CSCI 621: Digital Geometry Processing

9.1 Surface Parameterization

Hao Li
http://cs621.hao-li.com

Modeling

Modeling

Viewpaint

The creation of a 3D assets surface, including that surface's color, texture, opacity, and reflectivity (or specularity).

Viewpaint

Rango: Creating creature scale textures in ZBrush...

Viewpaint

(Wrinkle Pass)

Color Maps

Wet Maps

bump Maps

Motivation

Texture Mapping

Levy et al.: Least squares conformal maps for automatic texture atlas generation, SIGGRAPH 2002.

Motivation

Normal Mapping

Motivation

Motivation

Motivation

Mesh Parameterization

Find a 1-to-1 mapping between given surface mesh and 2D parameter domain

Unfolding Earth

Spherical Coordinates

Desirable Properties

Low distortion

Bijective mapping

Cartography

orthographic

stereographic \uparrow preserves angles
= conformal

Mercator

Lambert
\uparrow preserves area
= equiareal

Floater, Hormann: Surface Parameterization: A Tutorial and Survey, Advances in Multiresolution for Geometric Modeling, 2005

More Maps

Mollweide-Projektion

Peters-Projektion

Senkrechte Umgebungsperspektive

Gnomonische Projektion

Mercator-Projektion

Langentreue Azimuthalprojektion

Robinson-Projektion

Filchentrese Kegelprojektion

ZJlinderprojektion nach Miller

Stereographische Projektion

Hotise Oblique Mercator-Projektion

Transverse Mercator-Projektion

Hammer-Aitoff-Projeletior

Behrmann-Projektion

Sinusoidale Projektion

Cassini-Soldner-Projektion

Demo: Parameterization

Recall: Differential Geometry

Parametric surface representation

$$
\begin{array}{rll}
\mathbf{x}: \Omega \subset \mathbb{R}^{2} & \rightarrow \mathcal{S} \subset \mathbb{R}^{3} \\
(u, v) & \mapsto & \left(\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right)
\end{array}
$$

Regular if

- Coordinate functions x, y, z are smooth
- Tangents are linearly independent

$$
\mathbf{x}_{u} \times \mathbf{x}_{v} \neq \mathbf{0}
$$

Definitions

A regular parameterization $\mathrm{x}: \Omega \rightarrow S$ is

- Conformal (angle preserving), if the angle of every pair of intersecting curves on S is the same as that of the corresponding pre-images in Ω.
- Equiareal (area preserving) if every part of Ω is mapped onto a part of S with the same area
- Isometric (length preserving), if the length of any arc on S is the same as that of its pre-image in Ω.

Distortion Analysis

Jacobian transforms infinitesimal vectors

$$
\begin{gathered}
\mathrm{d} \mathbf{x}=\mathbf{J} \mathrm{d} \mathbf{u} \quad \mathbf{J}=\left(\begin{array}{cc}
x_{u} & x_{v} \\
y_{u} & y_{v} \\
z_{u} & z_{v}
\end{array}\right) \\
\|\mathrm{d} \mathbf{x}\|^{2}=(\mathrm{d} \mathbf{u})^{T} \mathbf{J}^{T} \mathbf{J} \mathrm{~d} \mathbf{u}=(\mathrm{d} \mathbf{u})^{T} \mathbf{I} \mathrm{~d} \mathbf{u}
\end{gathered}
$$

First Fundamental Form

Characterizes the surface locally

$$
\mathbf{I}=\left(\begin{array}{ll}
\mathbf{x}_{u}^{T} \mathbf{x}_{u} & \mathbf{x}_{u}^{T} \mathbf{x}_{v} \\
\mathbf{x}_{u}^{T} \mathbf{x}_{v} & \mathbf{x}_{v}^{T} \mathbf{x}_{v}
\end{array}\right)
$$

Allows to measure on the surface

- Angles $\cos \theta=\left(\mathrm{d} \mathbf{u}_{1}^{T} \mathbf{I} \mathrm{~d} \mathbf{u}_{2}\right) /\left(\left\|\mathrm{d} \mathbf{u}_{1}\right\| \cdot\left\|\mathrm{d} \mathbf{u}_{2}\right\|\right)$
- Length $\mathrm{d} s^{2}=\mathrm{d} \mathbf{u}^{T} \mathbf{I} \mathrm{~d} \mathbf{u}$
- Area $\mathrm{d} A=\operatorname{det}(\mathbf{I}) \mathrm{d} u \mathrm{~d} v$

