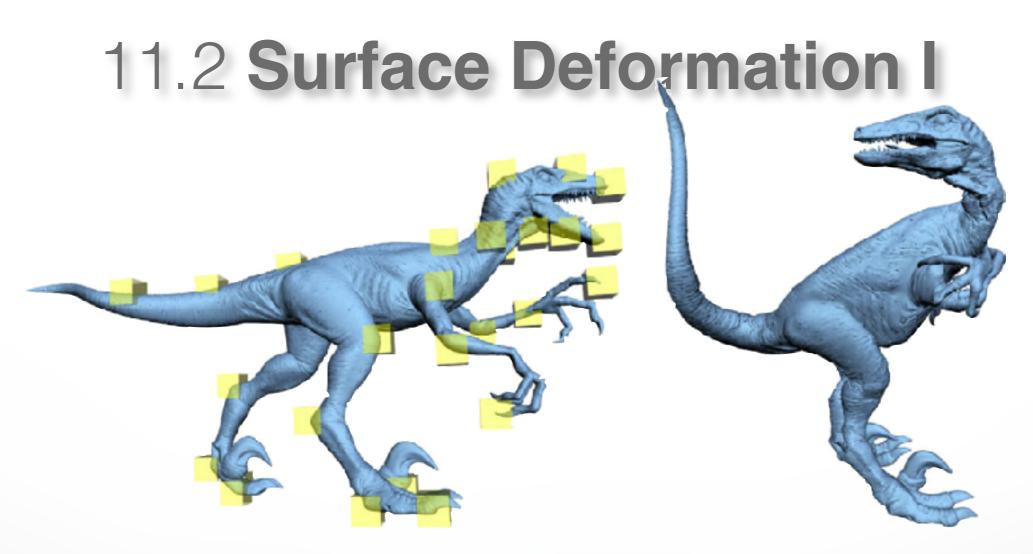
CSCI 621: Digital Geometry Processing



Hao Li

http://cs621.hao-li.com

Acknowledgement

Images and Slides are courtesy of

- Prof. Mario Botsch, Bielefeld University
- Prof. Olga Sorkine, ETH Zurich

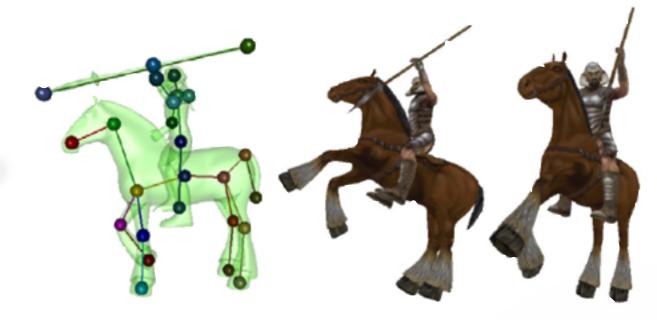
Shapes & Deformation

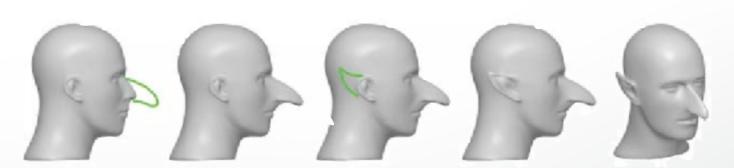
Why deformations?

- Sculpting, customization
- Character posing, animation

Criteria?

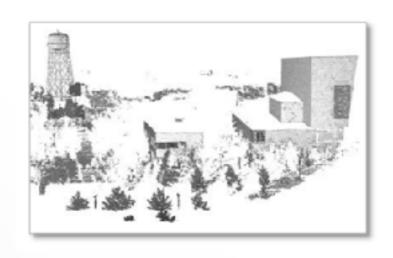
- Intuitive behavior and interface
- semantics
- Interactivity

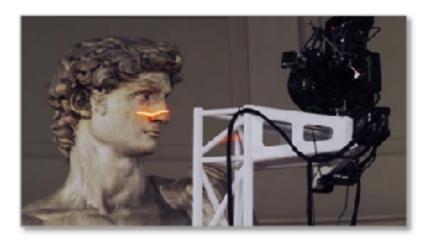




Shapes & Deformation

- Manually modeled and scanned shape data
- Continuous and discrete shape representations





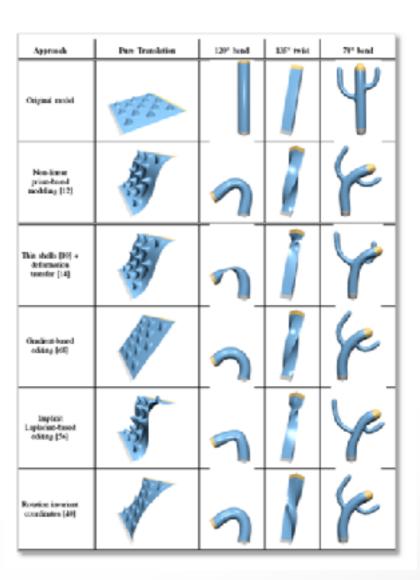
Goals

State of research in shape editing

Discuss practical considerations

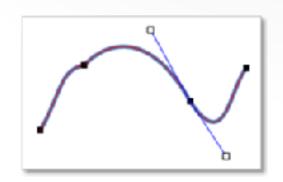
- Flexibility
- Numerical issues
- Admissible interfaces

Comparison, tradeoffs



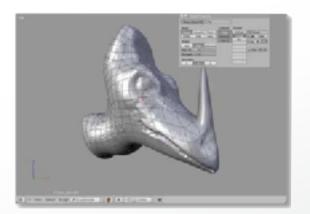
Continuous/Analytical Surfaces

 Tensor product surfaces (e.g. Bézier, B-Spline, NURBS)



Subdivision Surfaces

Editability is inherent to the representation

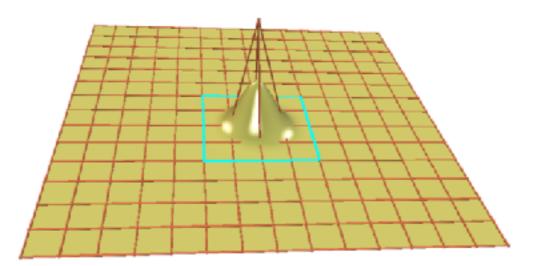


Spline Surfaces

Tensor product surfaces ("curves of curves")

Rectangular grid of control points

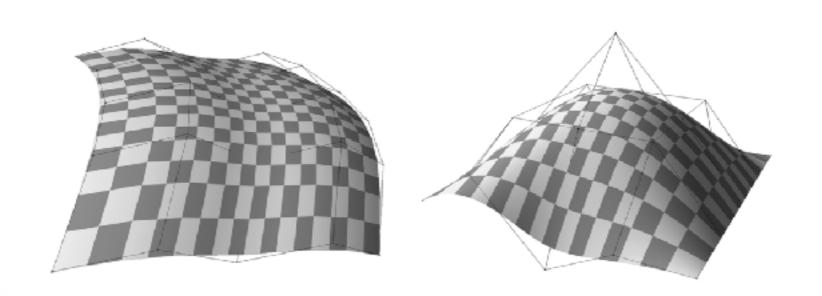
$$\mathbf{p}(u,v) = \sum_{i=0}^k \sum_{j=0}^l \mathbf{p}_{ij} N_i^n(u) N_j^n(v)$$



