CSCI 621: Digital Geometry Processing

5.2 Surface Registration

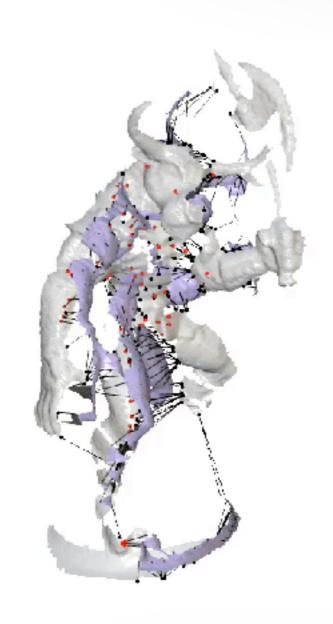
Acknowledgement

Images and Slides are courtesy of

- Prof. Szymon Rusinkiewicz, Princeton University
- ICCV Course 2005: http://gfx.cs.princeton.edu/proj/ iccv05_course/

Surface Registration

Align two partially-overlapping meshes given initial guess for relative transform

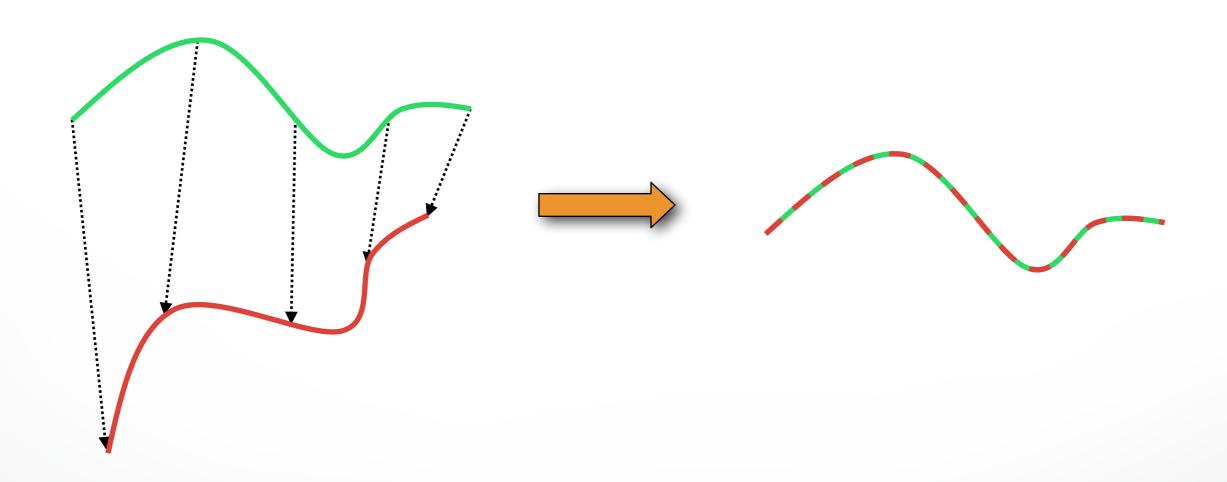


Outline

- ICP: Iterative Closest Points
- Classification of ICP variants
 - Faster alignment
 - Better robustness
- ICP as function minimization

