisson Equation
- Extract iso-surface

Implementation: Indicator Function

Given the Points:

- Set Octree
- Compute vector field
- Compute indicator function
- Compute divergence
- Solve Poisson Equation
- Extract iso-surface

Implementation: Indicator Function

Given the Points:

- Set Octree
- Compute vector field
- Compute indicator function
- Compute divergence
- Solve Poisson Equation
- Extract iso-surface

Implementation: Iso-Surface

Given the Points:

- Set Octree
- Compute vector field
- Compute indicator function
- Extract iso-surface

Summary

Oriented points
Indicator gradient Indicator function \vec{V}

$$
\nabla \chi_{M}
$$

$$
\chi_{M}
$$

Surface ∂M

Michelangelo's David

- 215 million data points from 1000 scans
- 22 million triangle reconstruction
- Compute Time: 2.1 hours
- Peak Memory: 6600MB

David - Chisel marks

David - Drill marks

David - Drill marks

Scalability - Buddha Model

Stanford Bunny

VRIP Comparison

Poisson Reconstruction

Next Time

Surface Smoothing

http://cs621.hao-li.com

Thanks!

