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Surface Reconstruction
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Input Data
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Set of irregular sample points
• with or without normals 

• examples: multi-view stereo, union of 
range scan vertices

Set of range scans
• each scan is a regular quad or tri-

mesh 

• normal vectors can be obtained 
through local connectivity



Problem

Given a set of points P = {p1, . . . , pn} with pi � R3



Problem

Find a manifold surface S � R3 which approximates P



Two Approaches

Explicit Implicit

Local surface 
connectivity estimation

Point interpolation

Signed distance function 
estimation

Mesh approximation



Two Approaches

– Ball pivoting algorithm
– Delaunay triangulation
– Alpha shapes
– Zippering...

– Distance from tangent
planes
– SDF estimation via RBF
– ...

– Image space triangulation

Explicit Implicit



Explicit Reconstruction

• Connect sample points by triangles 
• Exact interpolation of sample points 
• Bad for noisy or misaligned data 
• Can lead to holes or non-manifold situations 



Implicit Reconstruction

Given a set of points P = {p1, . . . , pn} with pi � R3

Find a manifold surface S � R3 which approximates P

where S = {x | d(x) = 0} with d(x) a signed distance function



Data Flow

Point cloud

Signed distance function estimation

Evaluation of distances on uniform grid

Mesh extraction via marching cubes

Mesh

d(x)

d(i), i = [i, j, k] � Z3



Implicit Surface Reconstruction Methods

Mainly differ in their signed distance function



Implicit Reconstruction

• Estimate signed distance function (SDF) 
• Extract Zero isosurface by Marching Cubes 
• Approximation of input points 
• Result is closed two-manifold surface 



Outline
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• Explicit Reconstruction 
• Zippering range scans 

• Implicit Reconstruction 
• SDF from point clouds 
• SDF from range scans 
• Poisson surface reconstruction



Explicit Reconstruction
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“Zipper” several scans to one single model



Explicit Reconstruction
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“Zipper” several scans to one single model

Project & insert boundary vertices



Explicit Reconstruction
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“Zipper” several scans to one single model

Intersect boundary edges



Explicit Reconstruction
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“Zipper” several scans to one single model

Discard overlap region



Explicit Reconstruction
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“Zipper” several scans to one single model

Locally optimize triangulation



Explicit Reconstruction
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“Zipper” several scans to one single model

Problems for intricate geometries…

explicit implicit

input model



Mesh Zippering Summary
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Pros:
• Preserves regular structure of each scan 

• No additional data structures

Cons:
• Zippering can be numerically difficult 

• Problems with complex, noisy, incomplete data



Outline
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• Explicit Reconstruction 
• Zippering range scans 

• Implicit Reconstruction 
• SDF from point clouds
• SDF from range scans 
• Poisson surface reconstruction



Implicit Reconstruction

• Estimate signed distance function (SDF) 
• Extract Zero isosurface by Marching Cubes 
• Approximation of input points 
• Watertight manifold by construction 
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Signed Distance Function

Construct SDF from point samples
• Distance to points is not enough 

• Need inside/outside information 

• Requires normal vectors
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Normal Estimation

Find normal      for each sample point
• Examine local neighborhood for each point 

• Set of     nearest neighbors 

• Compute best approximating tangent plane 

• Covariance analysis 

• Determine normal orientation 

• Minimal Spanning Tree propagation

ni pi

k
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Normal Estimation

Find closest point of a query point
• Find closest point of a query point 

• Brute force:             complexityO(n)

Use Hierarchical BSP tree
• Binary space partitioning tree (general version of kD-tree) 

• Recursively partition 3D space by planes 

• Tree should be balanced, put plane at median 

•              tree levels, complexitylog(n) log(n)
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Normal Estimation

Find normal      for each sample point
• Examine local neighborhood for each point 

• Set of     nearest neighbors 

• Compute best approximating tangent plane 

• Covariance analysis 
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• Minimal Spanning Tree propagation

ni pi

k
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Plane Fitting

Fit a plane with center      and normal      to a set of 
points

c n

Minimize least squares error

{p1, . . . ,pm}

E(c,n) =
m⇤

i=1

�
nT (pi � c)

⇥2

Subject to non-linear constraint

�n� = 1
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Plane Fitting

Reformulate error function

E(c,n) =
m⇤

i=1

�
nT (pi � c)

⇥2

=
m⇤

i=1

�
nT p̂i

⇥2
(with p̂i := pi � c)

=
m⇤

i=1

p̂T
i nnT p̂i (version 1)

=
m⇤

i=1

nT p̂ip̂
T
i n (version 2)
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Determine c from version 1

Derivative of                w.r.t.     has to vanish

⇥E(c,n)
⇥c

=
m�

i=1

�2nnT p̂i = �2nnT
m�

i=1

p̂i
!= 0

This is only possible for 

Plane center is barycenter of points

E(c,n) c

m�

i=1

p̂i = 0 � c =
1
m

m�

i=1

pi

pi
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Determine n from version 2

