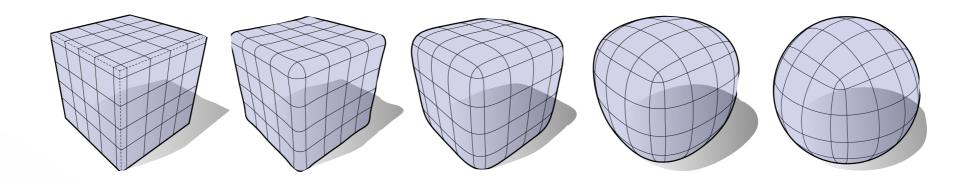
CSCI 621: Digital Geometry Processing

4.2 Discrete Differential Geometry



Hao Li

http://cs621.hao-li.com

Outline

- Discrete Differential Operators
- Discrete Curvatures
- Mesh Quality Measures

Differential Operators on Polygons

Differential Properties

- Surface is sufficiently differentiable
- Curvatures → 2nd derivatives

Differential Operators on Polygons

Differential Properties

- Surface is sufficiently differentiable
- Curvatures → 2nd derivatives

Polygonal Meshes

- Piecewise linear approximations of smooth surface
- Focus on Discrete Laplace Beltrami Operator
- Discrete differential properties defined over $\mathcal{N}(\mathbf{x})$

Local Averaging

Local Neighborhood $\mathcal{N}(\mathbf{x})$ of a point \mathbf{x}

- ullet often coincides with mesh vertex v_i
- n-ring neighborhood $\mathcal{N}_n(v_i)$ or local geodesic ball

Local Averaging

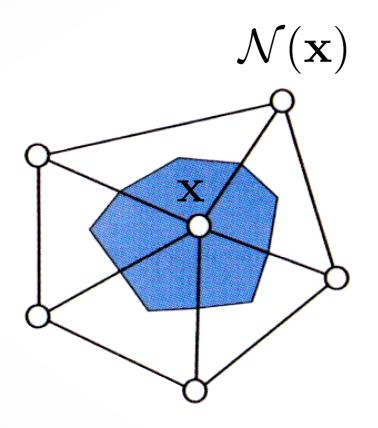
Local Neighborhood $\mathcal{N}(\mathbf{x})$ of a point \mathbf{x}

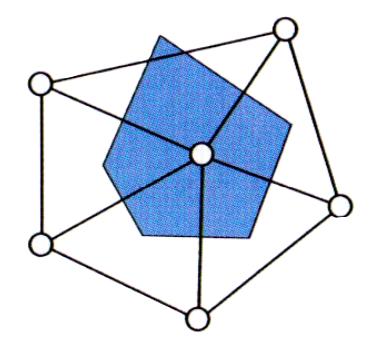
- ullet often coincides with mesh vertex v_i
- n-ring neighborhood $\mathcal{N}_n(v_i)$ or local geodesic ball

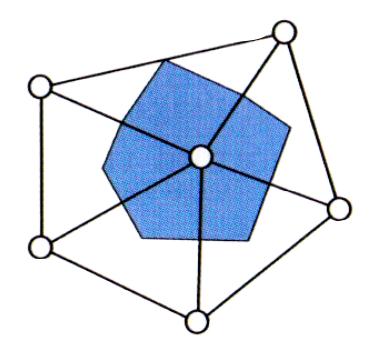
Neighborhood size

- Large: smoothing is introduced, stable to noise
- Small: fine scale variation, sensitive to noise

Local Averaging: 1-Ring







Barycentric cell

(barycenters/edgemidpoints)

Voronoi cell

(circumcenters)

tight error bound

Mixed Voronoi cell

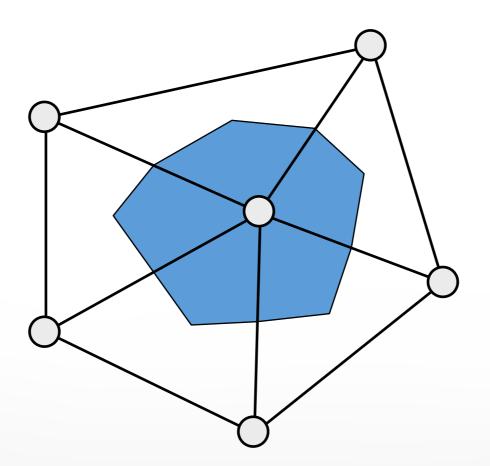
(circumcenters/midpoint)

better approximation

Barycentric Cells

Connect edge midpoints and triangle barycenters

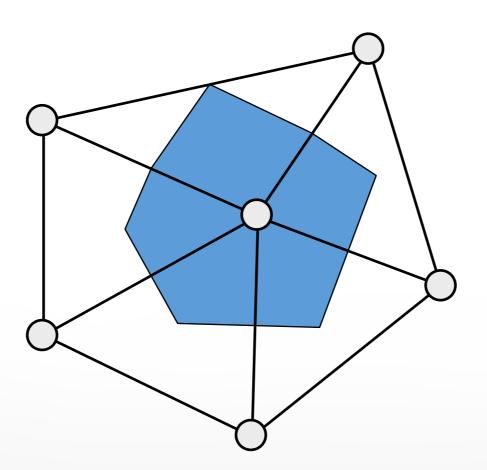
- Simple to compute
- Area is 1/3 o triangle areas
- Slightly wrong for obtuse triangles



Mixed Cells

Connect edge midpoints and

- Circumcenters for non-obtuse triangles
- Midpoint of opposite edge for obtuse triangles
- Better approximation, more complex to compute...



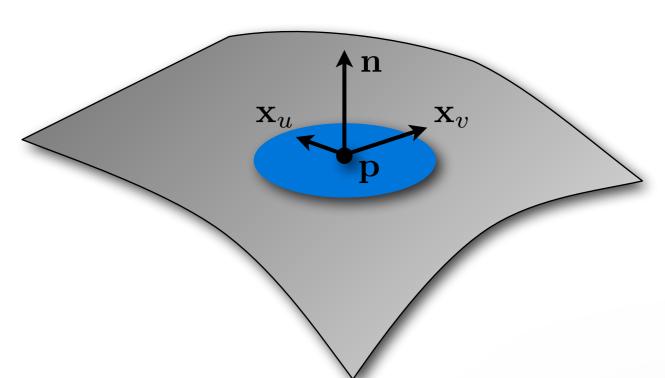
Normal Vectors

Continuous surface

$$\mathbf{x}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}$$

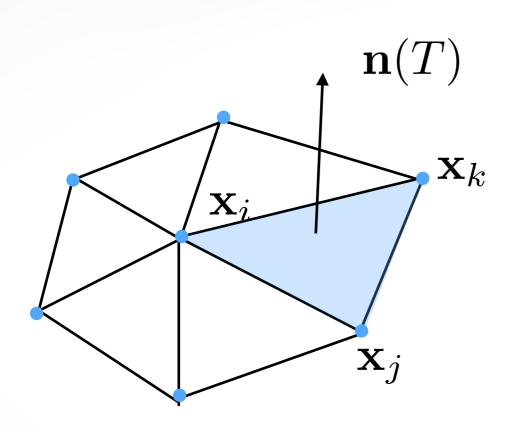
Normal vector

$$\mathbf{n} = \frac{\mathbf{x}_u \times \mathbf{x}_v}{\|\mathbf{x}_u \times \mathbf{x}_v\|}$$



