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Administrative
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• Exercise 1 discussion: Next Time! 

• Hao Li (Instructor)
• Office Hour: Tue 12:30 PM - 1:30 PM, SAL 244 

• Zeng Huang (TA)
• Office Hour: TBD, PHE 108 
• zenghuan@usc.edu



Last Time
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Polygonal meshes are
• Effective representations 
• Flexible 
• Efficient, simple, enables unified processing



Last Time
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Connection between Meshes and Graphs
• Formalism (valence, connections, subgraph, embedding…) 
• Definitions (boundary, regular edge, singular edge, closed mesh) 
• triangulation → triangle mesh
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Last Time
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Topology
• Genus, Euler characteristic 
• Euler Poincaré formula 
• Average valence of triangle mesh: 6 
• Triangles: F = 2V, E = 3V 
• Quads: F = V, E = 2V

V � E + F = 2(1� g)

connected

k=1 handle ≤2k edge loops



Last Time
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2-Manifold Surface
• Local Neighborhood is disk-shaped 
• Guarantees meaningful neighbor enumeration 
• Non-manifold

f(D✏[u, v]) = D�[f(u, v)]



Last Time
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Data Structures
• Face-Based 
• Edge-Based, edges always have two faces 
• Halfedge-Based



When is a Triangle Mesh a Manifold?
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• Every Edge incident to 1 or 2 Triangles

• Faces incident to a vertex form closed or open fan

closed fan open fan



Outline
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• Surface Representations 

• Explicit Surfaces 

• Implicit Surfaces 

• Conversion



Explicit vs. Implicit
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Explicit:
• Range of parameterization function

f(x) = (r cos(x), r sin(x))T

Implicit:
• Kernel of implicit function

F (x, y) =
�

x2 + y2 � r

f([0, 2�])

F (x, y) < 0

F (x, y) > 0

F (x, y) = 0



Explicit vs. Implicit
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Explicit:
• Range of parameterization function 
• Piecewise approximation

F (x, y) =
�

x2 + y2 � rImplicit:
• Kernel of implicit function 
• Piecewise approximation

f(x) = (r cos(x), r sin(x))T?

?



Implicit:
• Kernel of implicit function 
• Piecewise approximation 
• Scalar-valued 3D grid 
• Easy in/out test 
• Easy topology modification

Explicit vs. Implicit
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Explicit:
• Range of parameterization function 
• Piecewise approximation 
• Splines, triangle mesh, points 
• Easy enumeration 
• Easy geometry modification



Examples: Fluid Simulation
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Examples: Collisions
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Examples: 3D Reconstruction
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Zippering Poisson Reconstruction



Examples: Kinect Fusion
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http://msdn.microsoft.com/en-us/library/dn188670.aspx

1. Capture 
2. Align 
3. Fuse

http://msdn.microsoft.com/en-us/library/dn188670.aspx


Outline
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• Surface Representations 

• Explicit Surfaces 

• Implicit Surfaces 

• Conversion



Polynomial Approximation
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f(t) =
p�

i=0

ci ti =
p�

i=0

c̃i �i(t)

f(ti) = g(ti) , 0 ⇥ t0 < · · · < tp ⇥ h

|f(t)� g(t)| ⇥ 1
(p + 1)!

max f (p+1)
p⇤

i=0

(t� ti) = O
�
h(p+1)

⇥

g(h) =
p⇤

i=0

1
i!

g(i)(0) hi + O
�
hp+1

⇥

Polynomials are computable functions

Taylor expansion up to degree

Error for approximation    by polynomial 

p

g f



Spline Surfaces
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Piecewise polynomial approximation

f (u, v) =
n∑

i=0

m∑

j=0

cijN
n
i (u) Nm

j (v)



Spline Surfaces
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Topological constraints
• Rectangular patches 
• Regular control mesh

Geometric constraints
• Large number of patches 
• Continuity between patches 
• Trimming

Piecewise polynomial approximation



Polygon Meshes
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Polygonal meshes are a good compromise

• Piecewise linear approximation → error is 

• Error inversely proportional to #faces 

• Arbitrary topology surfaces 

• Piecewise smooth surfaces 

• Adaptive sampling 

• Efficient GPU-based rendering/processing

O(h2)