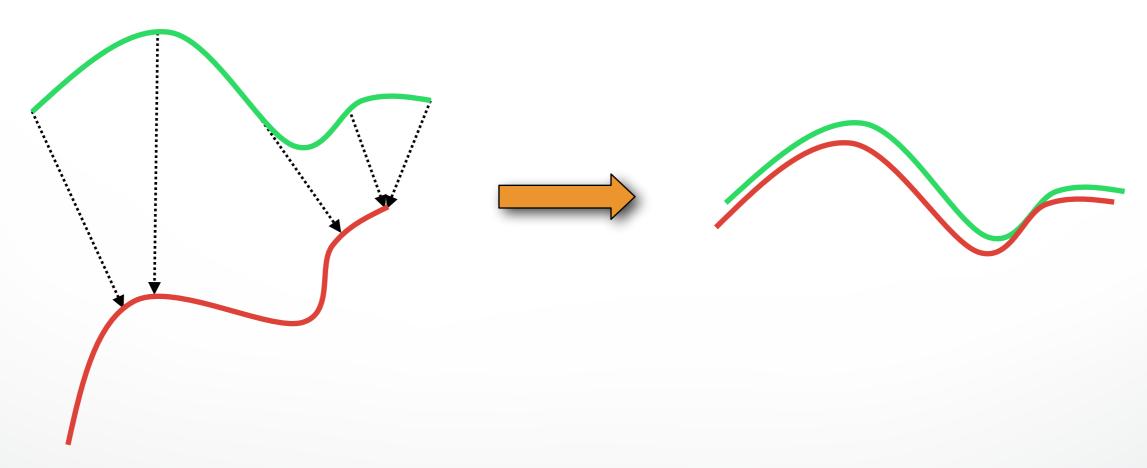
Aligning 3D Data

If correct correpondences are known, can find correct relative rotation/translation



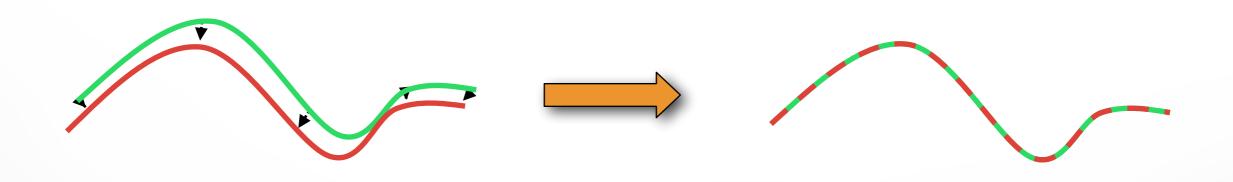
Aligning 3D Data

- How to find correspondences: User input? Feature detection? Signatures?
- Alternatives: assume closest points correspond



Aligning 3D Data

- ... and iterate to find alignment
 - Iterative Closest Points (ICP) [Besl & Mckay]
- Converges if starting position "close enough"



Basic ICP

- Select e.g., 1000 random points
- Match each to closest point on other scan, using data structure such as k-d tree
- Reject pairs with distance > k times median
- Construct error function:

$$E = \sum \|\mathbf{R}\mathbf{p}_i + \mathbf{t} - \mathbf{q}_i\|^2$$

• Minimize (closed form solution in [Horn 87])

Shape Matching: Translation

Define bary-centered point sets

$$ar{\mathbf{p}} := rac{1}{m} \sum_{i=1}^{m} \mathbf{p}_i \qquad ar{\mathbf{q}} := rac{1}{m} \sum_{i=1}^{m} \mathbf{q}_i$$
 $\hat{\mathbf{p}}_i := \mathbf{p}_i - ar{\mathbf{p}} \qquad \hat{\mathbf{q}}_i := \mathbf{q}_i - ar{\mathbf{q}}$

Optimal translation vector t maps barycenters onto each other

$$\mathbf{t} = \bar{\mathbf{p}} - \mathbf{R}\bar{\mathbf{q}}$$

Shape Matching: Rotation

Approximate nonlinear rotation by general matrix

$$\min_{\mathbf{R}} \sum_{i} \|\hat{\mathbf{p}}_{i} - \mathbf{R}\hat{\mathbf{q}}_{i}\|^{2} \rightarrow \min_{\mathbf{A}} \sum_{i} \|\hat{\mathbf{p}}_{i} - \mathbf{A}\hat{\mathbf{q}}_{i}\|^{2}$$

The least squares linear transformation is

$$\mathbf{A} = \left(\sum_{i=1}^{m} \hat{\mathbf{p}}_i \hat{\mathbf{q}}_i^T\right) \cdot \left(\sum_{i=1}^{m} \hat{\mathbf{q}}_i \hat{\mathbf{q}}_i^T\right)^{-1} \in \mathbb{R}^{3 \times 3}$$

SVD & Polar decomposition extracts rotation from A

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \quad o \quad \mathbf{R} = \mathbf{U} \mathbf{V}^T$$

Variants on the following stages of ICP have been proposed

- 1. **Selecting** source points (from one or both meshes)
- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outliers) point pairs
- 5. Assigning an **error metric** to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Can analyze various aspects of performance:

