CSCI 621: Digital Geometry Processing

Exercise 4. Surface Quality and Smoothing

Zeng Huang
http://cs621.hao-li.com

Surface Smoothing

- Spectral analysis
- Diffusion flow
- Uniform Laplace operator
- Laplacian-Beltrami operator
- Energy minimization

Uniform Laplacian Surface Smoothing

- Uniform Laplace operator $L_{U}(v)=\left(\frac{1}{n} \sum_{i} v_{i}\right)-v$
- Mesh smoothing $v^{\prime}=v+\frac{1}{2} \cdot L_{U}(v)$
- Implement uniform Laplace operator in QualityViewer::calc_uniform_mean_curvat ure () in QualityViewer.cc
- Implement uniform Laplacian smoothing SmoothViewer::uniform_smooth() in SmoothViewer.cc

Uniform Laplacian Surface Smoothing

Triangle Quality

- Assess triangle quality by the circumradius to the minimum edge length ratio
- Circumradius is computed by $A=\frac{|a| \cdot|b| \cdot|c|}{4 \cdot r}=\frac{|a \times b|}{2}$
- Implement in QualityViewer: : calc_triangle_quality() in QualityViewer.cc

Triangle Quality

Laplace-Beltrami curvature and smoothing

- Laplace-Beltrami Operator

$$
L_{B}(v)=\frac{1}{2 A} \sum_{i}\left(\left(\cot \alpha_{i}+\cot \beta_{i}\right)\left(v_{i}-v\right)\right)
$$

- Compute mean curvature using Laplace-Beltrami weights in QualityViewer: : calc_mean_curvature () in QualityViewer.cc
- Implement smoothing in SmoothViewer: : smooth () in SmoothViewer.cc

Laplace-Beltrami curvature and smoothing

Gaussian Curvature

- Gaussian curvature $G=\left(2 \pi-\sum_{j} \theta_{j}\right) / A$
- QualityViewer::calc_gauss_curvature() in QualityViewer.cc

Gaussian Curvature

Submission

- Deadline: Mar 19, 2019 12:00 pm
- Upload a .zip compressed file named "Exercise4YourName.zip" to Blackboard.
- Include a "read.txt" file describing how you solve each exercise and the encountered problems

http://cs621.hao-li.com

Thanks!

