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Some Updates: run.usc.edu/vega

Another awesome free library with half-edge data-structure

By Prof. Jerne] Barbic

MAIN DOWNLOAD/FAQ SCREENSHOTS ABOUT

USC
VEGA FEM LIBRARY Viterbi

School of Engineering

NEW: Vega FEM 2.0 released on Oct 8, 2013. New features described below.

Vega is a computationally efficient and stable C/C++ physics library for three-dimensional
deformable object simulation. It is designed to model large deformations, including geometric
and material nonlinearities, and can also efficiently simulate linear systems. Vega is open-
source and free. It is released under the 3-clause BSD license, which means that it can be
used freely both in academic research and in commercial applications.

Vega implements several widely used methods for simulation of large deformations of 3D
solid deformable objects:

JURIJVEGA (1754-1802) e co-rotational linear FEM elasticity [MGO04]; it can also compute the exact tangent
— stiffness matrix [Bar12] (similar to [CPSS10]),

P i e linear FEM elasticity [Sha90],
’f ., A\ * invertible isotropic nonlinear FEM models [ITF04, TSIF05],


http://run.usc.edu/vega

FYI

MeshLab

Popular Mesh Processing Software (meshlab.sourceforge.net)

MeshLab_64bit v1.3.3BETA - O — . I
NI R R

Mesh: MiniHaoLi.ply
Vertices: 197344
Faces: 394700

vC



http://meshlab.sourceforge.net

FYI

BeNTO3D

Mesh Processing Framework for Mac (www.bento3d.com)

® 06 HaoTorso.b3d



http://www.bento3d.com

Last Time

Discrete Representations
e Explicit (parametric, polygonal meshes)
* Implicit Surfaces (SDF, grid representation)
e Conversions
 E—I: Closest Point, SDF, Fast Marching

* |—=E: Marching Cubes Algorithm

Geometry

Topology



Differential Geometry

Why do we care?
 (Geometry of surfaces
* Mother tongue of physical theories

e Computation: processing / simulation

T Alliezetal. " |



Motivation

We need differential geometry to compute

e gsurface curvature

* parameterization distortion

e deformation energies



Applications: 3D Reconstruction
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Motivation

Geometry is the key

» studied for centuries (Cartan, Poincare, Lie,
Hodge, de Rham, Gauss, Noether...)

 mostly differential geometry
» differential and integral calculus

* |nvariants and symmetries

/
/|

. Bobenku and Suris A A- ~Hermann Sch 'z_ 1890
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Getting Started

How to apply DiffGeo ideas?
e surfaces as a collection of samples
e and topology (connectivity)
e apply continuous ideas
 BUT: setting Is discrete
e what is the right way?

e discrete vs. discretized

Let’s look at that first
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Getting Started

What characterizes structure(s)?
 What is shape”

e Euclidean Invariance

 What is physics?

e Conservation/Balance Laws

e \What can we measure?

e area, curvature, mass, flux, circulation

Aot
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Getting Started

Invariant descriptors

e guantities invariant under a set of transformations

Intrinsic descriptor

e qguantities which do not depend on a coordinate frame
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Outline

« Parametric Curves

e Parametric Surfaces

Formalism & Intuition
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Differential Geometry

Leonard Euler (1707-1783) Carl Friedrich Gauss (1777-1855)

17



Parametric Curves

x:[a,b] C IR — IR”

X(?)
b K S

X(a)

x(t) . da(t) /dt
(0 ) a(t) = S (dy@) /dt)
dz(t) /dt
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Recall: Mappings

X Y X Y X Y
AraWavaNava
WA WA W
3 C 3 C 3 »-C
NANYZARN \Fx/
Injective Surjective Bijective
NO SELF-INTERSECTIONS SELF-INTERSECTIONS

AMBIGUOUS PARAMETERIZATION

19



Parametric Curves

A parametric curve x(t)is

e simple:

x(t) is injective (no self-intersections)

- differentiable: x¢(t) is defined for all £ €

e regular:

x;(t) # 0 for a

a, b)