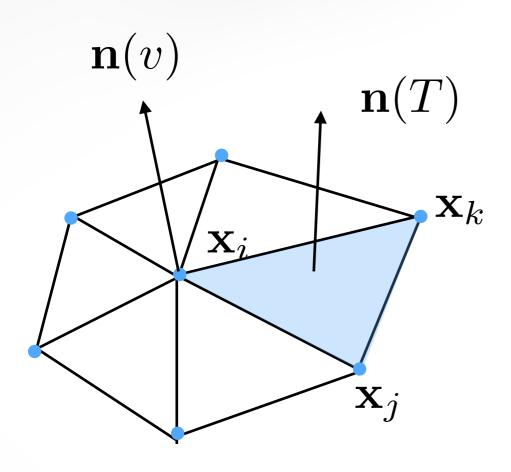
Assume regular parameterization

$$\mathbf{x}_u imes \mathbf{x}_v
eq \mathbf{0}$$
 normal exists



$$\mathbf{n}(T) = \frac{(\mathbf{x}_j - \mathbf{x}_i) \times (\mathbf{x}_k - \mathbf{x}_i)}{\|(\mathbf{x}_j - \mathbf{x}_i) \times (\mathbf{x}_k - \mathbf{x}_i)\|}$$

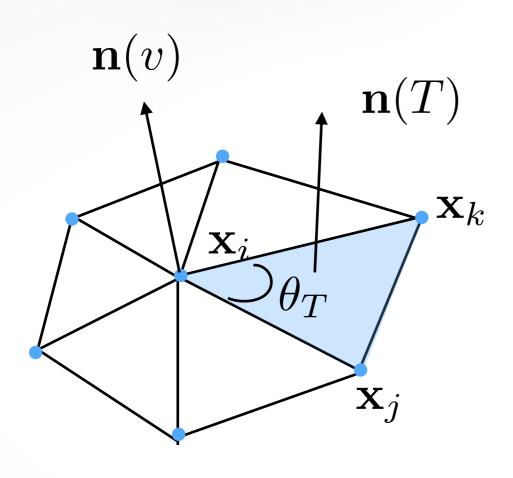
$$T = (\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_j)$$



$$\mathbf{n}(T) = \frac{(\mathbf{x}_j - \mathbf{x}_i) \times (\mathbf{x}_k - \mathbf{x}_i)}{\|(\mathbf{x}_j - \mathbf{x}_i) \times (\mathbf{x}_k - \mathbf{x}_i)\|}$$

$$T = (\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_j)$$

$$\mathbf{n}(v) = \frac{\sum_{T \in \mathcal{N}_1(v)} \alpha_T \mathbf{n}(T)}{\left\| \sum_{T \in \mathcal{N}_1(v)} \alpha_T \mathbf{n}(T) \right\|}$$



$$\mathbf{n}(T) = \frac{(\mathbf{x}_j - \mathbf{x}_i) \times (\mathbf{x}_k - \mathbf{x}_i)}{\|(\mathbf{x}_j - \mathbf{x}_i) \times (\mathbf{x}_k - \mathbf{x}_i)\|}$$

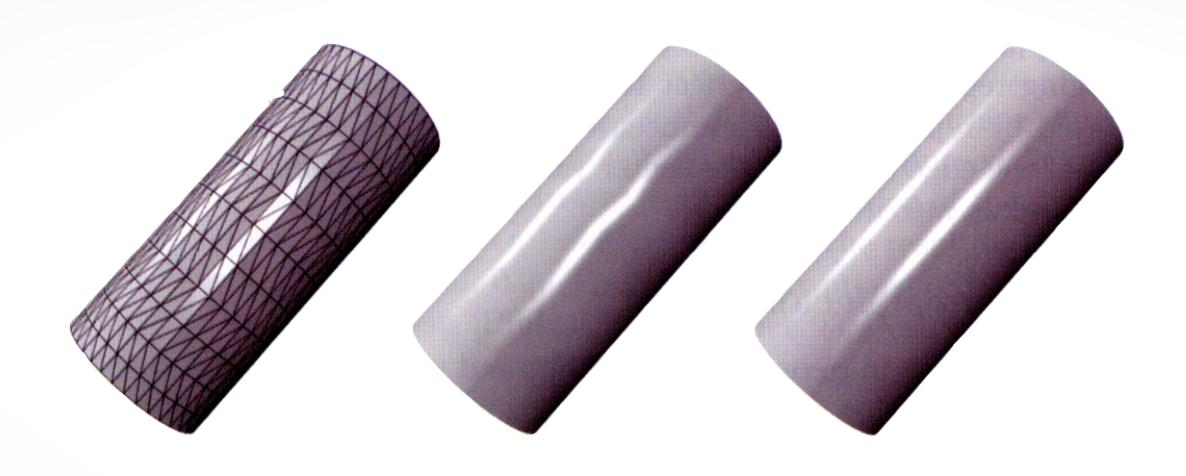
$$T = (\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_j)$$

$$\mathbf{n}(v) = \frac{\sum_{T \in \mathcal{N}_1(v)} \alpha_T \mathbf{n}(T)}{\left\| \sum_{T \in \mathcal{N}_1(v)} \alpha_T \mathbf{n}(T) \right\|}$$