Isometric Maps

A regular parameterization $\mathbf{x}(u, v)$ is isometric, iff its first fundamental form is the identity:

$$
\mathbf{I}(u, v)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

A surface has an isometric parameterization iff it has zero Gaussian curvature

Cylinder

Conformal Maps (A-Similar-AP)

A regular parameterization $\mathbf{x}(u, v)$ is conformal, iff its first fundamental form is a scalar multiple of the identity:

$$
\mathbf{I}(u, v)=s(u, v) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Conformal Flow

Equiareal Maps

A regular parameterization $\mathbf{x}(u, v)$ is equiareal, iff the determinant of its first fundamental form is 1 :

$$
\operatorname{det}(\mathbf{I}(u, v))=1
$$

Relationships

An isometric parameterization is conformal and equiareal, and vice versa:

isometric \Leftrightarrow conformal + equiareal

Isometric is ideal, but rare. In practice, people try to compute:

- Conformal
- Equiareal
- Some balance between the two

Harmonic Maps

- A regular parameterization $\mathbf{x}(u, v)$ is harmonic, iff it satisfies

$$
\Delta \mathbf{x}(u, v)=0
$$

- isometric \Rightarrow conformal \Rightarrow harmonic
- Easier to compute than conformal, but does not preserve angles

Harmonic Maps

- A harmonic map minimizes the Dirichlet energy

$$
\int_{\Omega}\|\nabla \mathbf{x}\|^{2}=\int_{\Omega}\left\|\mathbf{x}_{u}\right\|^{2}+\left\|\mathbf{x}_{v}\right\|^{2} \mathrm{~d} u \mathrm{~d} v
$$

- Variational calculus then tells us that

$$
\Delta \mathbf{x}(u, v)=0
$$

- If $\mathbf{x}: \Omega \rightarrow S$ is harmonic and maps the boundary $\partial \Omega$ of a convex region $\Omega \subset \mathbb{R}^{2}$ homeomorphically onto the boundary ∂S, then \mathbf{x} is one-to-one.

Parameterization Goal

- Piecewise linear mapping of a discrete 3D triangle mesh onto a planar 2D polygon
- Slightly different situation: Given a 3D mesh, compute the inverse parameterization

Floater's Parameterization

Floater's Parameterization

- For Quadrilateral Patch
- Fix the parameters of the boundary vertices on a unit square
- Derive the bijection \mathbf{u} for each of the interior vertices \mathbf{v}_{i} by solving

$$
\begin{aligned}
& u\left(v_{i}\right)=\sum_{k \in v(i)} \lambda_{i, k} u\left(v_{k}\right) \\
& \text { where } \lambda_{i, k} \text { satisfies shape preserving criteria } \\
& \text { and } \sum_{k \in v(i)} \lambda_{i, k}=1, \quad i=1,2, \ldots, n
\end{aligned}
$$

Floater's Algorithm

- Compute for each i the $\lambda_{i, k}, k \in v(i)$
- Compute a local parameterization for $v(i)$ that preserves the aspect ratio of the angle and length
- Compute $\lambda_{i, k}, k \in v(i)$ that satisfies

Shape preserving criteria

$$
\text { and } \sum_{k \in v(i)} \lambda_{i, k}=1, \quad i=1,2, \ldots, n
$$

- Solve the sparse equation for $u\left(v_{i}\right), i=1 \ldots n$

$$
u\left(v_{i}\right)=\sum_{k \in \nu(i)} \lambda_{i, k} u\left(v_{k}\right)
$$

Discrete Harmonic Maps

- Map the boundary ∂S homeomorphically to some (convex) polygon $\partial \Omega$ in the parameter plane
- Minimize the Dirichlet energy of \mathbf{u} by solving the corresponding Euler-Lagrange PDE

$$
\Delta_{\mathcal{S}} \mathbf{u}=0
$$

- Requires discretization of Laplace-Beltrami
- Compare to surface fairing

Discrete Harmonic Maps

- System of linear equations

$$
\begin{aligned}
& \forall v_{i} \in \mathcal{S}: \sum_{v_{j} \in \mathcal{N}_{1}\left(v_{i}\right)} w_{i j}\left(\mathbf{u}\left(v_{j}\right)-\mathbf{u}\left(v_{i}\right)\right) \\
& w_{i j}=\cot \alpha_{i j}+\cot \beta_{i j}
\end{aligned}
$$