Represent      in basis 

Since     has unit length we get

e1, e2, e3n

n = ↵1e1 + ↵2e2 + ↵3e3

1 = n>n = ↵2
1 + ↵2

2 + ↵2
3

n

Insert into energy formulation

nT Cn = �2
1⇥1 + �2

2⇥2 + �2
3⇥3 � �2

1⇥3 + �2
2⇥3 + �2

3⇥3 = ⇥3

Minimum is achieved for ↵1 = ↵2 = 0,↵3 = 1 ) n = e3
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Principal Component Analysis

 32

Plane center is barycenter of points

Normal is eigenvector w.r.t. smallest eigenvalue of 
covariance matrix

c =
1
m

m�

i=1

pi

C =
m�

i=1

(pi � c)(pi � c)T



Normal Estimation

Find normal      for each sample point
• Examine local neighborhood for each point 

• Set of     nearest neighbors 

• Compute best approximating tangent plane 

• Covariance analysis 

• Determine normal orientation

• Minimal Spanning Tree propagation

ni pi

k
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Normal Orientation

Riemannian graph connects neighboring points
• Edge          exists if                              or 

Propagate normal orientation through graph
• For neighbors              Flip         if 

• Fails at sharp edges/corners 

Propagate along “save” paths (parallel normals)
• Minimum spanning tree with angle-based edge weights
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(ij) pi 2 kNN(pj) pj 2 kNN(pi)

pi,pj nj n>
i nj < 0

wij = 1� |n>
i nj |



Normal Estimation

Find normal      for each sample point
• Examine local neighborhood for each point 

• Set of     nearest neighbors 

• Compute best approximating tangent plane 

• Covariance analysis 

• Determine normal orientation

• Minimal Spanning Tree propagation

ni pi

k
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Normal Estimation
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Distance from tangent planes [Hoppe 92]
• Points + normals determine local tangent planes 

• Use distance from closest point’s tangent plane 

• Linear approximation in Voronoi cell 

• Simple and efficient, but SDF is only C�1



Hoppe ’92 Reconstruction
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150 samples reconstruction  
on 503 grid



Smooth SDF Approximation
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Scattered data interpolation problem
• On-surface constraints 

• Avoid trivial solution 

• Off-surface constraints

dist(pi) = 0

dist ⌘ 0

dist(pi + ni) = 1

Radial basis functions (RBFs)
• Well suited for smooth interpolation 

• Sum of shifted, weighted kernel functions

dist(x) =
�

i

wi · �(⇤x� ci⇤)



RBF Interpolation
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Interpolate on- and off-surface constraints

dist(xj) =
n�

i=1

wi · �(⇤xj � ci⇤)
!= dj , j = 1, . . . , n

Choose centers        as constrained points

Solve symmetric linear system for weights
�

⇧⇤
�(⇤x1 � x1⇤) · · · �(⇤x1 � xn⇤)

...
. . .

...
�(⇤xn � x1⇤) · · · �(⇤xn � xn⇤)

⇥

⌃⌅

�

⇧⇤
w1
...

wn

⇥

⌃⌅ =

�

⇧⇤
d1
...

dn

⇥

⌃⌅

wi

ci xi



RBF Interpolation

Wendland basis functions

⇥(r) =
�
1� r

�

⇥4

+

�
4

r

�
+ 1

⇥

• Compactly supported in  

• Leads to sparse, symm. pos. def. linear system 

• Resulting SDF is       smooth 

• But surface is not necessarily fair 

• Not suited for highly irregular sampling

[0,�]

C2



Comparison

Hoppe ‘92 Compact RBF 
Wendland C2



RBF Basis Functions

Triharmonic basis functions

�(r) = r3

• Globally supported function 

• Leads to dense linear system 

• SDF is       smooth 

• Provably optimal fairness (see smoothing lecture) 

• Works well for irregular sampling

C2

⇤

IR3

�
�3dist

�x �x �x

⇥2

+
�

�3dist
�x �x �y

⇥2

+ · · · +
�

�3dist
�z �z �z

⇥2

dxdy dz ⇥ min



Comparison

Hoppe ‘92 Compact RBF 
Wendland C2

Global RBF 
Triharmonic



Complexity Considerations

Solve the linear system for RBF weights
• Hard to solve for large number of samples

Compactly supported RBFs
• Sparse linear system 

• Efficient CG or sparse Cholesky solver (later…)

Greedy RBF fitting [Carr01]
• Start with a few RBFs only 

• Add more RBFs in region of large error



SDF From Points
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Pros:
• Result is a closed 2-manifold surface 

• Suitable for noisy input data

Cons:
• Solve linear system of RBF weights 

• Result is uniformly over-tessellated → mesh decimation 

• Can contain poorly shaped triangles → remeshing



Outline
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• Explicit Reconstruction 
• Zippering range scans 