Spline Surfaces

Tensor product surfaces ("curves of curves")

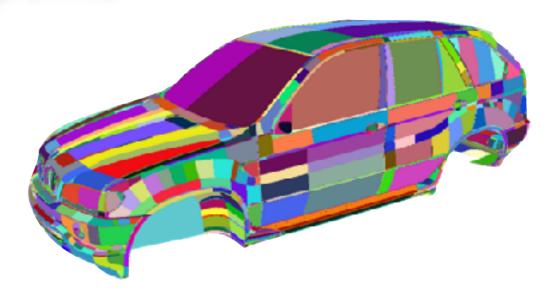
- Rectangular grid of control points
- Rectangular surface patch



Spline Surfaces

Tensor product surfaces ("curves of curves")

- Rectangular grid of control points
- Rectangular surface patch



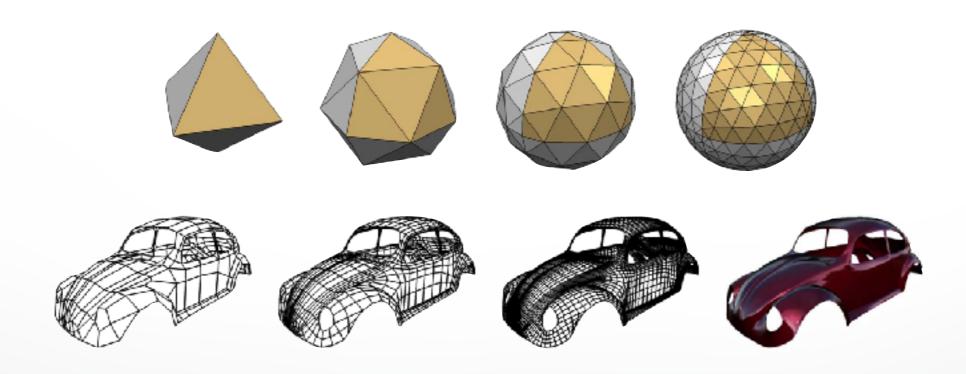
Problems:

- Many patches for complex models
- Smoothness across patch boundaries
- Trimming for non-rectangular patches

Subdivision Surfaces

Generalization of spline curves/surfaces

- Arbitrary control meshes
- Successive refinement (subdivision)
- Converges to smooth limit surface
- Connection between splines and meshes

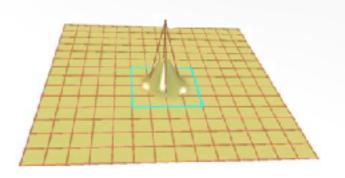


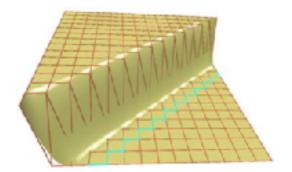
Spline & Subdivision Surfaces

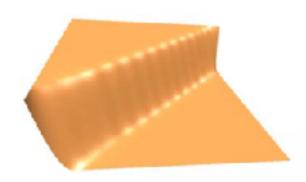
Basis functions are smooth bumps

- Fixed support
- Fixed control grid

- Initial patch layout is crucial
- Requires experts!





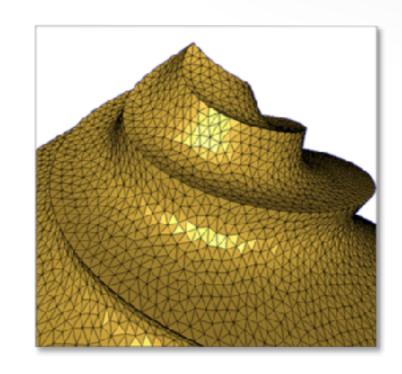


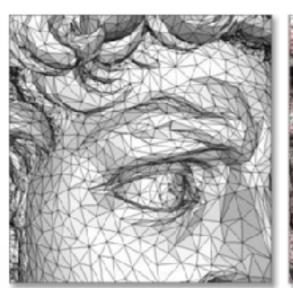
De-couple deformation from surface representation!

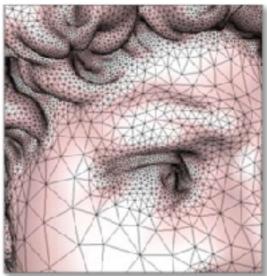
Discrete Surfaces: Point Sets, Meshes

- Flexible
- Suitable for highly detailed scanned data
- No analytic surface
- No inherent "editability"

Mesh Editing



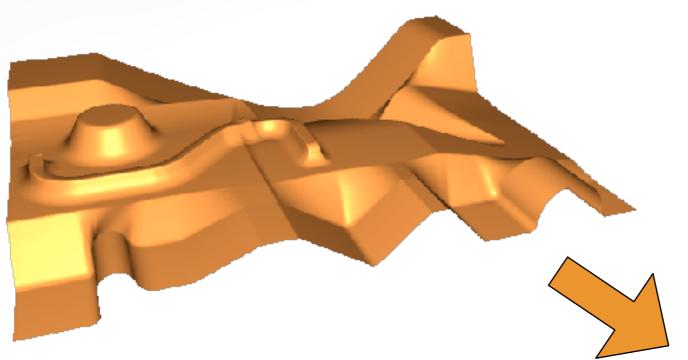




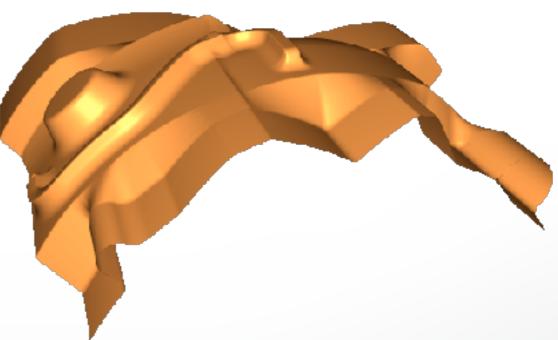
Outline

- Surface-Based Deformation
 - Linear Methods
 - Non-Linear Methods
- Spatial Deformation