- Speed
- Stability
- Tolerance of noise and/or outliers
- Maximum initial misalignment

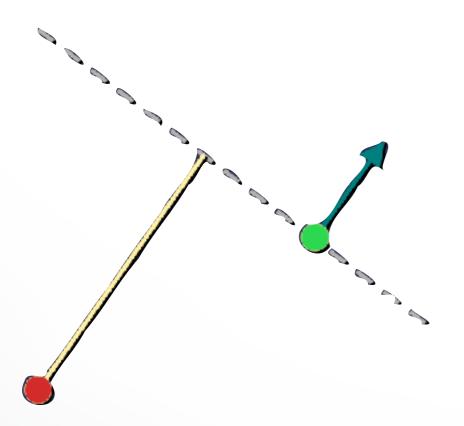
Comparisons of many variants in

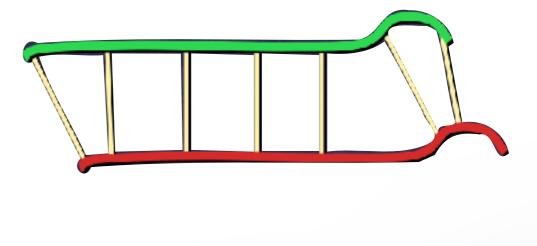
• [Rusinkiewicz & Levoy, 3DIM 2001]

- 1. Selecting source points (from one or both meshes)
- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outliers) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Point-to-Plane Error Metric

Using point-to-plane distance instead of point-to-point lets flat regions slide along each other [Chen & Medioni 91]





Point-to-Plane Error Metric

• Error function:

$$E = \sum \left((\mathbf{R}\mathbf{p}_i + \mathbf{t} - \mathbf{q}_i)^{\top} \mathbf{n_i} \right)^2$$

where \mathbf{R} is a rotation matrix, \mathbf{t} is a translation vector

• Linearize (i.e. assume that $\sin \theta \approx \theta$, $\cos \theta \approx 1$):

$$E \approx \sum \left((\mathbf{p}_i - \mathbf{q}_i)^{\top} \mathbf{n}_i \right) + \mathbf{r}^{\top} (\mathbf{p}_i \times \mathbf{n}_i) + \mathbf{t}^{\top} \mathbf{n}_i)^2$$
 $\mathbf{r} = \begin{bmatrix} r_x \\ r_y \\ r_z \end{bmatrix}$

Result: overconstrained linear system

Point-to-Plane Error Metric

Overconstrained linear system

$$Ax = b$$

Solve using least squares

$$\mathbf{A}^{\top} \mathbf{A} \mathbf{x} = \mathbf{A}^{\top} \mathbf{b}$$

 $\mathbf{x} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{b}$

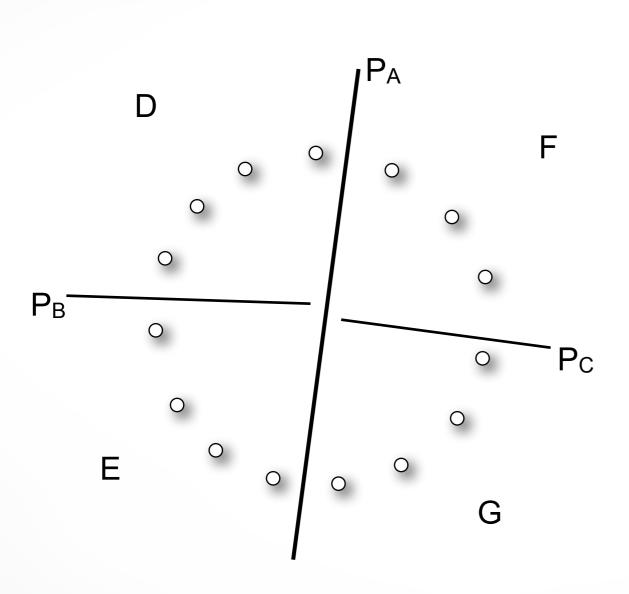
Improving ICP Stability

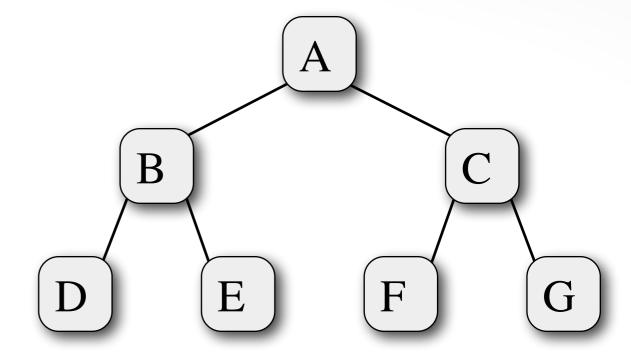
- Closest compatible point
- Stable sampling