• Implicit Reconstruction 
• SDF from point clouds 
• SDF from range scans
• Poisson surface reconstruction



Weighted Average of SDFs
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Individual SDFs of each scan:
• Distance along scanner’s line of sight

Respective weighting functions:
• Take scanning angle into account

Global SDF as weighted average

D(x) =
�

i wi(x) di(x)�
i wi(x)

wi(x)

di(x)



Weighted Average of SDFs
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d1 d2

w1 w2 w1+w2

(w1d1+w2d2)/(w1+w2)

SDFs

Weight 
Functions

[Curless,Levoy96]



Automatic Hole Filling

[Curless,Levoy96]
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Classify grid voxel into three states
• Empty:              Between scanner and surface (space carving) 

• Unseen:            Behind surface 

• Near surface:    Close to scanned surface

Marching Cubes automatically fill holes



Volumetric Reconstruction
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[Curless,Levoy96]



Digital Michelangelo Project
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4G sample points → 8M triangles1G sample points → 8M triangles



SDF From Range Scans
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Pros:
• Result is a closed 2-manifold surface 

• Can take scanning information into account

Cons:
• Result is uniformly over-tesselated → mesh decimation 

• Can contain poorly shaped triangles → remeshing



References
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Reconstruction from point sets
• Hoppe et al.: Surface Reconstruction from Unorganized Points, 

SIGGRAPH 1992 

• Carr etl a.: Reconstruction and representation of 3D objects with 
radial basis functions, SIGGRAPH 2001

Reconstruction of range scans
• Curless, Levoy: A Volumetric Method for Building Complex 

Models from Range Images, SIGGRAPH 1996. 

• Levoy et al.: Digital Michalangelo Project: 3D Scanning of Large 
Statues, SIGGRAPH 2000.



Outline
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• Explicit Reconstruction 
• Zippering range scans 

• Implicit Reconstruction 
• SDF from point clouds 
• SDF from range scans 
• Poisson surface reconstruction



Poisson Surface Reconstruction

• Michael Kazhdan, M. Bolitho, and H. Hoppe, SGP 2006 
• Source Code available at: 

• http://www.cs.jhu.edu/~misha/ 
• Implementation included in Meshlab
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Poisson Surface Reconstruction
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Indicator Function
• reconstruct the surface by solving for the indicator function of 

the shape

χM
Indicator function

0
1

0

00

0

1

1



Challenge
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How to construct the indicator function?

χM
Indicator functionOriented points



Gradient Relationship
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There is a relationship between the normal field and 
gradient of indicator function

Oriented points
∇χM

Indicator gradient

0 0

0

0

0

0



Integration
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Represent the points by a vector field

Find the function       whose gradient best 
approximates

min
�

kr�� ~V k

�
~V

~V



Integration as a Poisson Problem
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Represent the points by a vector field

Find the function       whose gradient best 
approximates

min
�

kr�� ~V k

�
~V

~V

Applying the divergence operator, we can transform 
this into a Poisson problem:

r⇥ (r�) = r⇥ ~V , �� = r⇥ ~V



Implementation: Adaptive Octree
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Given the Points:
• Set Octree 

• Compute vector field 

• Compute indicator function 

• Extract iso-surface



Implementation: Adaptive Octree
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Implementation: Vector Field

 63

Given the Points:
• Set Octree 

• Compute vector field

• Define a function space

• Splat the samples 

• Compute indicator function 

• Extract iso-surface



Implementation: Vector Field
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Implementation: Vector Field
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Implementation: Vector Field
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Implementation: Vector Field
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Implementation: Vector Field
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Implementation: Vector Field
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Implementation: Vector Field
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Implementation: Indicator Function
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Given the Points:
• Set Octree 

• Compute vector field 

• Compute indicator function

• Compute divergence

• Solve Poisson Equation 

• Extract iso-surface



Implementation: Indicator Function
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Implementation: Indicator Function
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Given the Points:
• Set Octree 

• Compute vector field 

• Compute indicator function

• Compute divergence 

• Solve Poisson Equation 

• Extract iso-surface



Implementation: Iso-Surface

Given the Points:
• Set Octree 

• Compute vector field 

• Compute indicator function 

• Extract iso-surface



Summary



Michelangelo’s David

• 215 million data points from 1000 
scans

• 22 million triangle reconstruction

• Compute Time: 2.1 hours

• Peak Memory: 6600MB



David – Chisel marks



David – Drill marks



David – Drill marks



Scalability – Buddha Model
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Stanford Bunny

Power Crust FastRBF MPU

VRIP FFT Reconstruction Poisson Reconstruction



VRIP Comparison

VRIP Poisson Reconstruction



Next Time
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Surface Smoothing



http://cs621.hao-li.com

Thanks!
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