$$\alpha_T = 1$$

$$\alpha_T = |T|$$

$$\alpha_T = \theta_T$$



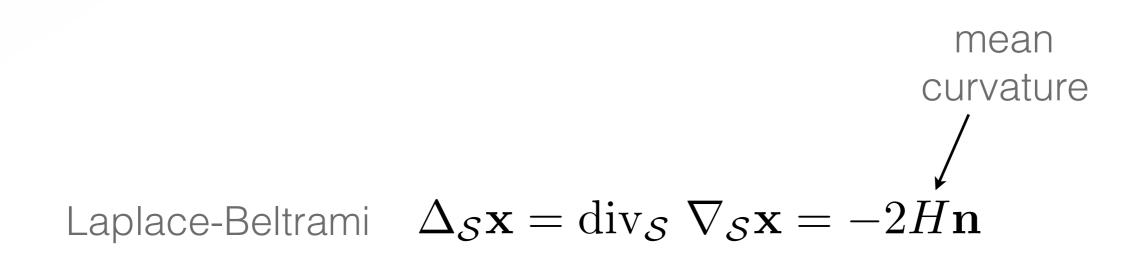
tessellated cylinder

$$\alpha_T = 1$$

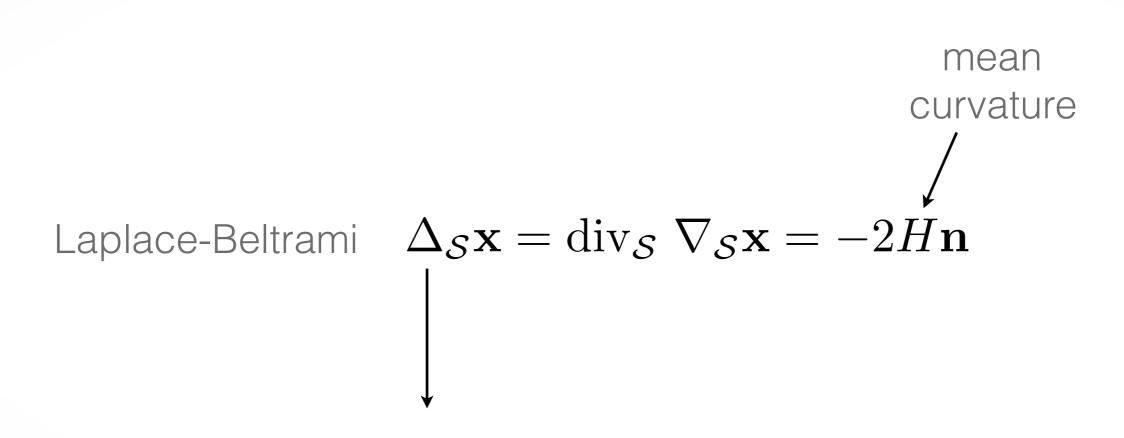
$$\alpha_T = |T|$$

$$\alpha_T = \theta_T$$

Simple Curvature Discretization



Simple Curvature Discretization

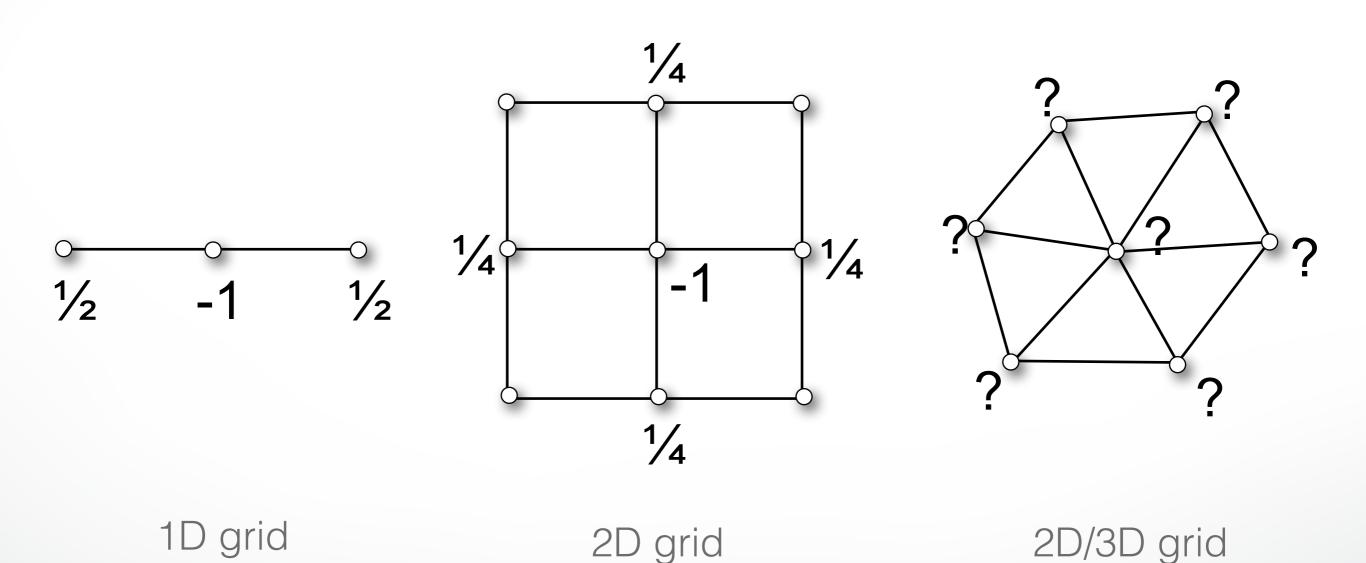


How to discretize?

Laplace Operator on Meshes

Extend finite differences to meshes?

What weights per vertex/edge?



Uniform Laplace

Uniform discretization

What weights per vertex/edge?

Properties

- depends only on connectivity
- simple and efficient

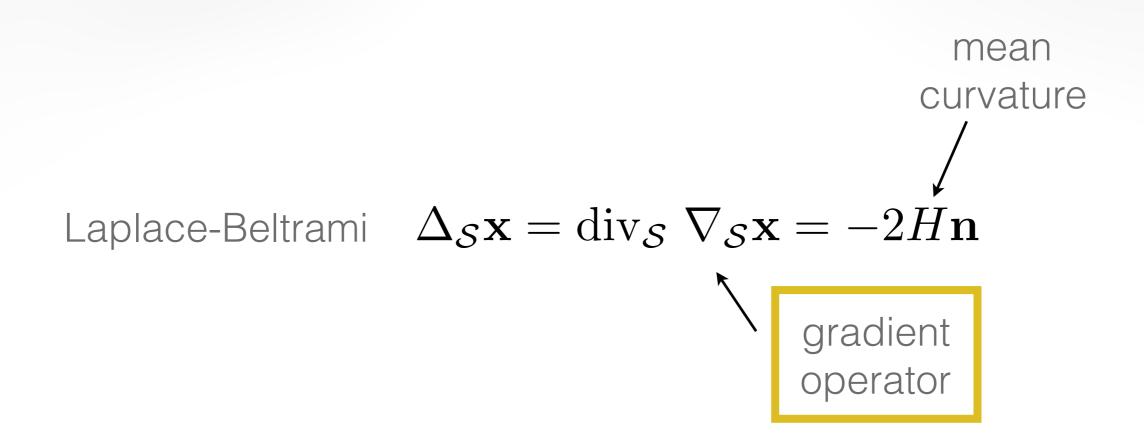
Uniform Laplace

Uniform discretization

$$\Delta_{\text{uni}} \mathbf{x}_i := \frac{1}{|\mathcal{N}_1(v_i)|} \sum_{v_j \in \mathcal{N}_1(v_i)} (\mathbf{x}_j - \mathbf{x}_i) \approx -2H\mathbf{n}$$

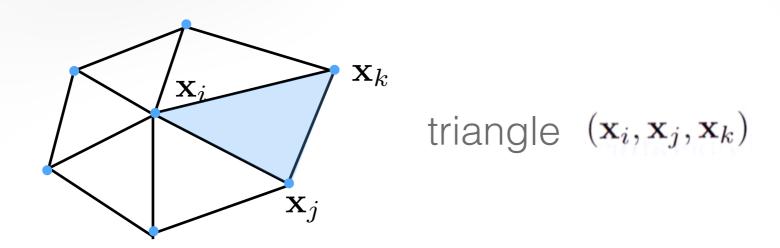
Properties

- depends only on connectivity
- simple and efficient
- bad approximation for irregular triangulations
 - ullet can give non-zero H for planar meshes
 - tangential drift for mesh smoothing

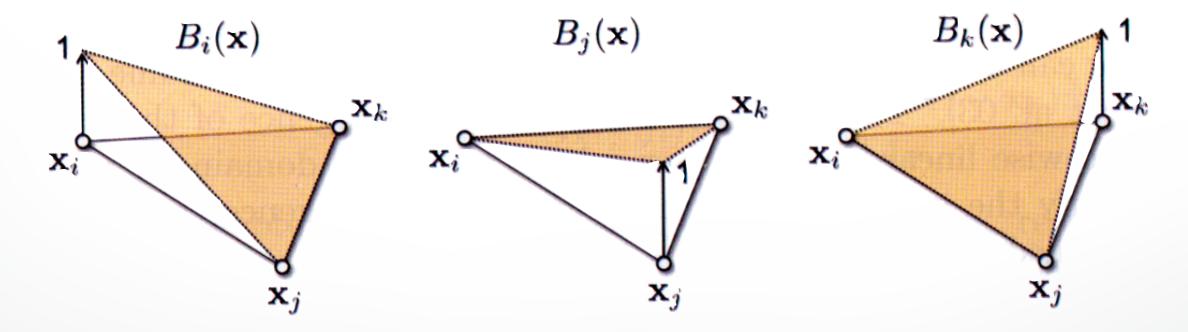


Discrete Gradient of a Function

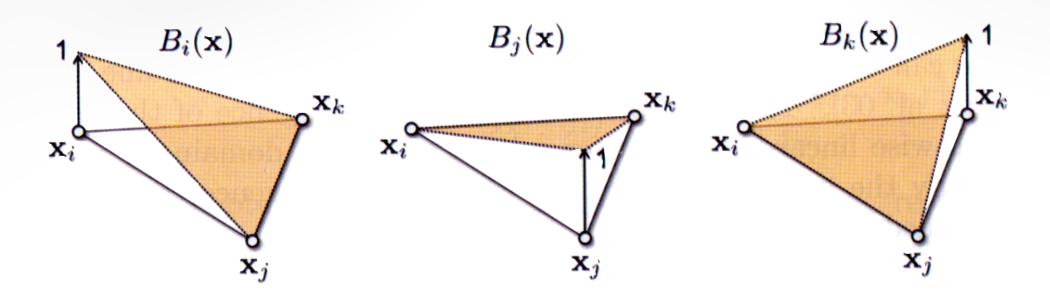
- Defined on piecewise linear triangle
- Important for parameterization and deformation



