
CSCI 621: Digital Geometry Processing

Hao Li
http://cs621.hao-li.com

 1

Spring 2019

7.2 Surface Reconstruction

http://cs621.hao-li.com

Surface Reconstruction

 2

physical
model

captured
point cloud

reconstructed
model

Input Data

 3

Set of irregular sample points
• with or without normals

• examples: multi-view stereo, union of
range scan vertices

Set of range scans
• each scan is a regular quad or tri-

mesh

• normal vectors can be obtained
through local connectivity

Problem

Given a set of points P = {p1, . . . , pn} with pi � R3

Problem

Find a manifold surface S � R3 which approximates P

Two Approaches

Explicit Implicit

Local surface
connectivity estimation

Point interpolation

Signed distance function
estimation

Mesh approximation

Two Approaches

– Ball pivoting algorithm
– Delaunay triangulation
– Alpha shapes
– Zippering...

– Distance from tangent
planes
– SDF estimation via RBF
– ...

– Image space triangulation

Explicit Implicit

Explicit Reconstruction

• Connect sample points by triangles
• Exact interpolation of sample points
• Bad for noisy or misaligned data
• Can lead to holes or non-manifold situations

Implicit Reconstruction

Given a set of points P = {p1, . . . , pn} with pi � R3

Find a manifold surface S � R3 which approximates P

where S = {x | d(x) = 0} with d(x) a signed distance function

Data Flow

Point cloud

Signed distance function estimation

Evaluation of distances on uniform grid

Mesh extraction via marching cubes

Mesh

d(x)

d(i), i = [i, j, k] � Z3

Implicit Surface Reconstruction Methods

Mainly differ in their signed distance function

Implicit Reconstruction

• Estimate signed distance function (SDF)
• Extract Zero isosurface by Marching Cubes
• Approximation of input points
• Result is closed two-manifold surface

Outline

 13

• Explicit Reconstruction
• Zippering range scans

• Implicit Reconstruction
• SDF from point clouds
• SDF from range scans
• Poisson surface reconstruction

Explicit Reconstruction

 14

“Zipper” several scans to one single model

Explicit Reconstruction

 15

“Zipper” several scans to one single model

Project & insert boundary vertices

Explicit Reconstruction

 16

“Zipper” several scans to one single model

Intersect boundary edges

Explicit Reconstruction

 17

“Zipper” several scans to one single model

Discard overlap region

Explicit Reconstruction

 18

“Zipper” several scans to one single model

Locally optimize triangulation

Explicit Reconstruction

 19

“Zipper” several scans to one single model

Problems for intricate geometries…

explicit implicit

input model

Mesh Zippering Summary

 20

Pros:
• Preserves regular structure of each scan

• No additional data structures

Cons:
• Zippering can be numerically difficult

• Problems with complex, noisy, incomplete data

Outline

 21

• Explicit Reconstruction
• Zippering range scans

• Implicit Reconstruction
• SDF from point clouds
• SDF from range scans
• Poisson surface reconstruction

Implicit Reconstruction

• Estimate signed distance function (SDF)
• Extract Zero isosurface by Marching Cubes
• Approximation of input points
• Watertight manifold by construction

 22

Signed Distance Function

Construct SDF from point samples
• Distance to points is not enough

• Need inside/outside information

• Requires normal vectors

 23

Normal Estimation

Find normal for each sample point
• Examine local neighborhood for each point

• Set of nearest neighbors

• Compute best approximating tangent plane

• Covariance analysis

• Determine normal orientation

• Minimal Spanning Tree propagation

ni pi

k

 24

Normal Estimation

Find normal for each sample point
• Examine local neighborhood for each point

• Set of nearest neighbors

• Compute best approximating tangent plane

• Covariance analysis

• Determine normal orientation

• Minimal Spanning Tree propagation

ni pi

k

 25

Normal Estimation

Find closest point of a query point
• Find closest point of a query point

• Brute force: complexityO(n)

Use Hierarchical BSP tree
• Binary space partitioning tree (general version of kD-tree)

• Recursively partition 3D space by planes

• Tree should be balanced, put plane at median

• tree levels, complexitylog(n) log(n)

