CSCI 621: Digital Geometry Processing

1.2 Surface Representation \& Data Structures

Hao Li
http://cs621.hao-li.com

Last Time

Geometry Processing

Geometric Representations

triangle mesh

implicit surfaces / particles

volumetric

tetrahedions

Geometric Representations

Surface Representations

High Resolution

Large scenes

Outline

- Parametric Approximations
- Polygonal Meshes
- Data Structures

Parametric Representation

Surface is the range of a function

$$
\mathbf{f}: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \mathcal{S}_{\Omega}=\mathbf{f}(\Omega)
$$

2D example: A Circle

$$
\begin{aligned}
& \mathbf{f}:[0,2 \pi] \rightarrow \mathbb{R}^{2} \\
& \mathbf{f}(t)=\binom{r \cos (t)}{r \sin (t)}
\end{aligned}
$$

Parametric Representation

Surface is the range of a function

$$
\mathbf{f}: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \mathcal{S}_{\Omega}=\mathbf{f}(\Omega)
$$

2D example: Island coast line

$$
\begin{aligned}
& \mathbf{f}:[0,2 \pi] \rightarrow \mathbb{R}^{2} \\
& \mathbf{f}(t)=\binom{?}{?}
\end{aligned}
$$

Piecewise Approximation

Surface is the range of a function

$$
\mathbf{f}: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \mathcal{S}_{\Omega}=\mathbf{f}(\Omega)
$$

2D example: Island coast line

$$
\begin{aligned}
& \mathbf{f}:[0,2 \pi] \rightarrow \mathbb{R}^{2} \\
& \mathbf{f}(t)=\binom{?}{?}
\end{aligned}
$$

Polynomial Approximation

Polynomials are computable functions

$$
f(t)=\sum_{i=0}^{p} c_{i} t^{i}=\sum_{i=0}^{p} \tilde{c}_{i} \phi_{i}(t)
$$

Taylor expansion up to degree p

$$
g(h)=\sum_{i=0}^{p} \frac{1}{i!} g^{(i)}(0) h^{i}+O\left(h^{p+1}\right)
$$

Error for approximation g by polynomial f

$$
\begin{gathered}
f\left(t_{i}\right)=g\left(t_{i}\right), \quad 0 \leq t_{0}<\cdots<t_{p} \leq h \\
|f(t)-g(t)| \leq \frac{1}{(p+1)!} \max f^{(p+1)} \prod_{i=0}^{p}\left(t-t_{i}\right)=O\left(h^{(p+1)}\right)
\end{gathered}
$$

Polynomial Approximation

Approximation error is $O\left(h^{p+1}\right)$

Improve approximation quality by

- increasing p... higher order polynomials
- decreasing $h \ldots$ shorter / more segments

Issues

- smoothness of the target data $\left(\max _{t} f^{(p+1)}(t)\right)$
- smoothness condition between segments

Polygonal Meshes

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O\left(h^{2}\right)$

Polygonal Meshes

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O\left(h^{2}\right)$
- Error inversely proportional to \#faces

Polygonal Meshes

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O\left(h^{2}\right)$
- Error inversely proportional to \#faces
- Arbitrary topology surfaces

Polygonal Meshes

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O\left(h^{2}\right)$
- Error inversely proportional to \#faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces

Polygonal Meshes

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O\left(h^{2}\right)$
- Error inversely proportional to \#faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling

Polygonal Meshes

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O\left(h^{2}\right)$
- Error inversely proportional to \#faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling
- Efficient GPU-based rendering/processing

Outline

- Parametric Approximations
- Polygonal Meshes
- Data Structures

Graph Definitions

- Graph $\{V, E\}$

Graph Definitions

- Graph $\{V, E\}$
- Vertices $V=\{A, B, C, \ldots, K\}$

Graph Definitions

- Graph $\{V, E\}$
- Vertices $V=\{A, B, C, \ldots, K\}$
- Edges $E=\{(A B),(A E),(C D), \ldots\}$