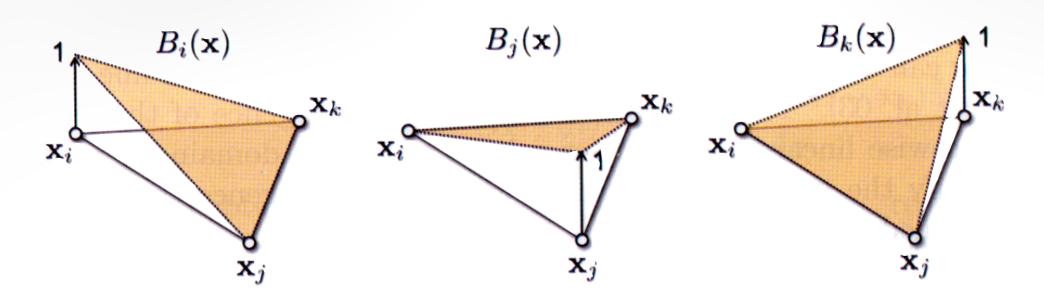
piecewise linear function $f(\mathbf{u}) = f_i B_i(\mathbf{u}) + f_j B_j(\mathbf{u}) + f_k B_k(\mathbf{u})$ $\mathbf{u} = (u, v)$ $f_i = f(\mathbf{x}_i)$



linear basis functions for barycentric interpolation on a triangle

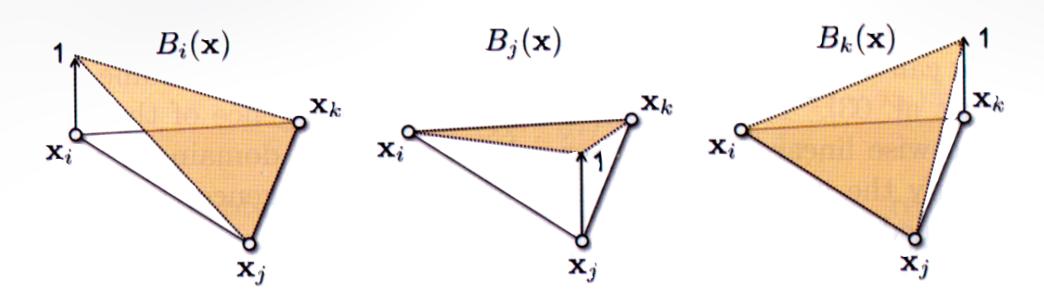


piecewise linear function $f(\mathbf{u}) = f_i B_i(\mathbf{u}) + f_j B_j(\mathbf{u}) + f_k B_k(\mathbf{u})$ $\mathbf{u} = (u, v)$



piecewise linear function $f(\mathbf{u}) = f_i B_i(\mathbf{u}) + f_j B_j(\mathbf{u}) + f_k B_k(\mathbf{u})$ $\mathbf{u} = (u, v)$

gradient of linear function $\nabla f(\mathbf{u}) = f_i \nabla B_i(\mathbf{u}) + f_j \nabla B_j(\mathbf{u}) + f_k \nabla B_k(\mathbf{u})$

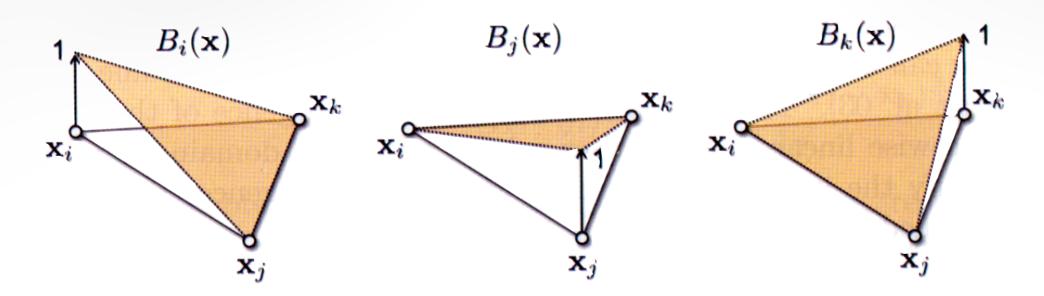


piecewise linear function $f(\mathbf{u}) = f_i B_i(\mathbf{u}) + f_j B_j(\mathbf{u}) + f_k B_k(\mathbf{u})$ $\mathbf{u} = (u, v)$

gradient of linear function
$$\nabla f(\mathbf{u}) = f_i \nabla B_i(\mathbf{u}) + f_j \nabla B_j(\mathbf{u}) + f_k \nabla B_k(\mathbf{u})$$

partition of unity
$$B_i(\mathbf{u}) + B_j(\mathbf{u}) + B_k(\mathbf{u}) = 1$$

gradients of basis
$$\nabla B_i(\mathbf{u}) + \nabla B_j(\mathbf{u}) + \nabla B_k(\mathbf{u}) = 0$$



piecewise linear function $f(\mathbf{u}) = f_i B_i(\mathbf{u}) + f_j B_j(\mathbf{u}) + f_k B_k(\mathbf{u})$ $\mathbf{u} = (u, v)$

gradient of linear function $\nabla f(\mathbf{u}) = f_i \nabla B_i(\mathbf{u}) + f_j \nabla B_j(\mathbf{u}) + f_k \nabla B_k(\mathbf{u})$

partition of unity $B_i(\mathbf{u}) + B_j(\mathbf{u}) + B_k(\mathbf{u}) = 1$

gradients of basis $\nabla B_i(\mathbf{u}) + \nabla B_j(\mathbf{u}) + \nabla B_k(\mathbf{u}) = 0$

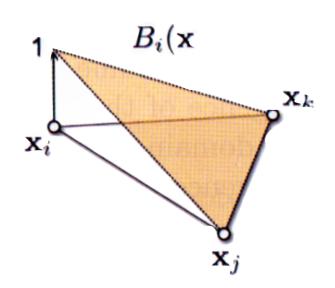
gradient of linear function $\nabla f(\mathbf{u}) = (f_j - f_i)\nabla B_j(\mathbf{u}) + (f_k - f_i)\nabla B_k(\mathbf{u})$

gradient of linear function $\nabla f(\mathbf{u}) = (f_j - f_i)\nabla B_j(\mathbf{u}) + (f_k - f_i)\nabla B_k(\mathbf{u})$

gradient of linear function $\nabla f(\mathbf{u}) = (f_j - f_i)\nabla B_j(\mathbf{u}) + (f_k - f_i)\nabla B_k(\mathbf{u})$

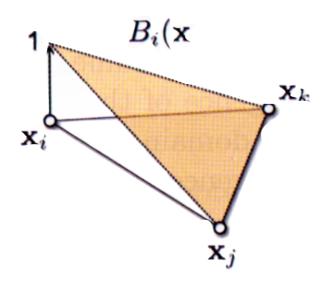
with appropriate normalization:

$$\nabla B_i(\mathbf{u}) = \frac{(\mathbf{x}_k - \mathbf{x}_j)^{\perp}}{2 A_T}$$



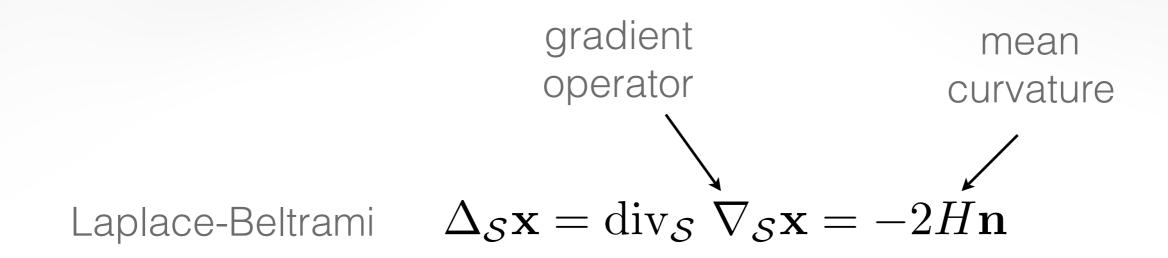
gradient of linear function $\nabla f(\mathbf{u}) = (f_j - f_i)\nabla B_j(\mathbf{u}) + (f_k - f_i)\nabla B_k(\mathbf{u})$