't € la,b

X(D)
({ X(?)
(1)

X(a)
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Length of a Curve

Let t; = a+iAt and x; = x(t;)
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Length of a Curve

Polyline chord length

AXZ'
S = 2 laxill = 2 |57 | A A lxin —xil

) norm change

Curve arc length ( At — 0)

t
s = s(t) = / Ice||

length =

integration of infinitesimal change

x horm of speed
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Re-Parameterization

Mapping of parameter domain
u: la, bl — |c,d]
Re-parameterization w.r.t. u(t)
c,d] — IR?, t+— x(u(t))
Derivative (chain rule)

dx (u(t)) dx du

T dea - Xelwl)wld)
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Example

Re-Parameterization

—1IR* , t— (4t,21)

> 10,1] , t— 2t

g:[0,1] - IR* |, t— (2t,1)
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Arc Length Parameterization

Mapping of parameter domain:
t
e s(t) = [l dt

Parameter s for x(s) equals length from x(a) to x(s)

x(s) = x(s(t)) ds = []x|| dt

same infinitesimal change

Special properties of resulting curve

[xs(s)[l =1, =Xs(s)-%xs5(s) =0

defines orthonormal frame
25



The Frenet Frame

Taylor expansion

1 1
X(t—l-h) — X(t) —+ Xt(t)h -+ ixtt(t) h2 -+ gxttt(t) hg + ...

for convergence analysis and approximations

Define local frame (t,n, b) (Frenet frame)

X¢ Xt X Xt

t = n = bxt b =
x|

[x¢ X X
tangent main normal binormal
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The Frenet Frame

Orthonormalization of local frame

Xttt
b

Xt t

local affine frame Frenet frame
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The Frenet Frame

Frenet-Serret: Derivatives w.r.t. arc length s

t, = K1
n, = —rt +7b
b, = —Tn

Curvature (deviation from straight line)

Kk = ”XSSH

Torsion (deviation from planarity)

1
T— ?det([Xs,Xszsss})

28



Curvature and Torsion

Planes defined by X and two vectors:
e osculating plane: vectors t and n
* normal plane: vectors n and b

* rectifying plane: vectors t and b

Osculating circle
* second order contact with curve
« center c=x+ (1/Kk)n

 radius 1/k
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Curvature and Torsion

e Curvature: Deviation from straight line
e Torsion: Deviation from planarity

e |[ndependent of parameterization
e intrinsic properties of the curve

e Fuclidean invariants
e invariant under rigid motion

e Define curve uniquely up to a rigid motion

30



Curvature: Some Intuition

A line through two points on the curve (Secant)

P
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Curvature: Some Intuition

A line through two points on the curve (Secant)
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Curvature: Some Intuition

Tangent, the first approximation
limiting secant as the two points come together

P
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Curvature: Some Intuition

Circle of curvature
Consider the circle passing through 3 pints of the curve

P
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Curvature: Some Intuition

Circle of curvature
The limiting circle as three points come together

P
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Curvature: Some Intuition

Radius of curvature r
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Curvature: Some Intuition

Radius of curvature r

A
.

Curvature
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Curvature: Some Intuition

Signed curvature
Sense of traversal along curve
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Curvature: Some Intuition

GauB map n(x)

Point on curve maps to point on unit circle

|/
@)
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Curvature: Some Intuition

Shape operator (Weingarten map)
Change in normal as we slide along curve

negative directional derivative D of Gau3 map

O

describes directional curvature

using normals as degrees of freedom

— accuracy/convergence/implementation (discretization)
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Curvature: Some Intuition

Turning number, &
Number of orbits in Gaussian image
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Curvature: Some Intuition

Turning number theorem

For a closed curve, the integral of curvature is an
iInteger multiple of 2m

rkds = 21k
C2

S SIOIE)
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Take Home Message

In the limit of a refinement sequence, discrete
measure of length and curvature agree with
continuous Mmeasures

43



http://cs621.hao-li.com

44


http://cs621.hao-li.com

