CSCI 621: Digital Geometry Processing

6.1 Shape Matching

Hao Li
http://cs621.hao-li.com

Acknowledgement

Images and Slides are courtesy of

- Prof. Michael Kazhdan, Johns Hopkins University
- ICCV Course 2005: http://gfx.cs.princeton.edu/proj/ iccv05 coursel

Last Time

Surface Registration

- Pairwise ICP \& Variants
- Point-to-point/plane metric
- BSP closes point search
- Stability Analysis

- Global Registration

Shape Matching for Model Alignment

Goal

- Given two partially overlapping scans, compute transformation that aligns the two.
- No assumption about rough initial alignment

Shape Matching for Model Alignment

Approach

- Find feature points on the two scans

Partially Overlapping Scans

Shape Matching for Model Alignment

Approach

- Find feature points on the two scans
- Establish correspondences

Partially Overlapping Scans

Shape Matching for Model Alignment

Approach

- Find feature points on the two scans
- Establish correspondences
- Compute the alignment

Partially Overlapping Scans
Aligned Scans

Outline

- Global Shape Correspondence
- Shape Descriptors
- Alignment
- Partial Shape Correspondence
- From Global to Local
- Pose Normalization
- Partial Shape Descriptors
- Registration
- Closed Form Solutions
- Branch \& Bound
- Random Sample Consensus (RANSAC)

Correspondence

Goal

- Identify when two points on different scans represent the same feature

Local Correspondence

Goal

- Identify when two points on different scans represent the same feature
- Are the surrounding regions similar?

Global Correspondence

More Generally:

- Given two models, determine if they represent the same/ similar shapes
- models can have different representations, tesselations, topologies, etc.

Global Correspondence

Approach:

- Represent each model by a shape descriptor:
- A structured abstraction of a 3D model
- that captures salient shape information

Global Correspondence

Approach:

- Represent each model by a shape descriptor:
- Compare shapes by comparing their shape descriptors

Shape Descriptors: Examples

Shape Histograms

- Shape descriptor stores a histogram of how much surface area resides within different concentric shells in space

[Ankerst et al. 1999]

Shape Descriptors: Examples

Shape Histograms

- Shape descriptor stores a histogram of how much surface area resides within different sectors in space

[Ankerst et al. 1999]

Shape Descriptors: Examples

Shape Histograms

- Shape descriptor stores a histogram of how much surface area resides within different shells and sectors in space

[Ankerst et al. 1999]

Shape Descriptors: Challenge

- The shape of a model does not change when a rigid body transformation is applied to the model.

Shape Descriptors: Challenge

- To compare two models, we need them at their optimal alignment

Shape Descriptors: Alignment

Three general methods:

- Exhaustive Search
- Normalization
- Invariance

Shape Descriptors: Alignment

Exhaustive Search:

- Compare at all alignments

Exhaustive search for optimal rotation

Shape Descriptors: Alignment

Exhaustive Search:

- Compare at all alignments
- Correspondence is determined by the alignment at which the models are closest

Exhaustive search for optimal rotation

Shape Descriptors: Alignment

Exhaustive Search:

- Compare at all alignments
- Correspondence is determined by the alignment at which the models are closest

Properties:

- Gives the correct answer (w.r.t. the metric)
- While slow on a single processor, it can be parallelized (Clusters? Multi-Threading? GPU?)

Shape Descriptors: Alignment

Normalization:

- Put each model into a canonical frame:
- Translation
- Rotation

Shape Descriptors: Alignment

Normalization:

- Put each model into a canonical frame:
- Translation: Center of Mass
- Rotation

Shape Descriptors: Alignment

Normalization:

- Put each model into a canonical frame:
- Translation: Center of Mass
- Rotation

Initial Models

Translation-Aligned Models

Shape Descriptors: Alignment

Normalization:

- Put each model into a canonical frame:
- Translation: Center of Mass
- Rotation: PCA alignment

Initial Models

Translation-Aligned Models

Shape Descriptors: Alignment

Normalization:

- Put each model into a canonical frame:
- Translation: Center of Mass
- Rotation: PCA alignment

Properties:

- Efficient
- Not always robust
- Not suitable for local feature matching

Shape Descriptors: Alignment

Invariance:

- Represent a model by a shape descriptor that is independent of the pose.

Shape Descriptors: Alignment

Example: Ankerst's Shells

- A histogram of the radial distribution of surface area

Shape Descriptors: Alignment

Invariance

- Power spectrum representation
- Fourier transform for translations
- Spherical harmonic transform for rotations

Circular Power Spectrum

Spherical Power Spectrum

Translation Invariance

Translation Invariance

Translation Invariance

Frequency subspaces are fixed by rotations:

Translation Invariance

Frequency subspaces are fixed by rotations:

$\cos (2 \phi)$
$\cos (3 \phi)$

Translation Invariance

Frequency subspaces are fixed by rotations:

Translation Invariance

Rotation Invariance

Represent each spherical function as a sum of harmonic frequencies (orders)