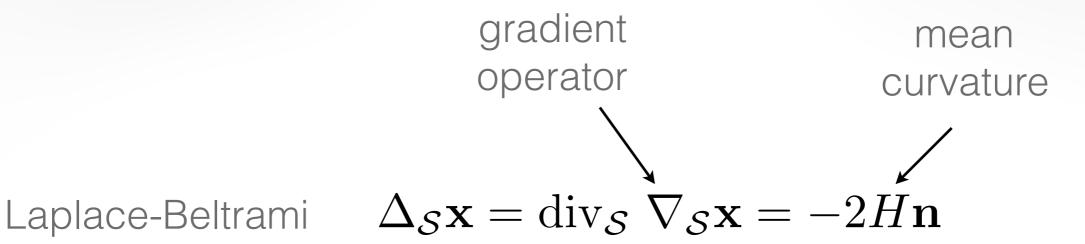
 $\nabla B_i(\mathbf{u}) = \frac{(\mathbf{x}_k - \mathbf{x}_j)^{\perp}}{2 \Delta_{-}}$ with appropriate normalization:



$$\nabla f(\mathbf{u}) = (f_j - f_i) \frac{(\mathbf{x}_i - \mathbf{x}_k)^{\perp}}{2A_T} + (f_k - f_i) \frac{(\mathbf{x}_j - \mathbf{x}_i)^{\perp}}{2A_T} \qquad f_i = f(\mathbf{x}_i)$$

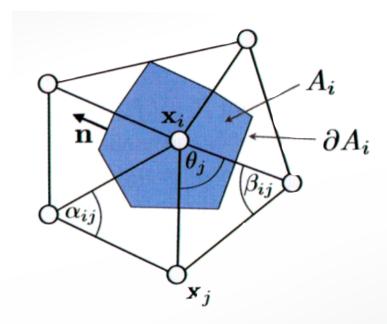
discrete gradient of a piecewiese linear function within T

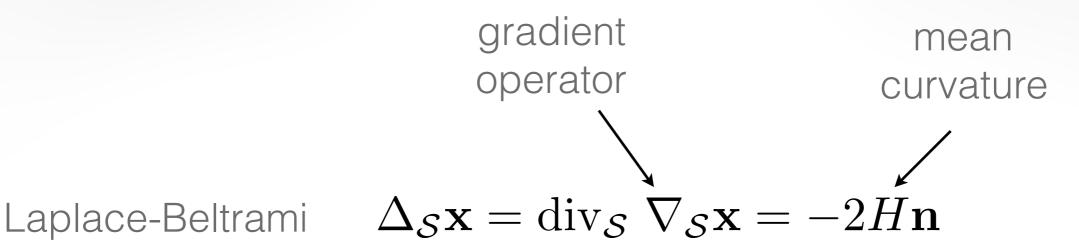




divergence theorem

$$\int_{A_i} \operatorname{div} \mathbf{F}(\mathbf{u}) \, \mathrm{d}A = \int_{\partial A_i} \mathbf{F}(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \, \mathrm{d}s$$

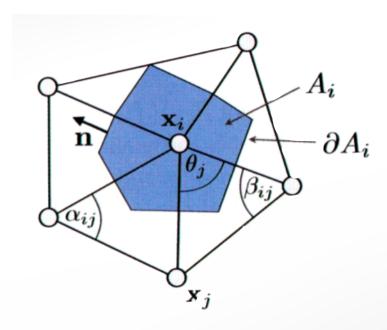


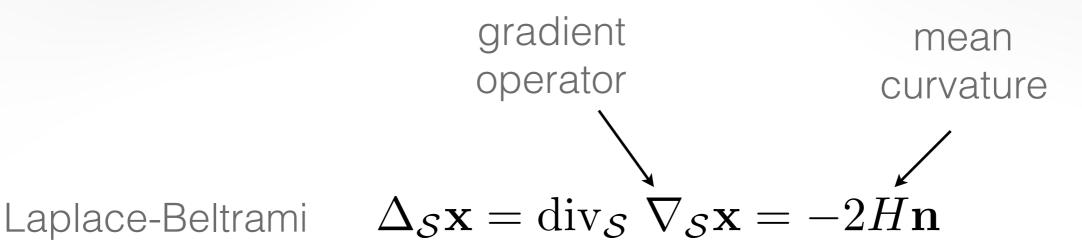


divergence theorem

$$\int_{A_i} \operatorname{div} \mathbf{F}(\mathbf{u}) \, \mathrm{d}A = \int_{\partial A_i} \mathbf{F}(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \, \mathrm{d}s$$

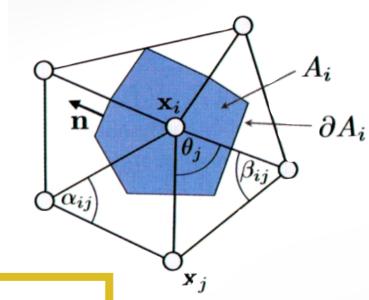
vector-valued function ${f F}$ local averaging domain $A_i=A(v_i)$ boundary ∂A_i





divergence theorem

$$\int_{A_i} \operatorname{div} \mathbf{F}(\mathbf{u}) \, \mathrm{d}A = \int_{\partial A_i} \mathbf{F}(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \, \mathrm{d}s$$



$$\int_{A_i} \Delta f(\mathbf{u}) \, \mathrm{d}A \ = \ \int_{A_i} \mathrm{div} \nabla f(\mathbf{u}) \, \mathrm{d}A \ = \ \int_{\partial A_i} \nabla f(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \, \mathrm{d}s$$

average Laplace-Beltrami

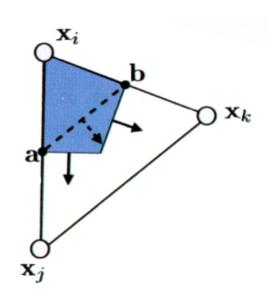
$$\int_{A_i} \Delta f(\mathbf{u}) \, dA = \int_{A_i} \operatorname{div} \nabla f(\mathbf{u}) \, dA = \int_{\partial A_i} \nabla f(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \, ds$$

average Laplace-Beltrami

$$\int_{A_i} \Delta f(\mathbf{u}) \, \mathrm{d}A = \int_{A_i} \mathrm{div} \nabla f(\mathbf{u}) \, \mathrm{d}A = \int_{\partial A_i} \nabla f(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \, \mathrm{d}s$$

gradient is constant and local Voronoi passes through a,b:

$$\begin{split} \int_{\partial A_i \cap T} \nabla f(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \mathrm{d}s &= \nabla f(\mathbf{u}) \cdot (\mathbf{a} - \mathbf{b})^{\perp} \\ \text{over triangle} &= \frac{1}{2} \nabla f(\mathbf{u}) \cdot (\mathbf{x}_j - \mathbf{x}_k)^{\perp} \end{split}$$