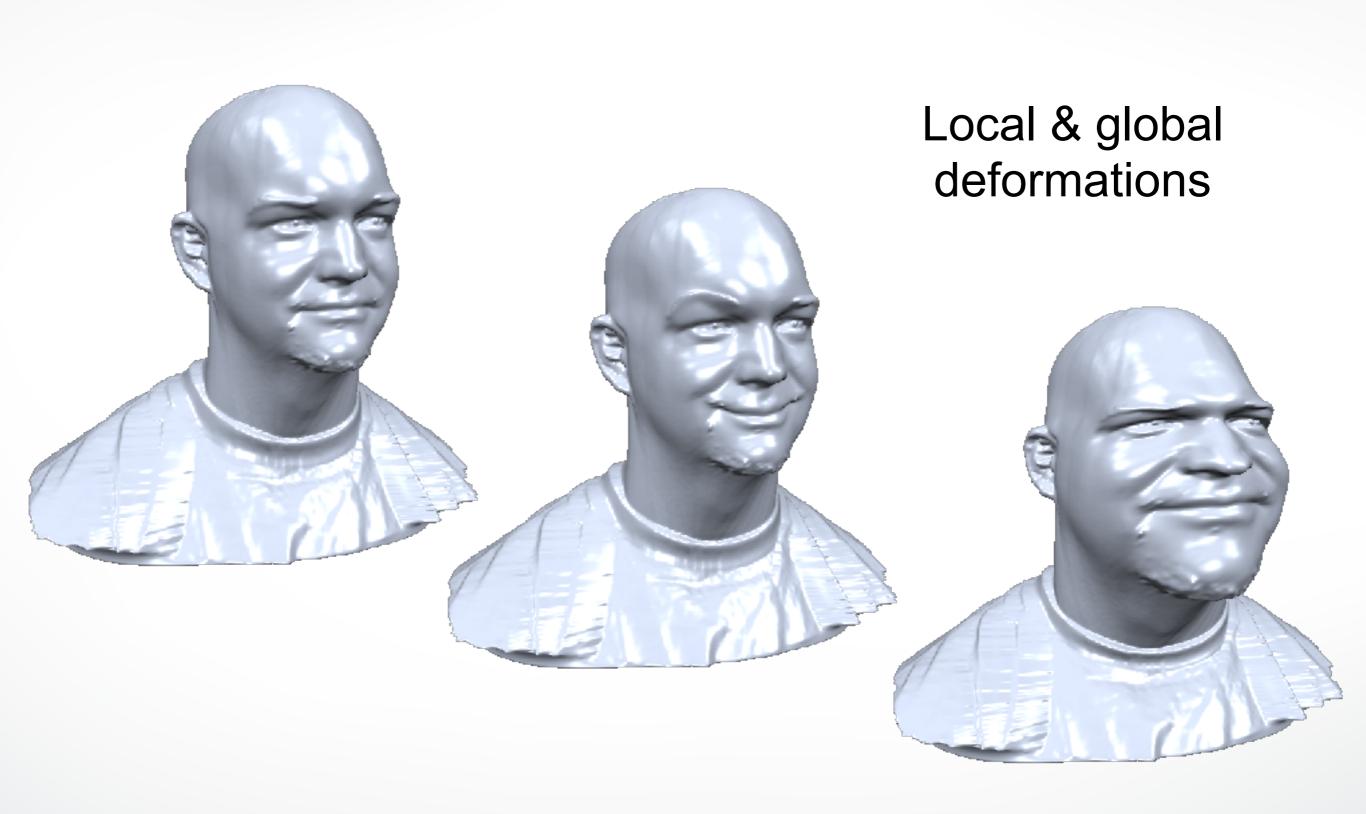
Mesh Deformation



Global deformation with intuitive detail preservation



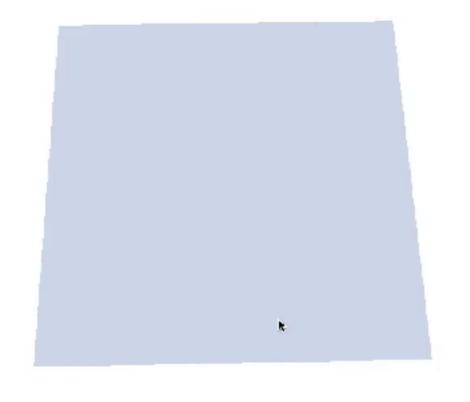
Mesh Deformation



Linear Surface-Based Deformation

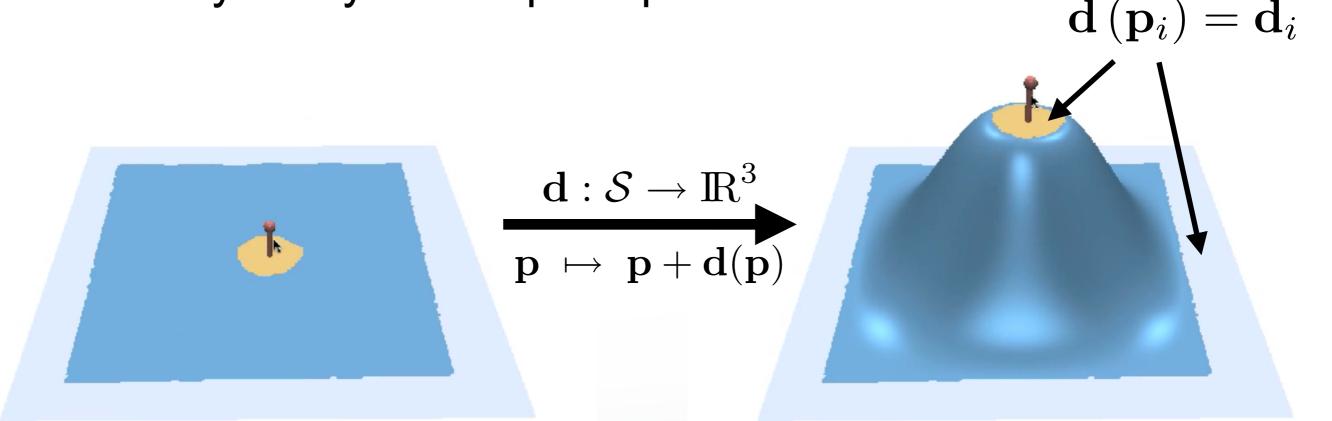
- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

Modeling Metaphor



Modeling Metaphor

- Mesh deformation by displacement function d
 - Interpolate prescribed constraints
 - Smooth, intuitive deformation
 - → Physically-based principles



Shell Deformation Energy

Stretching

- Change of local distances
- Captured by 1st fundamental form

Bending

- Change of local curvature
- Captured by 2nd fundamental form

$$\left(\int_{\Omega}k_{s}\left\Vert \mathbf{I}-\mathbf{ar{I}}
ight\Vert ^{2}
ight)$$

$$\mathbf{I} = \left[egin{array}{ccc} \mathbf{x}_u^T \mathbf{x}_u & \mathbf{x}_u^T \mathbf{x}_v \ \mathbf{x}_v^T \mathbf{x}_u & \mathbf{x}_v^T \mathbf{x}_v \end{array}
ight]$$

$$\int_{\Omega} k_b \left\| \mathbf{I} - \bar{\mathbf{I}} \right\|^2$$

$$\mathbf{II} = \left[egin{array}{ccc} \mathbf{x}_{uu}^T \mathbf{n} & \mathbf{x}_{uv}^T \mathbf{n} \ \mathbf{x}_{vu}^T \mathbf{n} & \mathbf{x}_{vv}^T \mathbf{n} \end{array}
ight]$$

- Stretching & bending is sufficient
 - Differential geometry: "1st and 2nd fundamental forms determine a surface up to rigid motion."