 26

Normal Estimation

Find normal for each sample point
• Examine local neighborhood for each point

• Set of nearest neighbors

• Compute best approximating tangent plane

• Covariance analysis

• Determine normal orientation

• Minimal Spanning Tree propagation

ni pi

k

 27

Plane Fitting

Fit a plane with center and normal to a set of
points

c n

Minimize least squares error

{p1, . . . ,pm}

E(c,n) =
m⇤

i=1

�
nT (pi � c)

⇥2

Subject to non-linear constraint

�n� = 1

 28

Plane Fitting

Reformulate error function

E(c,n) =
m⇤

i=1

�
nT (pi � c)

⇥2

=
m⇤

i=1

�
nT p̂i

⇥2
(with p̂i := pi � c)

=
m⇤

i=1

p̂T
i nnT p̂i (version 1)

=
m⇤

i=1

nT p̂ip̂
T
i n (version 2)

 29

Determine c from version 1

Derivative of w.r.t. has to vanish

⇥E(c,n)
⇥c

=
m�

i=1

�2nnT p̂i = �2nnT
m�

i=1

p̂i
!= 0

This is only possible for

Plane center is barycenter of points

E(c,n) c

m�

i=1

p̂i = 0 � c =
1
m

m�

i=1

pi

pi

 30

Determine n from version 2

Represent in basis

Since has unit length we get

e1, e2, e3n

n = ↵1e1 + ↵2e2 + ↵3e3

1 = n>n = ↵2
1 + ↵2

2 + ↵2
3

n

Insert into energy formulation

nT Cn = �2
1⇥1 + �2

2⇥2 + �2
3⇥3 � �2

1⇥3 + �2
2⇥3 + �2

3⇥3 = ⇥3

Minimum is achieved for ↵1 = ↵2 = 0,↵3 = 1) n = e3

 31

Principal Component Analysis

 32

Plane center is barycenter of points

Normal is eigenvector w.r.t. smallest eigenvalue of
covariance matrix

c =
1
m

m�

i=1

pi

C =
m�

i=1

(pi � c)(pi � c)T

Normal Estimation

Find normal for each sample point
• Examine local neighborhood for each point

• Set of nearest neighbors

• Compute best approximating tangent plane

• Covariance analysis

• Determine normal orientation

• Minimal Spanning Tree propagation

ni pi

k

 33

Normal Orientation

Riemannian graph connects neighboring points
• Edge exists if or

Propagate normal orientation through graph
• For neighbors Flip if

• Fails at sharp edges/corners

Propagate along “save” paths (parallel normals)
• Minimum spanning tree with angle-based edge weights

 34

(ij) pi 2 kNN(pj) pj 2 kNN(pi)

pi,pj nj n>
i nj < 0

wij = 1� |n>
i nj |

Normal Estimation

Find normal for each sample point
• Examine local neighborhood for each point

• Set of nearest neighbors

• Compute best approximating tangent plane

• Covariance analysis

• Determine normal orientation

• Minimal Spanning Tree propagation

ni pi

k

 35

Normal Estimation

 36

Distance from tangent planes [Hoppe 92]
• Points + normals determine local tangent planes

• Use distance from closest point’s tangent plane

• Linear approximation in Voronoi cell

• Simple and efficient, but SDF is only C�1

Hoppe ’92 Reconstruction

 37

150 samples reconstruction
on 503 grid

Smooth SDF Approximation

 38

Scattered data interpolation problem
• On-surface constraints

• Avoid trivial solution

• Off-surface constraints

dist(pi) = 0

dist ⌘ 0

dist(pi + ni) = 1

Radial basis functions (RBFs)
• Well suited for smooth interpolation

• Sum of shifted, weighted kernel functions

dist(x) =
�

i

wi · �(⇤x� ci⇤)

RBF Interpolation

 39

Interpolate on- and off-surface constraints

dist(xj) =
n�

i=1

wi · �(⇤xj � ci⇤)
!= dj , j = 1, . . . , n

Choose centers as constrained points

Solve symmetric linear system for weights
�

⇧⇤
�(⇤x1 � x1⇤) · · · �(⇤x1 � xn⇤)

...
. . .