- Properties of system matrix:

- Symmetric + positive definite \rightarrow unique solution
- Sparse \rightarrow efficient solvers

Discrete Harmonic Maps

- But...
- Does the same theory hold for discrete harmonic maps as for harmonic maps?
- In other words, i: triangles to flip or become degene

Convex Combination Maps

- If the linear equations are satisfied

$$
\sum_{v_{j} \in \mathcal{N}_{1}\left(v_{i}\right)} w_{i j}\left(\mathbf{u}\left(v_{j}\right)-\mathbf{u}\left(v_{i}\right)\right)
$$

and if the weights satisfy

$$
w_{i j}>0 \wedge \sum_{v_{j} \in \mathcal{N}_{1}\left(v_{i}\right)} w_{i j}=1
$$

then we get a convex combination mapping.

Convex Combination Maps

- Each $\mathbf{u}\left(v_{i}\right)$ is a convex combination of $\mathbf{u}\left(v_{j}\right)$

$$
\mathbf{u}\left(v_{i}\right)=\sum_{v_{j} \in \mathcal{N}_{1}\left(v_{i}\right)} w_{i j} \mathbf{u}\left(v_{j}\right)
$$

- If $\mathbf{u}: S \rightarrow \Omega$ is a convex combination map that maps the boundary ∂S homeomorphically to the boundary $\partial \Omega$ of a convex region $\Omega \subset \mathbb{R}^{2}$, then \mathbf{u} is one-to-one.

Convex Combination Maps

- Uniform barycentric weights

$$
w_{i j}=1 / \operatorname{valence}\left(v_{i}\right)
$$

- Cotangent weights (>0 if $\alpha_{i j}+\beta_{i j}<\pi$)

$$
w_{i j}=\cot \left(\alpha_{i j}\right)+\cot \left(\beta_{i j}\right)
$$

- Mean value weights

$$
w_{i j}=\frac{\tan \left(\delta_{i j} / 2\right)+\tan \left(\gamma_{i j} / 2\right)}{\left\|\mathbf{p}_{j}-\mathbf{p}_{i}\right\|}
$$

Convex Combination Maps

- Comparison

original
mesh

uniform weights

cotan
weights

mean
value (shape preserving)

Fixing the Boundary

- Choose a simple convex shape
- Triangle, square, circle
- Distribute points on boundary
- Use chord length parameterization

Fixed boundary can create high distortion

Open Boundary Mappings

- Include boundary vertices in the optimization
- Produces mappings with lower distortion

Open Boundary Mappings

Need disk-like topology

- Introduce cuts on the mesh

Naive Cut, Numerical Problems

Smart Cut, Free Boundary

Texture Atlas Generation

- Split model into number of patches (atlas)
- because higher genus models cannot be mapped onto plane and/or
- because distortion, the number of patches will be too high eventually

Levy, Petitjean, Ray, Maillot: Least Squares Conformal Maps for Automatic Texture Atlas Generation, SIGGRAPH, 2002

Texture Atlas Generation

- Split model into number of patches (atlas)
- because higher genus models cannot be mapped onto plane and/or
- because distortion, the number of patches will be too high eventually

Levy, Petitjean, Ray, Maillot: Least Squares Conformal Maps for Automatic Texture Atlas Generation, SIGGRAPH, 2002

Non-Planar Domains

seamless, continuous parameterization of genus-0 surfaces

Global Parameterization - Range Images

Constrained Parameterizations

Levy: Constraint Texture Mapping, SIGGRAPH 2001.

Literature

- Book, Chapter 5
- Hormann et al.: Mesh Parameterization, Theory and Practice, Siggraph 2007 Course Notes
- Floater and Hormann: Surface Parameterization: a tutorial and survey, advances in multiresolution for geometric modeling, Springer 2005
- Hormann, Polthier, and Sheffer, Mesh Parameterization: Theory and Practice, SIGGRAPH Asia 2008 Course Notes

Next Time

Decimation

http://cs621.hao-li.com

Thanks!