Physically-Based Deformation

Nonlinear stretching & bending energies

$$\int_{\Omega} k_s ||\mathbf{I} - \mathbf{I}'||^2 + k_b ||\mathbf{I} - \mathbf{I}'||^2 \, du dv$$
stretching bending

Linearize terms → Quadratic energy

$$\int_{\Omega} k_s \underbrace{\left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2\right)}_{\text{stretching}} + k_b \underbrace{\left(\|\mathbf{d}_{uu}\|^2 + 2\|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2\right)}_{\text{bending}} du dv$$

Physically-Based Deformation

Minimize linearized bending energy

$$E(\mathbf{d}) = \int_{\mathcal{S}} \|\mathbf{d}_{uu}\|^2 + 2\|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 du dv \rightarrow \min$$

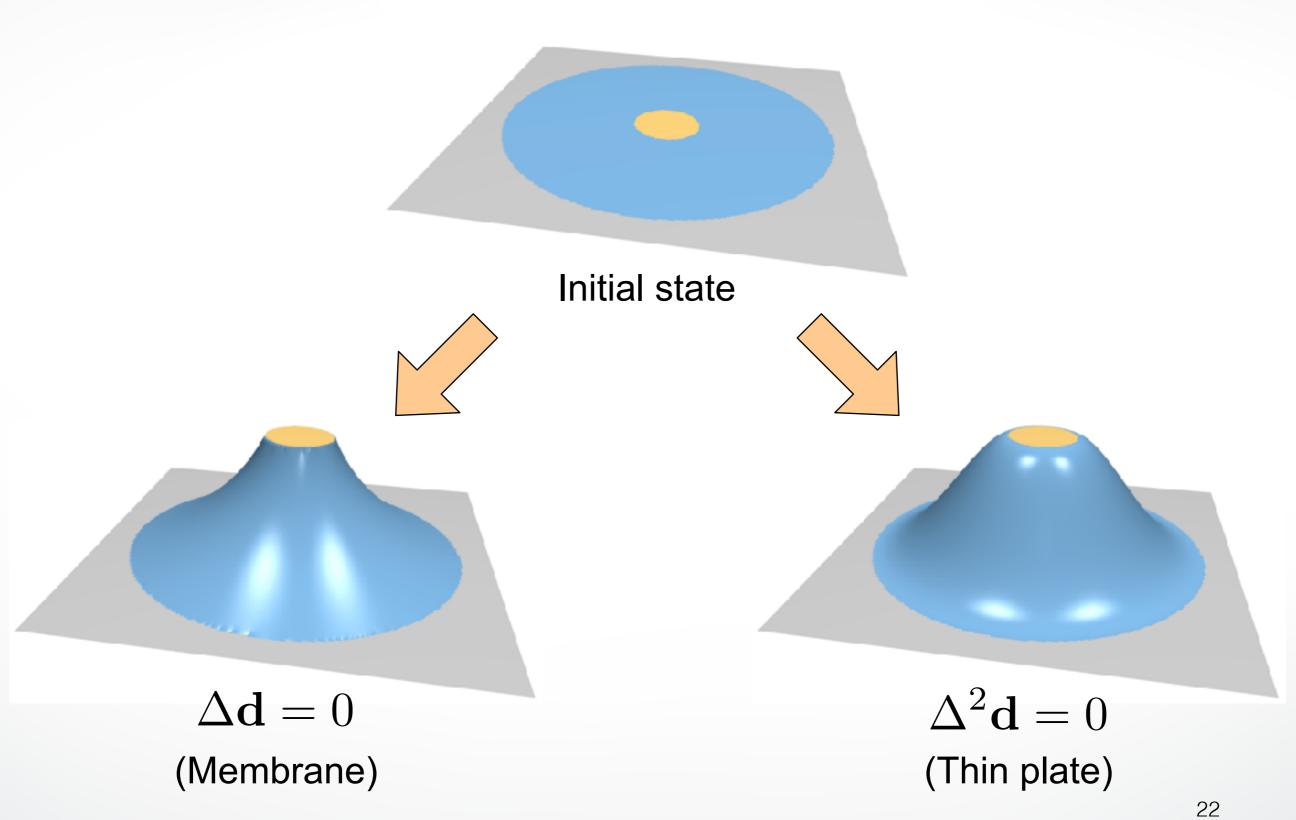
$$f(x) \rightarrow \min$$

Variational calculus → Euler-Lagrange PDE

$$\Delta^2 \mathbf{d} := \mathbf{d}_{uuuu} + 2\mathbf{d}_{uuvv} + \mathbf{d}_{vvvv} = 0$$
 $f'(x) = 0$

→ "Best" deformation that satisfies constraints

Deformation Energies



PDE Discretization

Euler-Lagrange PDE

$$\Delta^2 \mathbf{d} = \mathbf{0}$$

$$\mathbf{d} = \mathbf{0}$$

$$\mathbf{d} = \delta \mathbf{h}$$

23

Laplace discretization

$$\Delta \mathbf{d}_{i} = \frac{1}{2A_{i}} \sum_{j \in \mathcal{N}_{i}} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{d}_{j} - \mathbf{d}_{i})$$

$$\Delta^{2} \mathbf{d}_{i} = \Delta(\Delta \mathbf{d}_{i})$$

$$\mathbf{x}_{j}$$

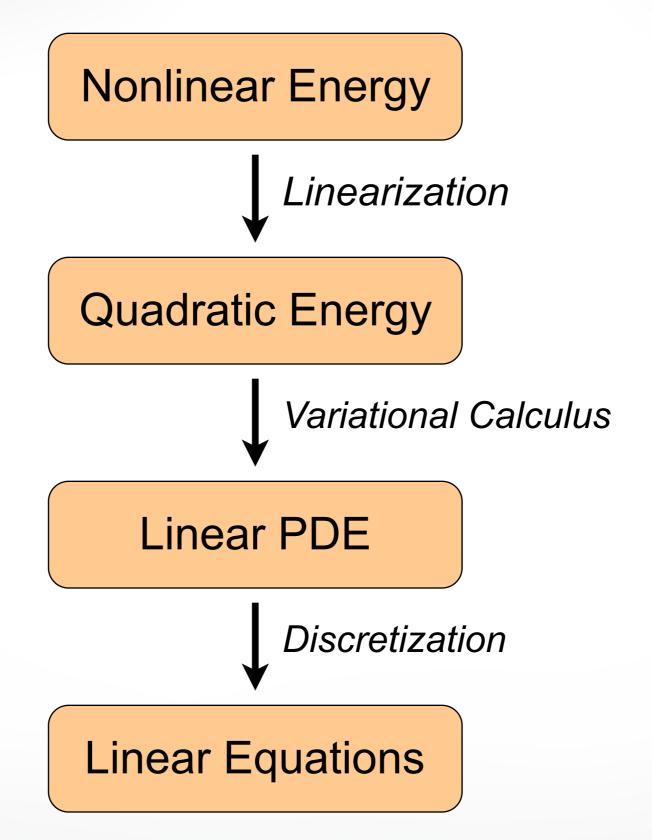
Linear System

Sparse linear system (19 nz/row)

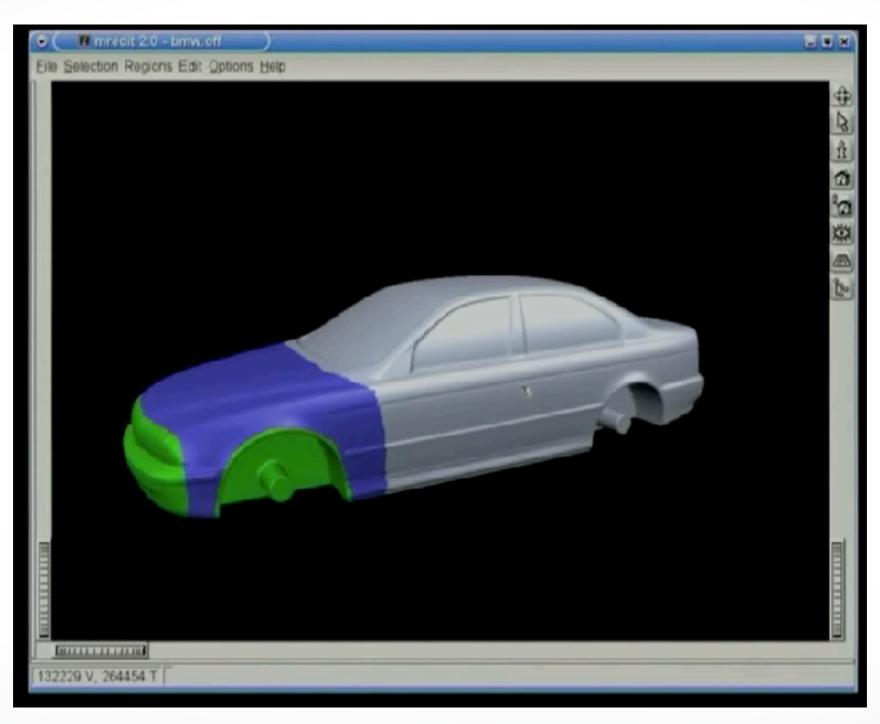
$$\begin{pmatrix} \mathbf{\Delta}^2 \\ \mathbf{0} & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \vdots \\ \mathbf{d}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{\delta} \mathbf{h}_i \end{pmatrix}$$