Rotation Invariance

Frequency subspaces are fixed by rotations

Rotation Invariance

Frequency subspaces are fixed by rotations

Rotation Invariance

Frequency subspaces are fixed by rotations

Rotation Invariance

Store "how much" (L2-norm) of the shape resides in each frequency to get a rotatin invariant representation

Shape Descriptors: Alignment

Invariance:

- Represent a model by a shape descriptor that is independent of the pose

Properties:

- Compact representation
- Not always discriminating

Outline

- Global Shape Correspondence
- Shape Descriptors
- Alignment
- Partial Shape Correspondence
- From Global to Local
- Pose Normalization
- Partial Shape Descriptors
- Registration
- Closed Form Solutions
- Branch \& Bound
- Random Sample Consensus (RANSAC)

From Global to Local

To characterize the surface about a point p, take global descriptor and:

- center it about p (instead of center of mass), and
- restrict the extent to a small region about p

Shape histograms as local shape descriptors

From Global to Local

Given scans of a model:

From Global to Local

Identify the features

From Global to Local

Identify the features
 Computer a local descriptor for each feature

From Global to Local

Identify the features

Computer a local descriptor for each feature Feature correspond \rightarrow descriptors are similar

Pose Normalization

From Global to Local

- Translation: Accounted for by centering the descriptor at the point of interest.
- Rotation: We still need to be able to match descriptors across different rotations.

Pose Normalization

Challenge

- Since only parts of the models are given, we cannot use global normalization to align the local descriptors

Solutions

- Normalize using local information

Local Descriptors: Examples

Variations of Shape Histograms

- For each feature, represent its local geometry in cylindrical coordinates about the normal

Local Descriptors: Examples

Variations of Shape Histograms

- For each feature, represent its local geometry in cylindrical coordinates about the normal
- Spin Images: Store energy in each normal ring
- Harmonic Shape Contexts: Store power spectrum of each normal ring
- 3D Shape Contexts: Search over all rotatinos about the normal for best match

Outline

- Global Shape Correspondence
- Shape Descriptors
- Alignment
- Partial Shape Correspondence
- From Global to Local
- Pose Normalization
- Partial Shape Descriptors
- Registration
- Closed Form Solutions
- Branch \& Bound
- Random Sample Consensus (RANSAC)

Registration

Ideal Case

- Every feature point on one scan has a single corresponding feature on the other.
- Solve for optimal transformation T

Registration

Challenge:

- Even with good descriptors, symmetries in the model and the locality of descriptors can result in multiple and incorrect correspondences

Registration

Exhaustive Search

- Compute alignment error at each permutation of correspondences and use the optimal one

$$
\text { Error }=\underset{\pi \in \Psi}{\operatorname{argmin}}\left(\underset{T \in F^{3}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|p_{i}-T\left(\pi\left(p_{i}\right)\right)\right\|^{2}\right)
$$

$\Psi=$ Set of possible correspondence
$E^{3}=$ Group of rigid body transformations

Registration

Exhaustive Search

- Compute alignment error at each permutation of correspondences and use the optimal one

$$
\text { Error }=\underset{\pi \in \Psi}{\operatorname{argmin}}\left(\underset{T \in F^{3}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|p_{i}-T\left(\pi\left(p_{i}\right)\right)\right\|^{2}\right)
$$

$\Psi=$ Set of possible correspondence
$E^{3}=$ Group of rigid body transformations
Given points $\left\{p_{1}, \ldots, p_{n}\right\}$ on the query, if p_{i} matches m_{i} different target points:

$$
|\Psi|=\prod_{i=1}^{n} m_{i}
$$

Registration

Branch \& Bound (Decision tree)

- Try all permuations but terminate early if the alignment can be predicted to be bad

By performing two comparisons, it was possible to eliminate 16 different possibilities

Registration

Goal

- Need to be able to determine if the alignment will be good without knowing all of the correspondences

Observation

- Alignment needs to preserve the lengths between points in a single scan

Registration

Goal

- Need to be able to determine if the alignment will be good without knowing all of the correspondences

Observation

- Alignment needs to preserve the lengths between points in a single scan

RANdom SAmple Consensus

Algorithm (iterate 100 times)

- Randomly choose 3 points on source
- For all possible correspondences on target:
- Compute T
- For every other source p:
- find closest correspondence T(p)
- Compute alignment error

Summary

Global Shape Correspondences

- Shape Descriptors
- Shells (1D)
- Sectors (2D)
- Sectors \& Shells (3D)
- Alignment
- Exhaustive Search
- Normalization
- Invariance

Summary

Partial-Shape/Point Correspondences

- From Global to Local
- Center at feature
- Restrict extent
- Pose Normalization
- Normal-based alignment
- Partial Shape Descriptors
- Normalization/invariance
- Normalization/exhaustive-search

Summary

Registration

- Closed Form Solutions
- Global symmetry
- Local self similarity
- Branch \& Bound
- Inter-feature distances for early termination
- RANdom SAmple Consensus
- Efficient transformation computation

Next Time

Surface Reconstruction

http://cs621.hao-li.com

Thanks!