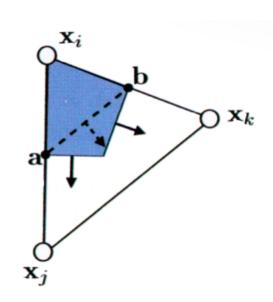


average Laplace-Beltrami

$$\int_{A_i} \Delta f(\mathbf{u}) \, \mathrm{d}A = \int_{A_i} \mathrm{div} \nabla f(\mathbf{u}) \, \mathrm{d}A = \int_{\partial A_i} \nabla f(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \, \mathrm{d}s$$

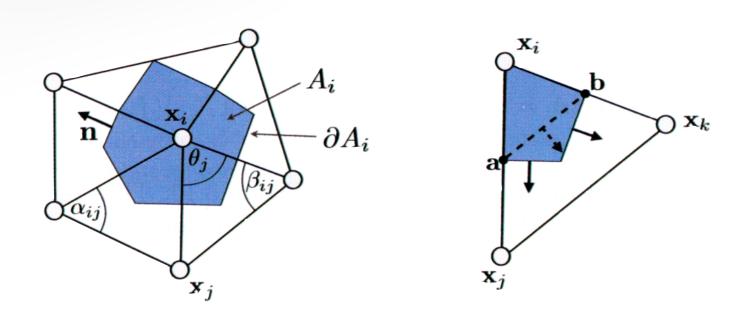
gradient is constant and local Voronoi passes through a,b:

$$\begin{split} \int_{\partial A_i \cap T} \nabla f(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \mathrm{d}s &= \nabla f(\mathbf{u}) \cdot (\mathbf{a} - \mathbf{b})^{\perp} \\ \text{over triangle} &= \frac{1}{2} \nabla f(\mathbf{u}) \cdot (\mathbf{x}_j - \mathbf{x}_k)^{\perp} \end{split}$$



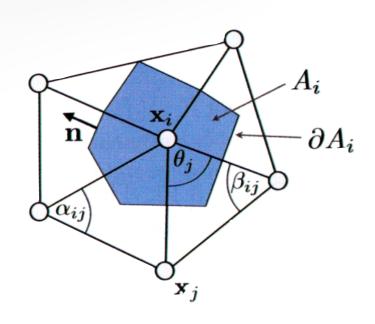
discrete gradient

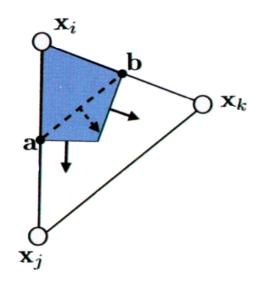
$$\nabla f(\mathbf{u}) = (f_j - f_i) \frac{(\mathbf{x}_i - \mathbf{x}_k)^{\perp}}{2A_T} + (f_k - f_i) \frac{(\mathbf{x}_j - \mathbf{x}_i)^{\perp}}{2A_T}$$



average Laplace-Beltrami within a triangle

$$\int_{\partial A_i \cap T} \nabla f(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) ds = (f_j - f_i) \frac{(\mathbf{x}_i - \mathbf{x}_k)^{\perp} \cdot (\mathbf{x}_j - \mathbf{x}_k)^{\perp}}{4A_T} + (f_k - f_i) \frac{(\mathbf{x}_j - \mathbf{x}_i)^{\perp} \cdot (\mathbf{x}_j - \mathbf{x}_k)^{\perp}}{4A_T}$$

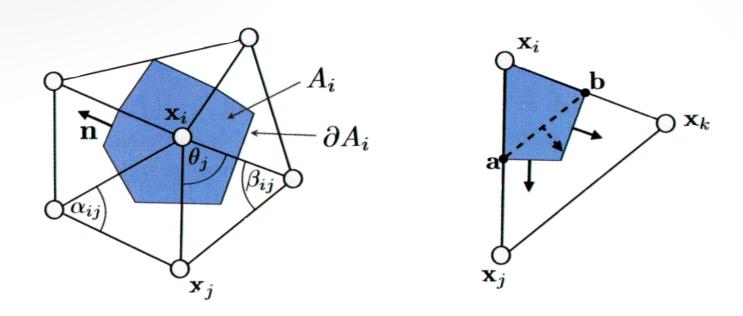




average Laplace-Beltrami within a triangle

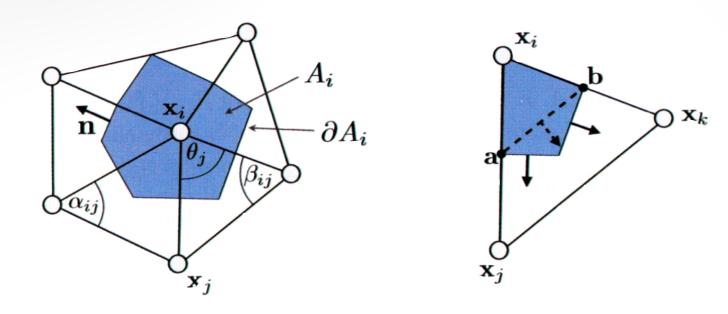
$$\int_{\partial A_i \cap T} \nabla f(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) ds = (f_j - f_i) \frac{(\mathbf{x}_i - \mathbf{x}_k)^{\perp} \cdot (\mathbf{x}_j - \mathbf{x}_k)^{\perp}}{4A_T} + (f_k - f_i) \frac{(\mathbf{x}_j - \mathbf{x}_i)^{\perp} \cdot (\mathbf{x}_j - \mathbf{x}_k)^{\perp}}{4A_T}$$

$$\int_{\partial A_i \cap T} \nabla f(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) ds = \frac{1}{2} \left(\cot \gamma_k (f_j - f_i) + \cot \gamma_j (f_k - f_i) \right)$$



average Laplace-Beltrami over averaging region

$$\int_{A_i} \Delta f(\mathbf{u}) dA = \frac{1}{2} \sum_{v_j \in \mathcal{N}_1(v_i)} (\cot \alpha_{i,j} + \cot \beta_{i,j}) (f_j - f_i)$$



average Laplace-Beltrami over averaging region

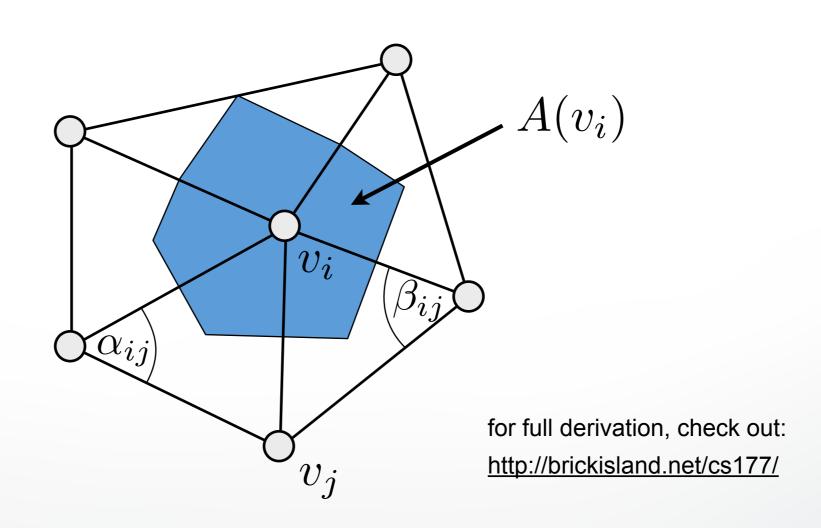
$$\int_{A_i} \Delta f(\mathbf{u}) dA = \frac{1}{2} \sum_{v_j \in \mathcal{N}_1(v_i)} (\cot \alpha_{i,j} + \cot \beta_{i,j}) (f_j - f_i)$$

discrete Laplace-Beltrami

$$\Delta f(v_i) := \frac{1}{2A_i} \sum_{v_j \in \mathcal{N}_1(v_i)} (\cot \alpha_{i,j} + \cot \beta_{i,j}) (f_j - f_i)$$

Cotangent discretization

$$\Delta_{\mathcal{S}} f(v_i) := \frac{1}{2A(v_i)} \sum_{v_j \in \mathcal{N}_1(v_i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (f(v_j) - f(v_i))$$



Cotangent discretization

$$\Delta_{\mathcal{S}} f(v) := \frac{1}{2A(v)} \sum_{v_i \in \mathcal{N}_1(v)} (\cot \alpha_i + \cot \beta_i) (f(v_i) - f(v))$$

Problems

- weights can become negative
- depends on triangulation

Still the most widely used discretization

Outline

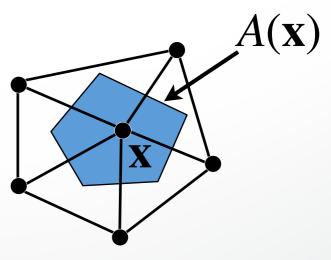
- Discrete Differential Operators
- Discrete Curvatures
- Mesh Quality Measures

How to discretize curvature on a mesh?