- Turn into symmetric positive definite system
- Solve this system each frame
 - Use efficient linear solvers !!!
 - Sparse Cholesky factorization
 - See book for details

Derivation Steps



CAD-Like Deformation



[Botsch & Kobbelt, SIGGRAPH 04]

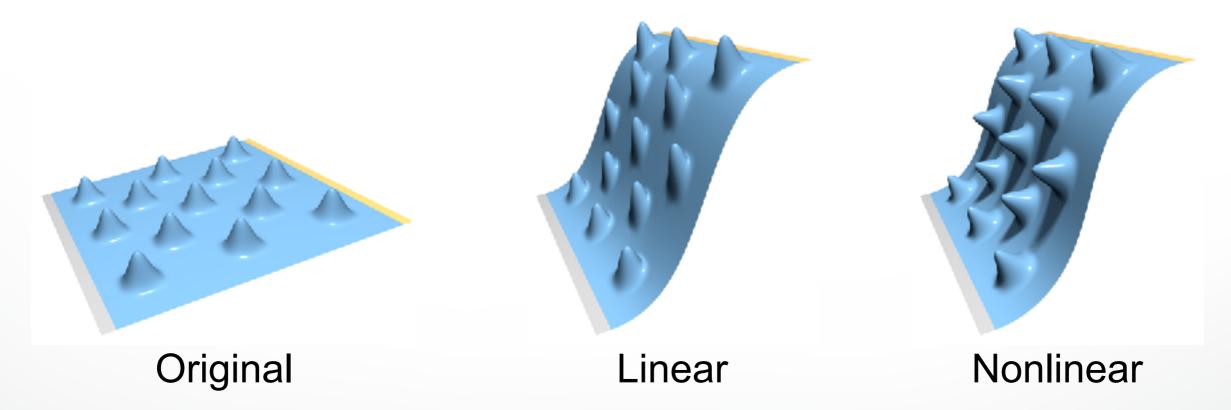
Facial Animation

Linear Surface-Based Deformation

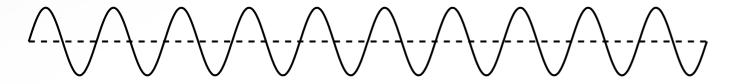
- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

Multiresolution Modeling

- Even pure translations induce local rotations!
 - → Inherently non-linear coupling
- Alternative approach
 - Linear deformation + multi-scale decomposition...