...
�(⇤xn � x1⇤) · · · �(⇤xn � xn⇤)

⇥

⌃⌅

�

⇧⇤
w1
...

wn

⇥

⌃⌅ =

�

⇧⇤
d1
...

dn

⇥

⌃⌅

wi

ci xi

RBF Interpolation

Wendland basis functions

⇥(r) =
�
1� r

�

⇥4

+

�
4

r

�
+ 1

⇥

• Compactly supported in

• Leads to sparse, symm. pos. def. linear system

• Resulting SDF is smooth

• But surface is not necessarily fair

• Not suited for highly irregular sampling

[0,�]

C2

Comparison

Hoppe ‘92 Compact RBF
Wendland C2

RBF Basis Functions

Triharmonic basis functions

�(r) = r3

• Globally supported function

• Leads to dense linear system

• SDF is smooth

• Provably optimal fairness (see smoothing lecture)

• Works well for irregular sampling

C2

⇤

IR3

�
�3dist

�x �x �x

⇥2

+
�

�3dist
�x �x �y

⇥2

+ · · · +
�

�3dist
�z �z �z

⇥2

dxdy dz ⇥ min

Comparison

Hoppe ‘92 Compact RBF
Wendland C2

Global RBF
Triharmonic

Complexity Considerations

Solve the linear system for RBF weights
• Hard to solve for large number of samples

Compactly supported RBFs
• Sparse linear system

• Efficient CG or sparse Cholesky solver (later…)

Greedy RBF fitting [Carr01]
• Start with a few RBFs only

• Add more RBFs in region of large error

SDF From Points

 45

Pros:
• Result is a closed 2-manifold surface

• Suitable for noisy input data

Cons:
• Solve linear system of RBF weights

• Result is uniformly over-tessellated → mesh decimation

• Can contain poorly shaped triangles → remeshing

Outline

 46

• Explicit Reconstruction
• Zippering range scans

• Implicit Reconstruction
• SDF from point clouds
• SDF from range scans
• Poisson surface reconstruction

Weighted Average of SDFs

 47

Individual SDFs of each scan:
• Distance along scanner’s line of sight

Respective weighting functions:
• Take scanning angle into account

Global SDF as weighted average

D(x) =
�

i wi(x) di(x)�
i wi(x)

wi(x)

di(x)

Weighted Average of SDFs

 48

d1 d2

w1 w2 w1+w2

(w1d1+w2d2)/(w1+w2)

SDFs

Weight
Functions

[Curless,Levoy96]

Automatic Hole Filling

[Curless,Levoy96]

 49

Classify grid voxel into three states
• Empty: Between scanner and surface (space carving)

• Unseen: Behind surface

• Near surface: Close to scanned surface

Marching Cubes automatically fill holes

Volumetric Reconstruction

 50

[Curless,Levoy96]

Digital Michelangelo Project

 51

4G sample points → 8M triangles1G sample points → 8M triangles

SDF From Range Scans

 52

Pros:
• Result is a closed 2-manifold surface

• Can take scanning information into account

Cons:
• Result is uniformly over-tesselated → mesh decimation

• Can contain poorly shaped triangles → remeshing

References

 53

Reconstruction from point sets
• Hoppe et al.: Surface Reconstruction from Unorganized Points,

SIGGRAPH 1992

• Carr etl a.: Reconstruction and representation of 3D objects with
radial basis functions, SIGGRAPH 2001

Reconstruction of range scans
• Curless, Levoy: A Volumetric Method for Building Complex

Models from Range Images, SIGGRAPH 1996.

• Levoy et al.: Digital Michalangelo Project: 3D Scanning of Large
Statues, SIGGRAPH 2000.

Outline

 54

• Explicit Reconstruction
• Zippering range scans

• Implicit Reconstruction
• SDF from point clouds
• SDF from range scans
• Poisson surface reconstruction

Poisson Surface Reconstruction

• Michael Kazhdan, M. Bolitho, and H. Hoppe, SGP 2006
• Source Code available at:

• http://www.cs.jhu.edu/~misha/
• Implementation included in Meshlab

 55

Poisson Surface Reconstruction

 56

Indicator Function
• reconstruct the surface by solving for the indicator function of

the shape

χM
Indicator function

0
1

0

00

0

1

1

Challenge

 57

How to construct the indicator function?