Graph Definitions

- Graph $\{V, E\}$
- Vertices $V=\{A, B, C, \ldots, K\}$
- Edges $E=\{(A B),(A E),(C D), \ldots\}$
- Faces $F=\{(\mathrm{ABE}),(\mathrm{EBF}),(\mathrm{EFIH}), \ldots\}$

Graph Definitions

Vertex degree or valence: number of incident edges

- $\operatorname{deg}(A)=4$
- $\operatorname{deg}(E)=5$

Connectivity

Connected:

Path of edges connecting every two vertices

Connectivity

Connected:

Path of edges connecting
every two vertices

Subgraph:

Graph $\left\{V^{\prime}, E\right\}$ is a subgraph of graph $\{V, E\}$ if V^{\prime} is a subset of V and E^{\prime} is a subset of E incident on V '.

Connectivity

Connected:

Path of edges connecting
every two vertices

Subgraph:

Graph $\left\{V^{\prime}, E\right\}$ is a subgraph of graph $\{V, E\}$ if V^{\prime} is a subset of V and E^{\prime} is a subset of E incident on V '.

Connectivity

Connected:

Path of edges connecting
every two vertices

Subgraph:

Graph $\left\{V^{\prime}, E\right\}$ is a subgraph of graph $\{V, E\}$ if V^{\prime} is a subset of V and E^{\prime} is a subset of E incident on V '.

Connected Components:

Maximally connected subgraph

Connectivity

Connected:

Path of edges connecting
every two vertices

Subgraph:

Graph $\left\{V^{\prime}, E\right\}$ is a subgraph of graph $\{V, E\}$ if V^{\prime} is a subset of V and E^{\prime} is a subset of E incident on V '.

Connected Components:

Maximally connected subgraph

Graph Embedding

Embedding: Graph is embedded in \mathbb{R}^{d}, if

 each vertex is assigned a position in \mathbb{R}^{d}.

Embedding in \mathbb{R}^{2}

Embedding in \mathbb{R}^{3}

Graph Embedding

Embedding: Graph is embedded in \mathbb{R}^{d}, if each vertex is assigned a position in \mathbb{R}^{d}.

Embedding in \mathbb{R}^{3}

Planar Graph

Planar Graph

Graph whose vertices and edges can be embedded in \mathbb{R}^{2} such that its edges do not intersect

Plane Graph

Straight Line Plane Graph

Triangulation

Triangulation:

Straight line plane graph where every face is a triangle

Why?

- simple homogenous data structure
- efficient rendering
- simplifies algorithms
- by definition, triangle is planar
- any polygon can be triangulated

Mesh

- Mesh: straight-line graph embedded in \mathbb{R}^{3}

- Boundary edge: adjacent to exactly 1 face
- Regular edge: adjacent to exactly 2 faces
- Singular edge: adjacent to more than 2 faces

- Closed mesh: mesh with no boundary edges

Polygon

A geometric graph $Q=(V, E)$
with $V=\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{n-1}\right\}$ in $\mathbb{R}^{d}, d \geq 2$
and $E=\left\{\left(\mathbf{p}_{0}, \mathbf{p}_{1}\right) \ldots\left(\mathbf{p}_{n-2}, \mathbf{p}_{n-1}\right)\right\}$ is called a polygon

A polygon is called

- flat, if all edges are on a plane
- closed, if $\mathbf{p}_{0}=\mathbf{p}_{n-1}$

While digital artists call it Wireframe, ...