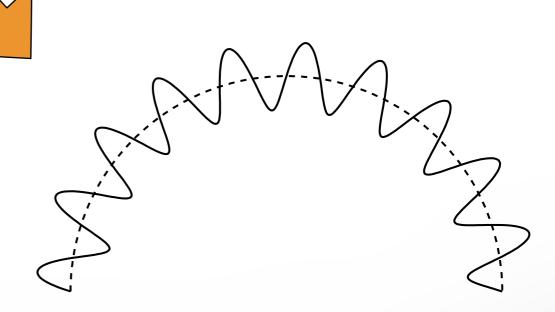


Multiresolution Editing



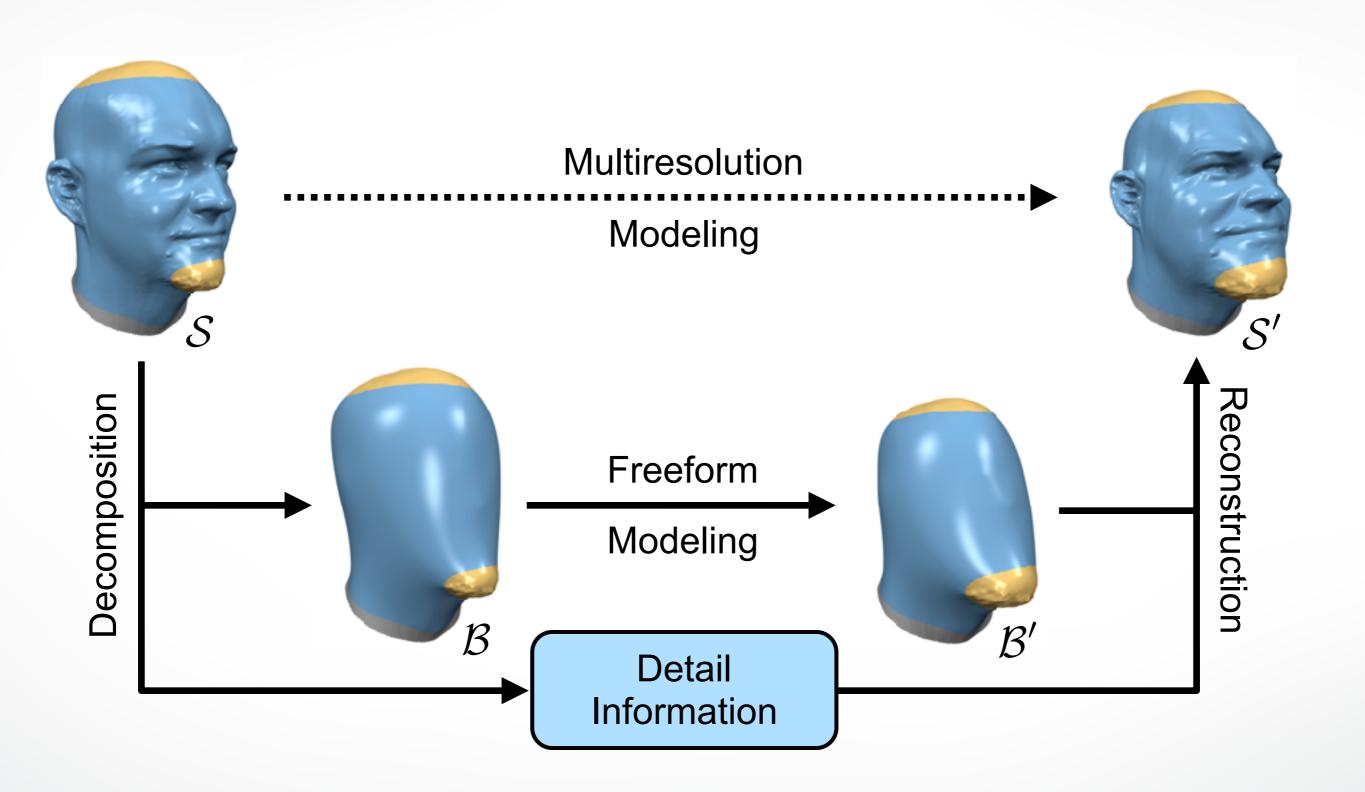
Frequency decomposition

Change low frequencies

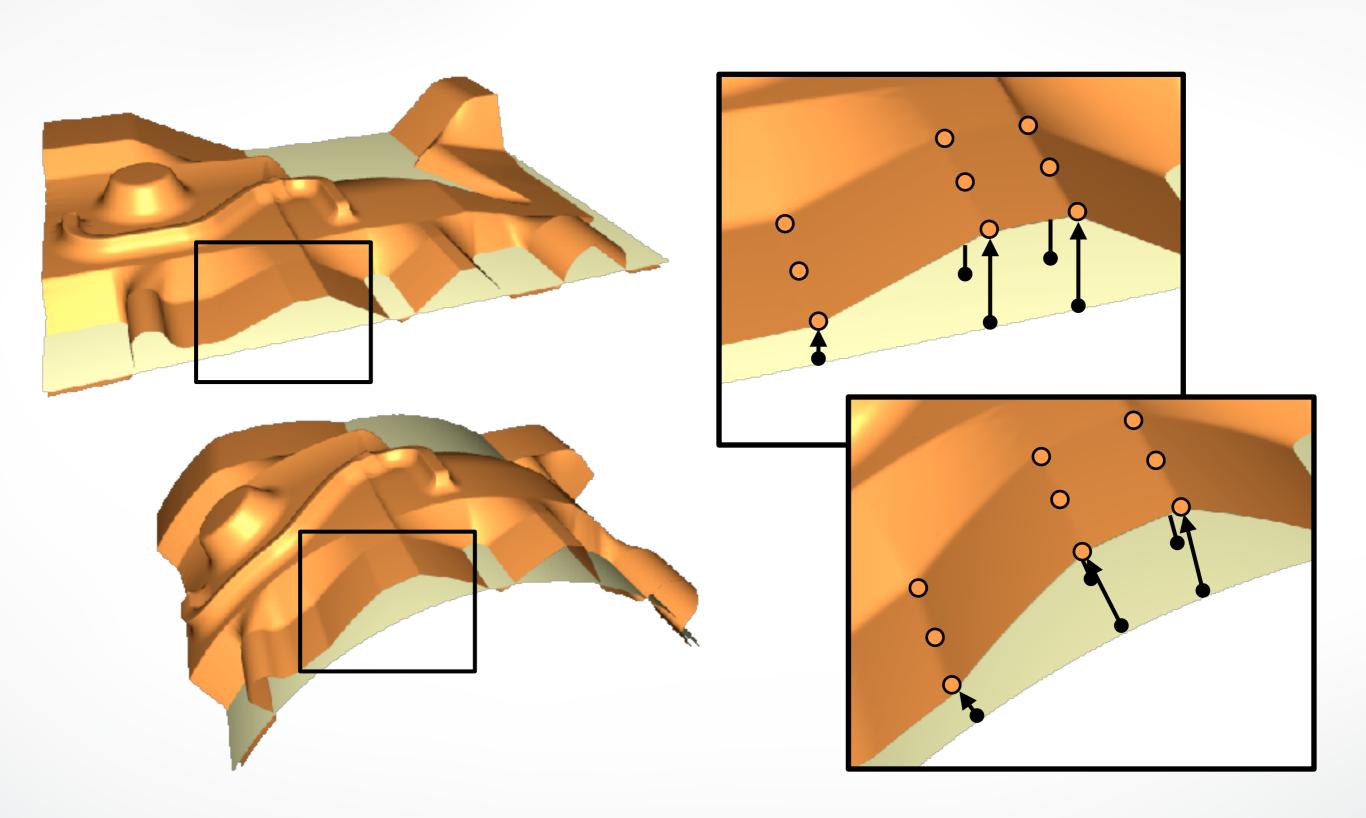


Add high frequency details, stored in local frames

Multiresolution Editing

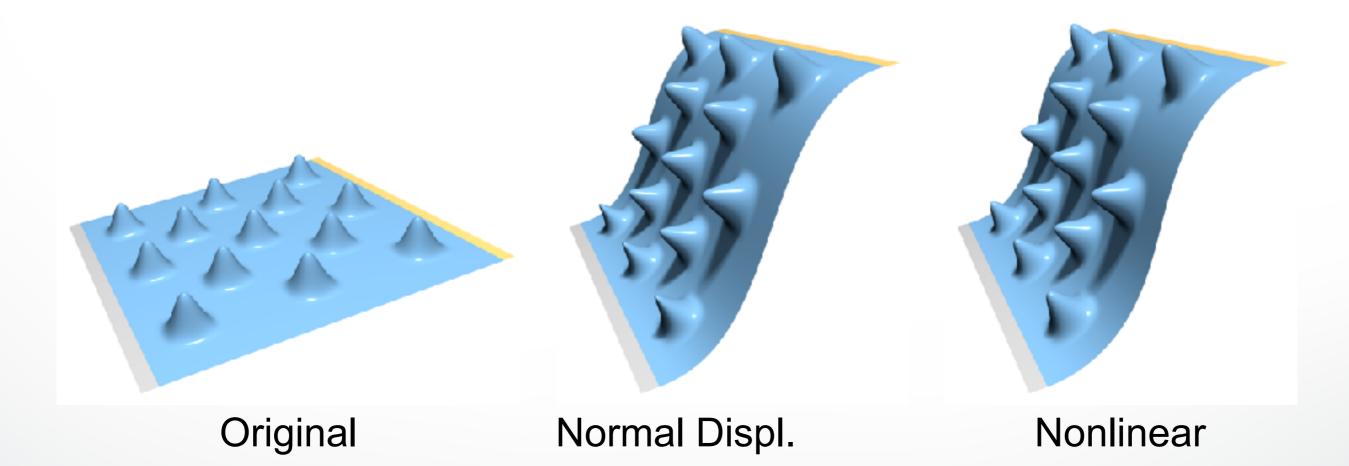


Normal Displacements



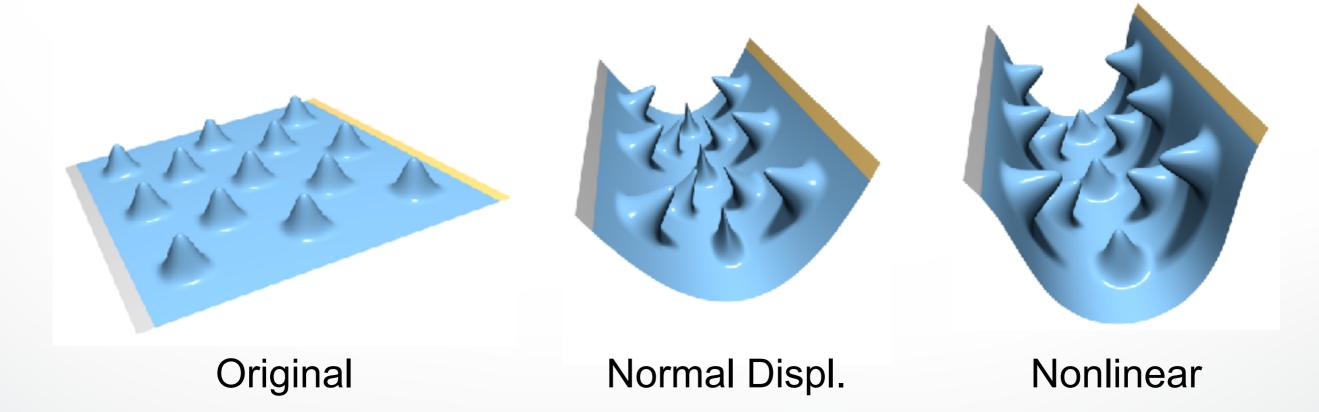
Limitations

- Neighboring displacements are not coupled
 - Surface bending changes their angle
 - Leads to volume changes or self-intersections