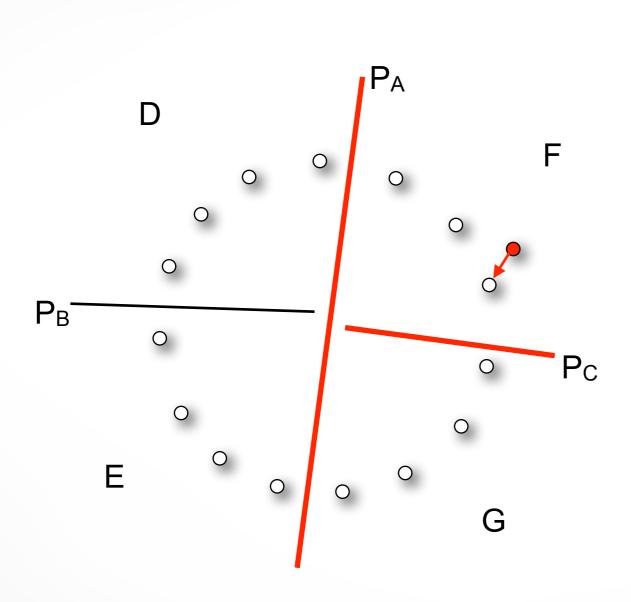
- 1. Selecting source points (from one or both meshes)
- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outliers) point pairs
- 5. Assining an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

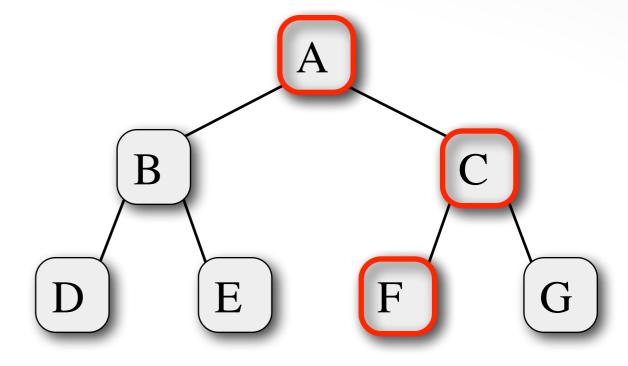
- Find closest point of a query point
 - Brute force: O(n) complexity

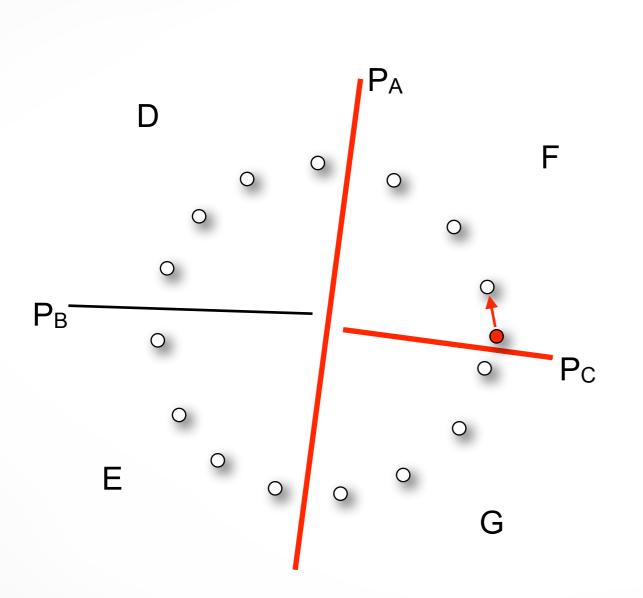
- Use Hierarchical BSP tree
 - Binary space partitioning tree (general kD-tree)
 - Recursively partition 3D space by planes
 - Tree should be balanced, put plane at median
 - log(n) tree levels, complexity O(nlog n)