Polygonal Mesh

A set M of finite number of closed polygons Q_{i} if:

- Intersection of inner polygonal areas is empty
- Intersection of 2 polygons from M is either empty, a point $p \in P$ or an edge $e \in E$
- Every edge $e \in E$ belongs to at least one polygon
- The set of all edges which belong only to one polygon are called edges of the polygonal mesh and are either empty or form a single closed polygon

Polygonal Mesh Notation

Polygonal Mesh Notation

$$
\mathcal{M}=\left(\left\{\mathbf{v}_{i}\right\},\left\{e_{j}\right\},\left\{f_{k}\right\}\right)
$$

geometry $\mathbf{v}_{i} \in \mathbb{R}^{3}$ topology $e_{i}, f_{i} \subset \mathbb{R}^{3}$

Global Topology: Genus

- Genus: Maximal number of closed simple cutting curves that do not disconnect the graph into multiple components.
- Or half the maximal number of closed paths that do no disconnect the mesh
- Informally, the number of holes or handles

Genus 2

Genus 3

Euler Poincaré Formula

- For a closed polygonal mesh of genus g, the relation of the number V of vertices, E of edges, and F of faces is given by Euler's formula:

$$
V-E+F=2(1-g)
$$

- The term $2(1-g)$ is called the Euler characteristic χ

Euler Poincaré Formula

$$
\begin{aligned}
& V-E+F=2(1-g) \\
& 4-6+4=2(1-0)
\end{aligned}
$$

Euler Poincaré Formula

$$
\begin{aligned}
& V-E+F=2(1-g) \\
& 16-32+16=2(1-1)
\end{aligned}
$$

Average Valence of Closed Triangle Mesh

Theorem: Average vertex degree in a closed manifold triangle mesh is ~ 6

Proof: Each face has 3 edges and each edge is counted twice: $3 \mathrm{~F}=2 \mathrm{E}$
by Euler's formula: $\mathrm{V}+\mathrm{F}-\mathrm{E}=\mathrm{V}+2 \mathrm{E} / 3-\mathrm{E}=2-2 \mathrm{~g}$
Thus E $=3(\mathrm{~V}-2+2 \mathrm{~g})$
So average degree $=2 \mathrm{E} / \mathrm{V}=6(\mathrm{~V}-2+2 \mathrm{~g}) / \mathrm{V} \sim 6$ for large V

Euler Consequences

Triangle mesh statistics

- $F \approx 2 V$
- $E \approx 3 V$
- Average valence $=6$

Quad mesh statistics

- $F \approx V$
- $E \approx 2 V$
- Average valence $=4$

Euler Characteristic

Sphere

$\chi=2$

Torus

$\chi=0$

Moebius Strip
Klein Bottle

$$
\chi=0
$$

$$
\chi=0
$$

How many pentagons?

How many pentagons?

Any closed surface of genus $\mathbf{0}$ consisting only of hexagons and pentagons and where every vertex has valence $\mathbf{3}$ must have exactly 12 pentagons

Two-Manifold Surfaces

Local neighborhoods are disk-shaped

$$
\mathbf{f}\left(D_{\epsilon}[u, v]\right)=D_{\delta}[\mathbf{f}(u, v)]
$$

Guarantees meaningful neighbor enumeration

- required by most algorithms

Non-manifold Examples:

Outline

- Parametric Approximations
- Polygonal Meshes
- Data Structures

Mesh Data Structures

- How to store geometry \& connectivity?
- compact storage and file formats
- Efficient algorithms on meshes
- Time-critical operations
- All vertices/edges of a face
- All incident vertices/edges/faces of a vertex

Data Structures

What should be stored?

- Geometry: 3D vertex coordinates
- Connectivity: Vertex adjacency
- Attributes:
- normals, color, texture coordinates, etc.
- Per Vertex, per face, per edge

Data Structures

What should it support?

- Rendering
- Queries
- What are the vertices of face \#3?
- Is vertex \#6 adjacent to vertex \#12?
- Which faces are adjacent to face \#7?
- Modifications
- Remove/add a vertex/face
- Vertex split, edge collapse

Data Structures

Different Data Structures:

- Time to construct (preprocessing)
- Time to answer a query
- Random access to vertices/edges/faces
- Fast mesh traversal
- Fast Neighborhood query
- Time to perform an operation
- split/merge
- Space complexity
- Redundancy

Data Structures

Different Data Structures:

- Different topological data storage
- Most important ones are face and edge-based (since they encode connectivity)
- Design decision ~ memory/speed trade-off

Face Set (STL)

Face:

- 3 vertex positions

Triangles						
$\begin{array}{llll}\mathrm{X}_{11} & \mathrm{Y}_{11} & \mathrm{Z}_{11}\end{array}$	x_{12}	Y12	z_{12}	x_{13}	Y13	Z_{13}
$\begin{array}{llll}\mathrm{X}_{21} & \mathrm{Y}_{21} & \mathrm{Z}_{21}\end{array}$	X_{22}	Y22		X_{23}	Y23	Z_{23}
-••		-••			-••	
$\begin{array}{llll}\mathrm{X}_{\mathrm{F} 1} & \mathrm{Y}_{\mathrm{F} 1} & \mathrm{Z}_{\mathrm{F} 1}\end{array}$	$\mathrm{X}_{\mathrm{F} 2}$	YF2	$\mathrm{Z}_{\mathrm{F} 2}$	$\mathrm{X}_{\mathrm{F} 3}$	Yf3	$\mathrm{Z}_{\mathrm{F} 3}$

9*4 = 36 B/f (single precision) 72 B/v (Euler Poincaré)

No explicit connectivity

Shared Vertex (OBJ,OFF)

Indexed Face List:

- Vertex: position
- Face: Vertex Indices

Vertices
$\mathrm{x}_{1} \quad \mathrm{y}_{1} \quad \mathrm{z}_{1}$
\ldots
$\mathrm{x}_{\mathrm{V}} \quad \mathrm{yv}_{\mathrm{V}} \quad \mathrm{z}_{\mathrm{V}}$
:---:
i_{11}
\ldots
\ldots
$i_{\mathrm{F} 1}$

$12 B / v+12 B / f=36 B / v$
No explicit adjacency info

Face-Based Connectivity

Vertex:

- position
- 1 face

Face:

- 3 vertices
- 3 face neighbors

64 B/v
No edges: Special case handling for arbitrary polygons

Edges always have the same topological structure

Efficient handling of polygons with variable valence

(Winged) Edge-Based Connectivity

Vertex:

- position
- 1 edge

Edge:

- 2 vertices
- 2 faces
- 4 edges

120 B/v

Face:

- 1 edges

Edges have no orientation: special case handling for neighbors

Halfedge-Based Connectivity

Vertex:

- position
- 1 halfedge

Edge:

- 1 vertex
- 1 face
- 1, 2, or 3 halfedges

Face:

- 1 halfedge

96 to 144 B/v
Edges have orientation: Noruntime overhead due to arbitrary faces

Arbitrary Faces during Modeling

One-Ring Traversal

1. Start at vertex

One-Ring Traversal

1. Start at vertex
2. Outgoing halfedge

One-Ring Traversal

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge

One-Ring Traversal

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge

One-Ring Traversal

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
5. Opposite

One-Ring Traversal

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
5. Opposite
6. Next
7. ...

Halfedge datastructure Libraries

CGAL

- www.cgal.org
- Computational Geometry

- Free for non-commercial use

OpenMesh

- www.openmesh.org
- Mesh processing
- Free, LGPL license

Why Openmesh?

Flexible / Lightweight

- Random access to vertices/edges/faces
- Arbitrary scalar types
- Arrays or lists as underlying kernels

Efficient in space and time

- Dynamic memory management for array-based meshes (not in CGAL)
- Extendable to specialized kernels for non-manifold meshes (not in CGAL)

Easy to Use

Literature

- Textbook: Chapter
- http://www.openmesh.org
- Kettner, Using generic programming for designing a data structure for polyhedral surfaces, Symp. on Comp. Geom., 1998
- Campagna et al., Directed Edges - A Scalable Representation for Triangle Meshes, Journal of Graphics Tools 4(3), 1998
- Botsch et al., OpenMesh - A generic and efficient polygon mesh data structure, OpenSG Symp. 2002

TODO

Learn the terms and notations

Next Next Time

- Explicit \& Implicit Surfaces
- Exercise 1: Getting Started with Mesh Processing

http://cs621.hao-li.com

Thanks!