Limitations

- Neighboring displacements are not coupled
 - Surface bending changes their angle
 - Leads to volume changes or self-intersections



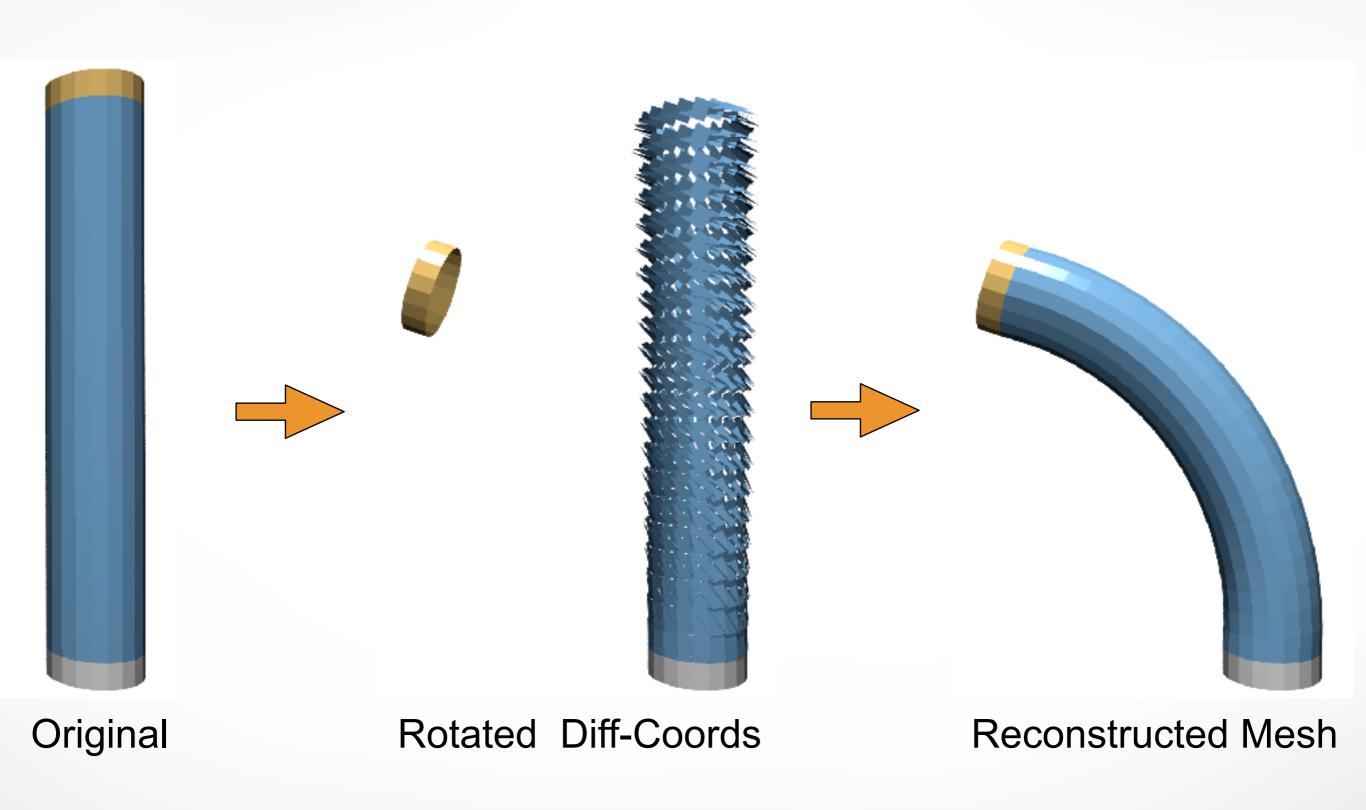
Limitations

- Neighboring displacements are not coupled
 - Surface bending changes their angle
 - Leads to volume changes or self-intersections
- Multiresolution hierarchy difficult to compute
 - Complex topology
 - Complex geometry
 - Might require more hierarchy levels

Linear Surface-Based Deformation

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

- 1. Manipulate <u>differential coordinates</u> instead of spatial coordinates
 - Gradients, Laplacians, local frames
 - Intuition: Close connection to surface normal
- 2. Find mesh with desired differential coords
 - Cannot be solved exactly
 - Formulate as energy minimization



- Which differential coordinate δ_i ?
 - Gradients
 - Laplacians

— ...

- How to get local transformations $T_i(\boldsymbol{\delta}_i)$?
 - Smooth propagation
 - Implicit optimization

— ...

Manipulate gradient of a function (e.g. a surface)

$$\mathbf{g} = \nabla \mathbf{f} \qquad \mathbf{g} \mapsto \mathbf{T}(\mathbf{g})$$

Find function f' whose gradient is (close to) g'=T(g)

$$\mathbf{f}' = \underset{\mathbf{f}}{\operatorname{argmin}} \int_{\Omega} \|\nabla \mathbf{f} - \mathbf{T}(\mathbf{g})\|^2 du dv$$

Variational calculus → Euler-Lagrange PDE

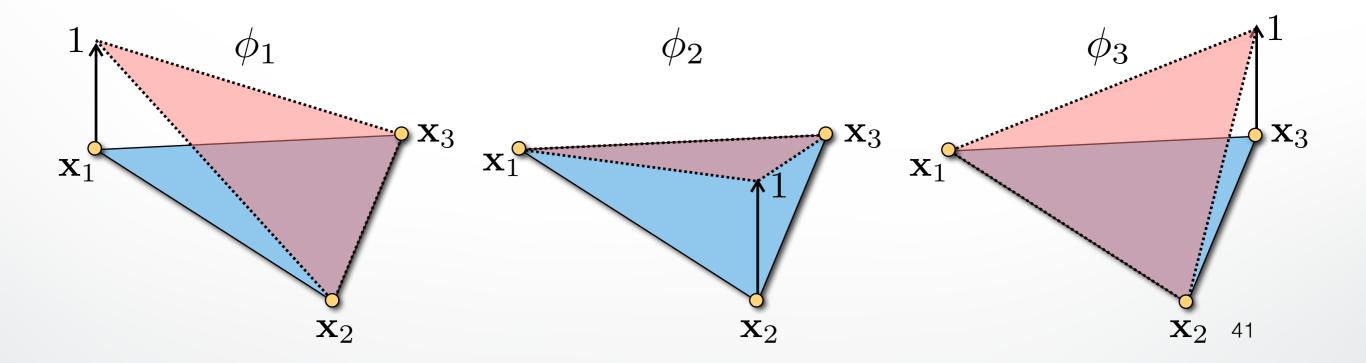
$$\Delta \mathbf{f}' = \operatorname{div} \mathbf{T}(\mathbf{g})$$