Triangle Meshes
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ei, fi � R3topology
vi � R3

M = ({vi}, {ej}, { fk})

geometry



Outline
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• Surface Representations 

• Explicit Surfaces 

• Implicit Surfaces 

• Conversion



Implicit Representations
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Level set of 2D function defines 1D curve



Implicit Representations
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Level set of 3D function defines 2D surface



Implicit Representations
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General implicit function:
• Interior: 
• Exterior: 
• Surface:

Gradient         is orthogonal to level set

Special case
• Signed distance function (SDF) 
• Gradient          is unit surface normal

F (x, y) < 0

F (x, y) > 0

F (x, y) = 0

F (x, y, z) < 0

F (x, y, z) > 0

F (x, y, z) = 0

rF

rF



Signed Distance Function
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SDF of a circle?

General shapes



SDF Discretization
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Regular cartesian 3D grid
• Compute signed distance at nodes 

• Tri-linear interpolation within cells

F000 (1 − u) (1 − v) (1 − w) +
F100 u (1 − v) (1 − w) +
F010 (1 − u) v (1 − w) +
F001 (1 − u) (1 − v) w +
...

F111 u v w
F000 F100

F010

F110

F111F011

F101



3-Color Octree
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1048576 cells 12040 cells

3 Colors: interior,exterior,boundary



Adaptively Sampled Distance Fields
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12040 cells 895 cells



Binary Space Partitions
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895 cells 254 cells



Regularity vs. Complexity
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Implicit surface discretizations

• Uniform, regular voxel grids 

• Adaptive, 3-color octrees 

• Surface-adaptive refinement 

• Feature-adaptive refinement 

• Irregular hierarchies 

• Binary space partition (BSP)

O(h�3)

O(h�2)

O(h�1)

O(h�1)



Literature
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•  Frisken et al., “Adaptively Sampled Distance Fields: A general 
representation of shape for computer graphics”, SIGGRAPH 2000 

• Wu & Kobbel, “Piecewise Linear Approximation of Signed Distance 
Fields”, VMV 2003



Implicit Representations

 34

•  Natural representation for volumetric data: CT scans, density 
fields, etc. 

• Advantageous when modeling shapes with complex and/or 
changing topology (e.g., fluids) 

• Very suitable representation for Constructive Solid Geometry 
(CSG)



CSG Example
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Union

Intersection

Difference

FC�S(·) = min {FC(·) , FS(·)}

FC�S(·) = max {FC(·) , FS(·)}

FS\C(·) = max {�FC(·) , FS(·)}
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CSG Example



CSG Example: Milling
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Outline
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• Surface Representations 

• Explicit Surfaces 

• Implicit Surfaces 

• Conversion



Conversion
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Explicit to Implicit

• Compute signed distance at grid points 

• Compute distance point-mesh 

• Fast marching 

Implicit to Explicit 

• Extract zero-level iso-surface 

• Other iso-surfaces  

• Medical imaging, simulations, measurements, …

F (x, y, z) = 0

F (x, y, z) = C



Signed Distance Computation
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Find closest mesh triangle

• Use spatial hierarchies (octree, BSP tree)

Distance point-triangle

• Distance to plane, edge, or vertex 

• http://www.geometrictools.com

Inside or outside?

• Based on interpolated surface normals

http://www.geometric
http://tools.com


Signed Distance Computation
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•  Closest point 

• Interpolated normal 

• Inside if

p = ↵pi + (1� ↵)pj

n = ↵ni + (1� ↵)nj

(q� p)>n < 0

q

n
p

pi

pj

nj

ni



Fast Marching Techniques

 42

•  Initialize with exact distance in mesh’s vicinity 

• Fast-march outwards 

• Fast-march inwards



Literature

 43

•  Schneider, Eberly, “Geometric Tools for Computer Graphics”, Morgan 
Kaufmann, 2002 

• Sethian, “Level Set and Fast Marching Methods”, Cambridge 
University Press, 1999



Conversion
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Explicit to Implicit 

• Compute signed distance at grid points 

• Compute distance point-mesh 

• Fast marching 

Implicit to Explicit

• Extract zero-level iso-surface 

• Other iso-surfaces  

• Medical imaging, simulations, measurements, …

F (x, y, z) = 0

F (x, y, z) = C



2D: Marching Square

 45

1. Classify grid nodes as inside/outside
• Is                          or          ?

2. Classify cell: 24 configurations
• In/out for each corner

3. Compute intersection points
• Linear interpolation along edges

4. Connect them by edges
• Look-up table for edge configuration

F (xi,j) > 0 < 0



2D: Marching Square

 46

?