- Zero curvature within triangles
- Infinite curvature at edges / vertices
- Point-wise definition doesn't make sense

Approximate differential properties at point ${\bf x}$ as average over local neighborhood $A({\bf x})$

- x is a mesh vertex
- $A(\mathbf{x})$ within one-ring neighborhood

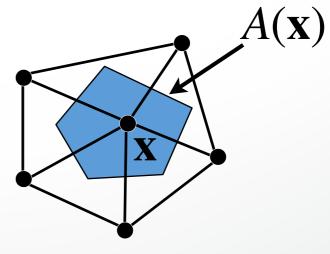


How to discretize curvature on a mesh?

- Zero curvature within triangles
- Infinite curvature at edges / vertices
- Point-wise definition doesn't make sense

Approximate differential properties at point ${\bf x}$ as average over local neighborhood $A({\bf x})$

$$K(v) \approx \frac{1}{A(v)} \int_{A(v)} K(\mathbf{x}) dA$$



Which curvatures to discretize?

- Discretize Laplace-Beltrami operator
- ullet Laplace-Beltrami gives us mean curvature H
- Discretize Gaussian curvature K
- From H and K we can compute κ_1 and κ_2

mean curvature $\Delta_{\mathcal{S}}\mathbf{x} = \mathrm{div}_{\mathcal{S}} \ \nabla_{\mathcal{S}}\mathbf{x} = -2H\mathbf{n}$

Discrete Gaussian Curvature

Gauss-Bonnet

$$\int K = 2\pi\chi \qquad \qquad \chi = 2 - 2g$$

Discrete Gauss Curvature

$$K = (2\pi - \sum_{j} \theta_{j})/A$$

Verify via Euler-Poincaré

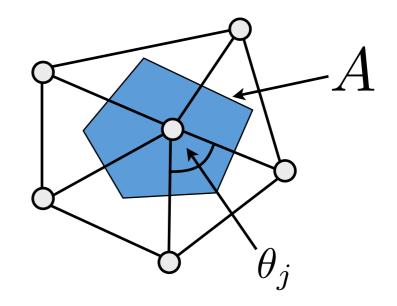
$$V - E + F = 2(1 - g)$$

Mean curvature (absolute value)

$$H = \frac{1}{2} \|\Delta_{\mathcal{S}} \mathbf{x}\|$$

Gaussian curvature

$$K = (2\pi - \sum_{j} \theta_{j})/A$$



Principal curvatures

$$\kappa_1 = H + \sqrt{H^2 - K} \qquad \qquad \kappa_2 = H - \sqrt{H^2 - K}$$

Outline

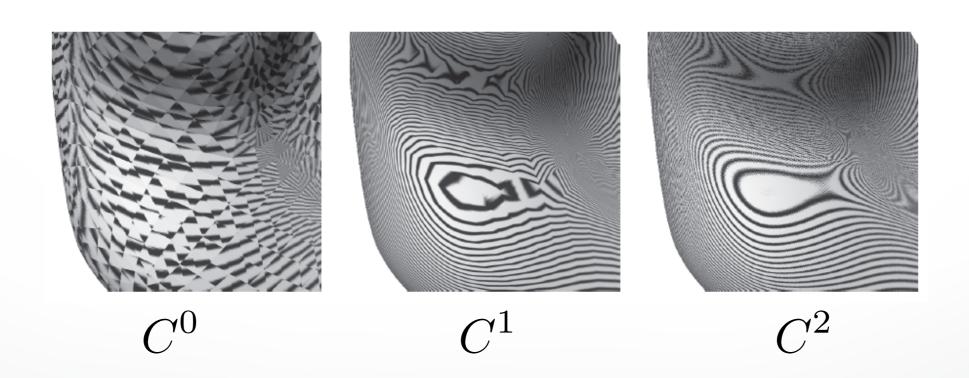
- Discrete Differential Operators
- Discrete Curvatures
- Mesh Quality Measures

Visual inspection of "sensitive" attributes

Specular shading

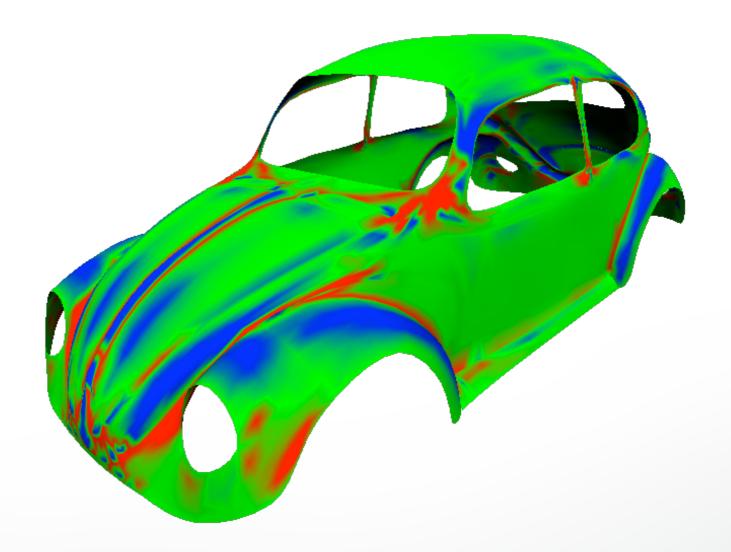
- Specular shading
- Reflection lines

- Specular shading
- Reflection lines
 - differentiability one order lower than surface
 - can be efficiently computed using GPU



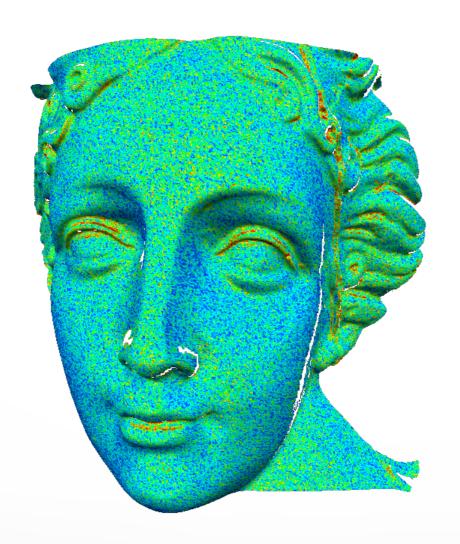
- Specular shading
- Reflection lines
- Curvature
 - Mean curvature