Consider piecewise linear coordinate function

$$\mathbf{p}(u,v) = \sum_{v_i} \mathbf{p}_i \cdot \phi_i(u,v)$$

Its gradient is

$$\nabla \mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \nabla \phi_i(u, v)$$



Consider piecewise linear coordinate function

$$\mathbf{p}(u,v) = \sum_{v_i} \mathbf{p}_i \cdot \phi_i(u,v)$$

Its gradient is

$$\nabla \mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \nabla \phi_i(u, v)$$

It is constant per triangle

$$|\nabla \mathbf{p}|_{f_i} =: \mathbf{g}_j \in \mathbb{R}^{3 \times 3}$$

Gradient of coordinate function p

$$\begin{pmatrix} \mathbf{g}_1 \\ \vdots \\ \mathbf{g}_F \end{pmatrix} = \mathbf{G} \begin{pmatrix} \mathbf{p}_1^T \\ \vdots \\ \mathbf{p}_V^T \end{pmatrix}$$

Manipulate per-face gradients

$$\mathbf{g}_j \mapsto \mathbf{T}_j(\mathbf{g}_j)$$

- Reconstruct mesh from new gradients
 - Overdetermined $(3F \times V)$ system
 - Weighted least squares system
 - ightharpoonupLinear Poisson system $\Delta \mathbf{p}' = \operatorname{div} \mathbf{T}(\mathbf{g})$

$$\mathbf{G} \cdot \begin{pmatrix} \mathbf{p}_1'^T \\ \vdots \\ \mathbf{p}_V'^T \end{pmatrix} = \begin{pmatrix} \mathbf{T}_1(\mathbf{g}_1) \\ \vdots \\ \mathbf{T}_F(\mathbf{g}_F) \end{pmatrix}$$

$$\operatorname{div} \nabla = \Delta \begin{pmatrix} \mathbf{T}_1(\mathbf{g}_1) \\ \vdots \\ \mathbf{T}_F(\mathbf{g}_F) \end{pmatrix}$$

Laplacian-Based Editing

Manipulate Laplacians field of a surface

$$\mathbf{l} = \Delta(\mathbf{p}) , \quad \mathbf{l} \mapsto \mathbf{T}(\mathbf{l})$$

• Find surface whose Laplacian is (close to) $\delta'=T(1)$

$$\mathbf{p}' = \underset{\mathbf{p}}{\operatorname{argmin}} \int_{\Omega} \|\Delta \mathbf{p} - \mathbf{T}(\mathbf{l})\|^2 du dv$$

Variational calculus yields Euler-Lagrange PDE

$$\Delta^2 \mathbf{p}' = \Delta \mathbf{T}(\mathbf{l})$$

soft constraints

- Which differential coordinate δ_i ?
 - Gradients
 - Laplacians

— ...

- How to get local transformations $T_i(\delta_i)$?
 - Smooth propagation
 - Implicit optimization

– ...

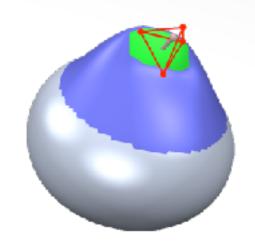
Smooth Propagation

- 1. Compute handle's deformation gradient
- 2. Extract rotation and scale/shear components
- 3. Propagate damped rotations over ROI

Deformation Gradient

Handle has been transformed <u>affinely</u>

$$\mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{t}$$



Deformation gradient is

$$\nabla \mathbf{T}(\mathbf{x}) = \mathbf{A}$$

Extract rotation R and scale/shear S

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \quad \Rightarrow \quad \mathbf{R} = \mathbf{U} \mathbf{V}^T, \; \mathbf{S} = \mathbf{V} \mathbf{\Sigma} \mathbf{V}^T$$

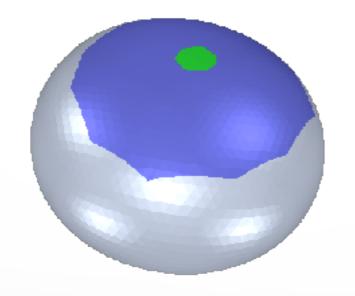
Smooth Propagation

Construct smooth scalar field [0,1]

• $s(\mathbf{x})=1$: Full deformation (handle)

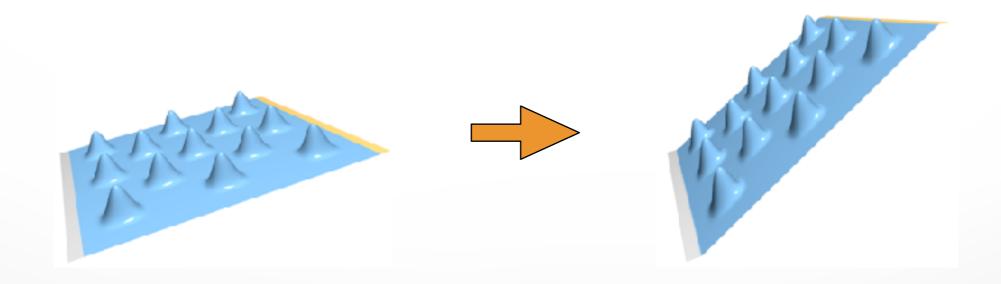
• $s(\mathbf{x})=0$: No deformation (fixed part)

• $s(\mathbf{x}) \in (0,1)$: Damp handle transformation (in between)



Limitations

- Differential coordinates work well for rotations
 - Represented by deformation gradient
- Translations don't change deformation gradient
 - Translations don't change differential coordinates
 - "Translation insensitivity"



Implicit Optimization

• Optimize for positions \mathbf{p}_i ' & transformations \mathbf{T}_i

$$\Delta^{2} \begin{pmatrix} \vdots \\ \mathbf{p}'_{i} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \Delta \mathbf{T}_{i}(\mathbf{l}_{i}) \\ \vdots \end{pmatrix} \longleftrightarrow \mathbf{T}_{i}(\mathbf{p}_{i} - \mathbf{p}_{j}) = \mathbf{p}'_{i} - \mathbf{p}'_{j}$$

Linearize rotation/scale → one linear system

$$\mathbf{R}\mathbf{x} \approx \mathbf{x} \mathbf{T}_{i} (\mathbf{r} \times \mathbf{x}) r_{\overline{3}} \begin{pmatrix} -n_{3} & r_{2}r_{3} \\ s_{3} & -n_{1} \\ -r_{2} & r_{1}r_{2} & s_{1} \end{pmatrix} \mathbf{x}$$

Laplacian Surface Editing

Connection to Shells?

Neglect local transformations T_i for a moment...

$$\int \|\Delta \mathbf{p}' - \mathbf{l}\|^2 \to \min \longrightarrow \Delta^2 \mathbf{p}' = \Delta \mathbf{l}$$

- Basic formulations equivalent!
- Differ in detail preservation
 - Rotation of Laplacians
 - Multi-scale decomposition

$$\int_{\mathbf{l}} \mathbf{p}' = \mathbf{p} + \mathbf{d} \\
\mathbf{l} = \Delta \mathbf{p}$$

$$\Delta^{2}(\mathbf{p} + \mathbf{d}) = \Delta^{2} \mathbf{p}$$

$$\int \|\mathbf{d}_{uu}\|^2 + 2\|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \to \min \quad \longleftarrow \quad \Delta^2 \mathbf{d} = 0$$

Linear Surface-Based Deformation

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

Next Time

Non-Linear

Surface Deformations

http://cs621.hao-li.com

Thanks!