3D: Marching Cubes
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1. Classify grid nodes as inside/outside
• Is                           or

2. Classify cell: 28 configurations
• In/out for each corner

3. Compute intersection points
• Linear interpolation along edges

4. Connect them by edges
• Look-up table for path configuration 

• Disambiguation by modified table [Montani ’94]

< 0F (xi,j,k) > 0



3D: Marching Cubes
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Classify grid nodes           based on 
• Inside or outside

Classify all cubes based on
• Inside, outside, or intersecting

Refined only intersected cells
• 3-color adaptive octree 

•               complexityO(h�2)

Fi,j,k

xi,j,k Fi,j,k = F (xi,j,k)



Intersection Points
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Linear interpolation along edges

xi,j,k · |Fi+1,j,k| + xi+1,j,k · |Fi,j,k|
|Fi,j,k| + |Fi+1,j,k|



Intersection Points
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Linear interpolation along edges

xi,j,k · |Fi,j+1,k| + xi,j+1,k · |Fi,j,k|
|Fi,j,k| + |Fi,j+1,k|



Intersection Points
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Linear interpolation along edges

xi,j,k · |Fi,j,k+1| + xi,j,k+1 · |Fi,j,k|
|Fi,j,k| + |Fi,j,k+1|



Intersection Points
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Linear interpolation along edges

Lookup table for patch configuration



Marching Cubes
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Look-up table with 28 entries
• 15 representative cases shown 
• Others follow by symmetry



Marching Cubes
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Algorithm for isosurface extraction from 
medical scans (CT, MRI)



Marching Cubes
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Effect of grid size



Marching Cubes
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Sample points restricted to edges of regular grid
Alias artifacts at sharp features

65×65×65



Increasing Resolution
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Does not remove alias problems!



Extended Marching Cubes
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Locally extrapolate distance gradient
Place samples on estimated features

65×65×65



Extended Marching Cubes
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Feature detection
• Based on angle between normals 
• Classify into edges / corners

ni



Extended Marching Cubes
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Feature sampling
• Intersect tangent planes 

• Over- or under-determined system 
• Solve by SVD pseudo-inverse

�

⇧⇧⇤

...
ni
...

⇥

⌃⌃⌅ ·

�

⇤
x
y
z

⇥

⌅ =

�

⇧⇧⇤

...
nT

i si
...

⇥

⌃⌃⌅

(si,ni)



Extended Marching Cubes
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Feature sampling
• Intersect tangent planes 
• Triangle fans centered at feature point

(si,ni)



Extended Marching Cubes
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Feature
Detection

Feature
Sampling

Edge
Flipping



Milling Simulation
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257×257×257



CSG Modeling
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65×65×65



Marching Cubes
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+ Result is watertight, closed 2-manifold surface! 

+ Easy to parallelize 

- Uniform (over-) sampling (→ mesh decimation) 

- Degenerate triangles (→ remeshing) 

- MC does not preserve features 

+ EMC preserves features, but… 

 about 10% more triangles 

 20-40% computational overhead



Literature
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•  Lorensen & Cline, “Marching Cubes: A High Resolution 3D Surface 
Construction Algorithm”, SIGGRAPH 1987 

• Montani et al., “A modified look-up table for implicit disambiguation 
of Marching Cubes”, Visual Computer 1994 

• Kobbelt et al., “Feature Sensitive Surface Extraction from Volume 
Data”, SIGGRAPH 2001



Next Time
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Discrete Differential Geometry



http://cs621.hao-li.com

Thanks!
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http://cs621.hao-li.com