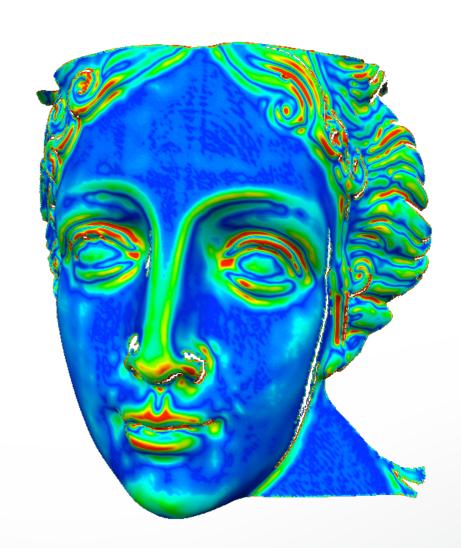
- Specular shading
- Reflection lines
- Curvature
 - Gauss curvature



Smoothness

Low geometric noise



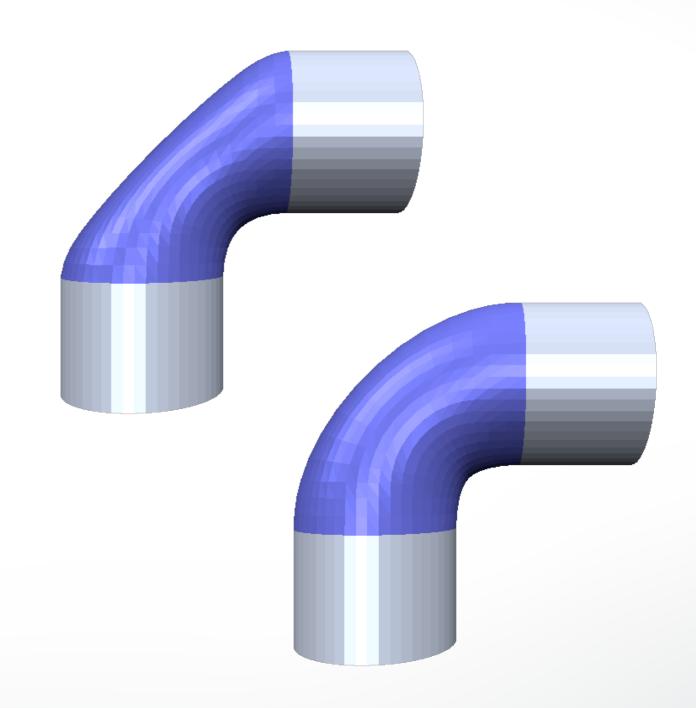


Smoothness

Low geometric noise

Fairness

Simplest shape



Smoothness

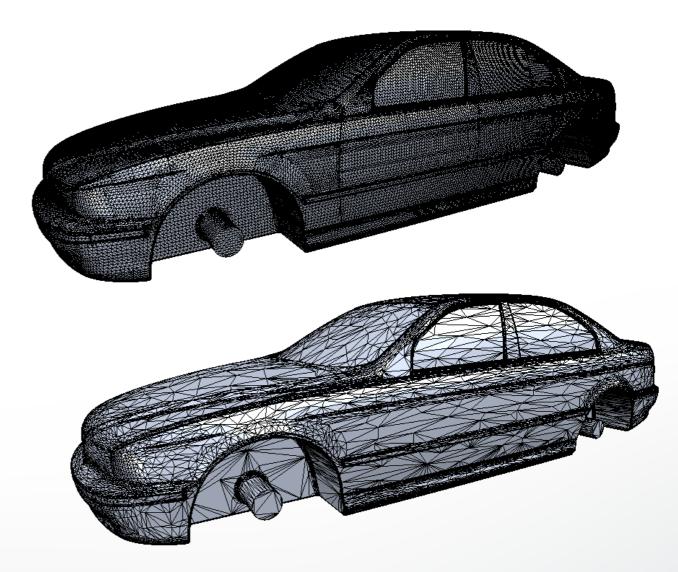
Low geometric noise

Fairness

Simplest shape

Adaptive tesselation

Low complexity



Smoothness

Low geometric noise

Fairness

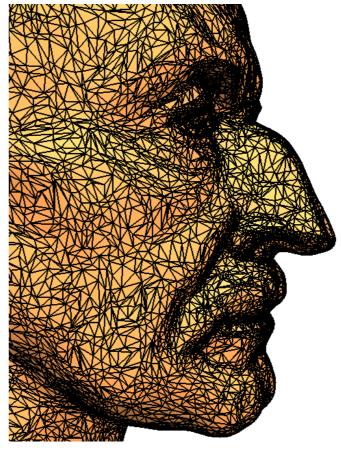
Simplest shape

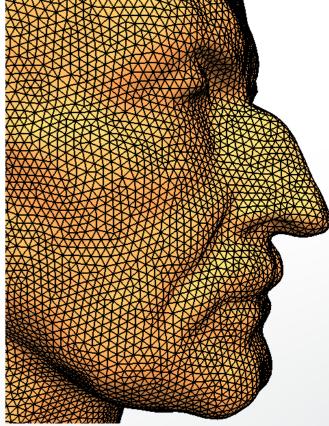
Adaptive tesselation

Low complexity

Triangle shape

Numerical Robustness





Mesh Optimization

Smoothness

Smoothing

Fairness

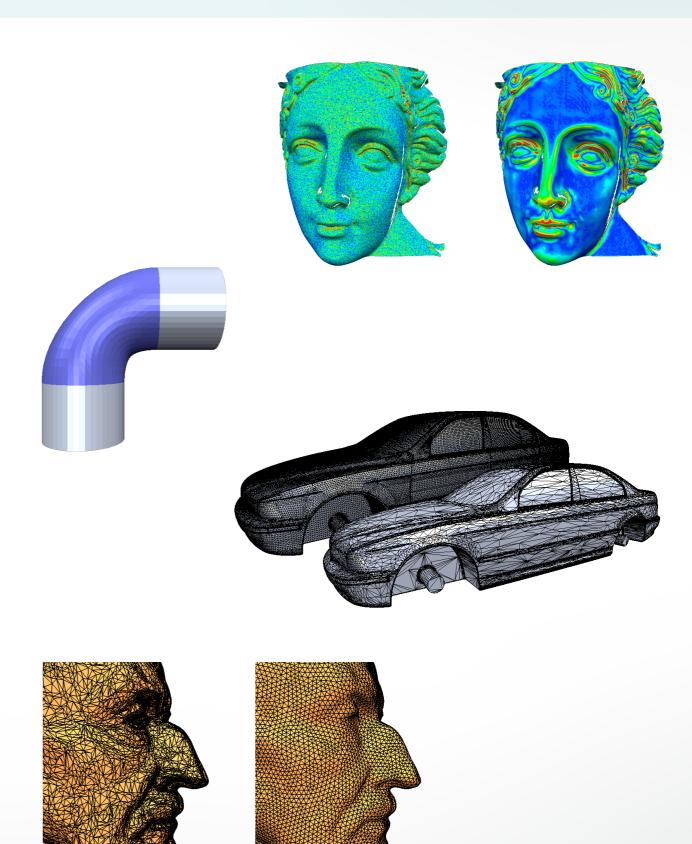
Fairing

Adaptive tesselation

Decimation

Triangle shape

Remeshing



Summary

Invariants as overarching theme

- shape does not depend on Euclidean motions (no stretch)
 - metric & curvatures
- smooth continuous notions to discrete notions
 - generally only as averages
- different ways to derive same equations
 - DEC: discrete exterior calculus, FEM, abstract measure theory.

Literature

- Book: Chapter 3
- Taubin: A signal processing approach to fair surface design, SIGGRAPH 1996
- Desbrun et al.: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, SIGGRAPH 1999
- Meyer et al.: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, VisMath 2002
- Wardetzky et al.: Discrete Laplace Operators: No free lunch, SGP 2007

Next Time

3D Scanning

http://cs621.hao-li.com

Thanks!