χM
Indicator functionOriented points

Gradient Relationship

 58

There is a relationship between the normal field and
gradient of indicator function

Oriented points
∇χM

Indicator gradient

0 0

0

0

0

0

Integration

 59

Represent the points by a vector field

Find the function whose gradient best
approximates

min
�

kr�� ~V k

�
~V

~V

Integration as a Poisson Problem

 60

Represent the points by a vector field

Find the function whose gradient best
approximates

min
�

kr�� ~V k

�
~V

~V

Applying the divergence operator, we can transform
this into a Poisson problem:

r⇥ (r�) = r⇥ ~V , �� = r⇥ ~V

Implementation: Adaptive Octree

 61

Given the Points:
• Set Octree

• Compute vector field

• Compute indicator function

• Extract iso-surface

Implementation: Adaptive Octree

 62

Given the Points:
• Set Octree

• Compute vector field

• Compute indicator function

• Extract iso-surface

Implementation: Vector Field

 63

Given the Points:
• Set Octree

• Compute vector field

• Define a function space

• Splat the samples

• Compute indicator function

• Extract iso-surface

Implementation: Vector Field

 64

Given the Points:
• Set Octree

• Compute vector field

• Define a function space

• Splat the samples

• Compute indicator function

• Extract iso-surface

Implementation: Vector Field

 65

Given the Points:
• Set Octree

• Compute vector field

• Define a function space

• Splat the samples

• Compute indicator function

• Extract iso-surface

Implementation: Vector Field

 66

Given the Points:
• Set Octree

• Compute vector field

• Define a function space

• Splat the samples

• Compute indicator function

• Extract iso-surface

Implementation: Vector Field

 67

Given the Points:
• Set Octree

• Compute vector field

• Define a function space

• Splat the samples

• Compute indicator function

• Extract iso-surface

Implementation: Vector Field

 68

Given the Points:
• Set Octree

• Compute vector field

• Define a function space

• Splat the samples

• Compute indicator function

• Extract iso-surface

Implementation: Vector Field

 69

Given the Points:
• Set Octree

• Compute vector field

• Define a function space

• Splat the samples

• Compute indicator function

• Extract iso-surface

Implementation: Vector Field

 70

Given the Points:
• Set Octree

• Compute vector field

• Define a function space

• Splat the samples

• Compute indicator function

• Extract iso-surface

Implementation: Indicator Function

 71

Given the Points:
• Set Octree

• Compute vector field

• Compute indicator function

• Compute divergence

• Solve Poisson Equation

• Extract iso-surface

Implementation: Indicator Function

 72

Given the Points:
• Set Octree

• Compute vector field

• Compute indicator function

• Compute divergence

• Solve Poisson Equation

• Extract iso-surface

Implementation: Indicator Function

 73

Given the Points:
• Set Octree

• Compute vector field

• Compute indicator function

• Compute divergence

• Solve Poisson Equation

• Extract iso-surface

Implementation: Iso-Surface

Given the Points:
• Set Octree

• Compute vector field

• Compute indicator function

• Extract iso-surface

Summary

Michelangelo’s David

• 215 million data points from 1000
scans

• 22 million triangle reconstruction

• Compute Time: 2.1 hours

• Peak Memory: 6600MB

David – Chisel marks

David – Drill marks

David – Drill marks

Scalability – Buddha Model
Ti

m
e

(s
) /

 P
ea

k
M

em
or

y
(M

B)

0

200

400

600

800

Triangles

0 175,000 350,000 525,000 700,000

Time Taken
Peak Memory Usage

Stanford Bunny

Power Crust FastRBF MPU

VRIP FFT Reconstruction Poisson Reconstruction

VRIP Comparison

VRIP Poisson Reconstruction

Next Time

 83

Surface Smoothing

http://cs621.hao-li.com

Thanks!

 84

http://cs621.hao-li.com