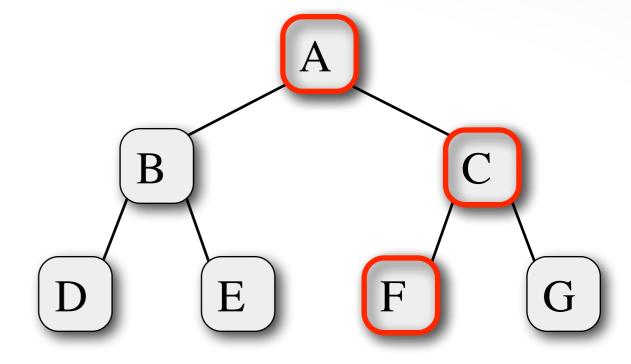


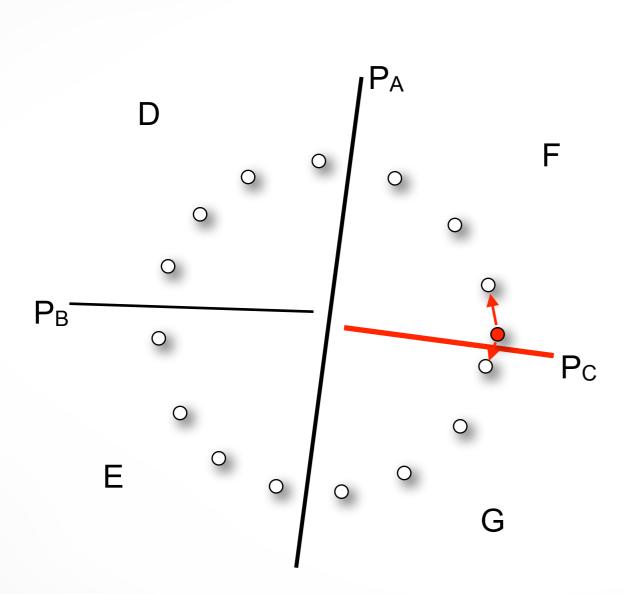


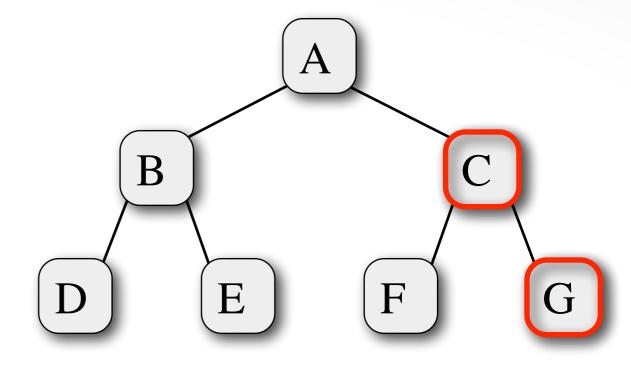


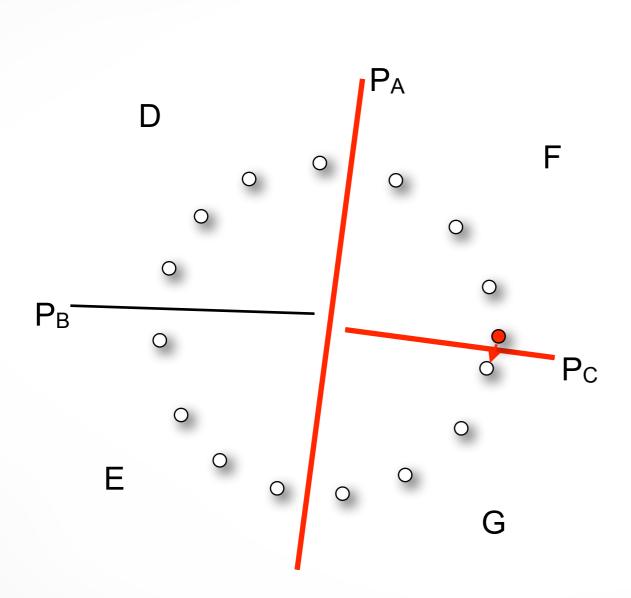


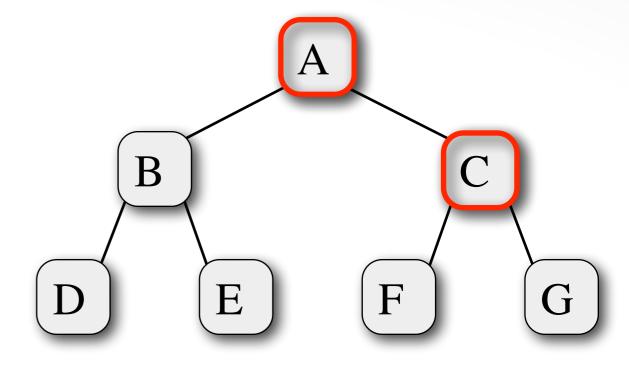












```
BSPNode::dist(Point x, Scalar& dmin)
  if (leaf node())
    for each sample point p[i]
      dmin = min(dmin, dist(x, p[i]));
  else
   d = dist to plane(x);
    if (d < 0)
      left child->dist(x, dmin);
      if (|d| < dmin) right child->dist(x, dmin);
    else
      right child->dist(x, dmin);
      if (|d| < dmin) left_child->dist(x, dmin);
```

Closest Compatible Point

- Closest point often a bad approximation to corresponding point
- Can improve matching effectiveness by restricting match to compatible points
 - Compatibility of colors [Godin et al. '94]
 - Compatibility of normals [Pulli '99]
 - Other possibilities: curvature, higher-order derivatives, and other local features (remember: data is noisy)

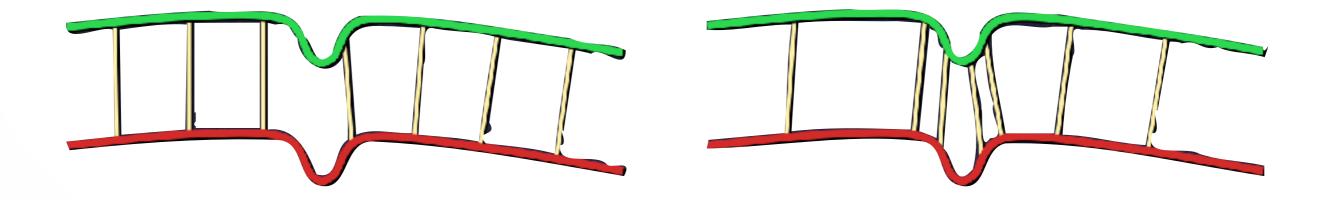
1. Selecting source points (from one or both meshes)

- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outliers) point pairs
- 5. Assining an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Selecting Source Points

- Use all points
- Uniform subsampling
- Random sampling
- Stable sampling [Gelfand et al. 2003]
 - Select samples that constrain all degrees of freedom of the rigid-body transformation

Stable Sampling



Uniform Sampling

Stable Sampling

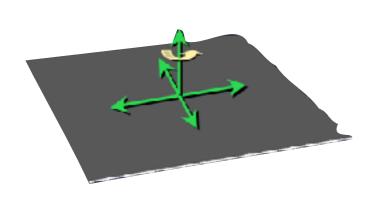
Covariance Matrix

• Aligning transform is given by $\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$, where

• Covariance matrix $\mathbf{C} = \mathbf{A}^{\mathsf{T}} \mathbf{A}$ determines the change in error when surfaces are moved from optimal alignment

Sliding Directions

• Eigenvectors of **C** with small eigenvalues correspond to sliding transformations

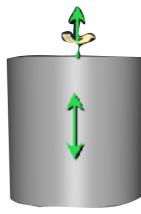


3 small eigenvalues

2 translation 1 rotation

3 small eigenvalues

3 rotation



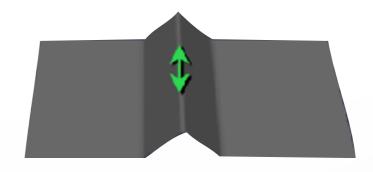
2 small eigenvalues

1 translation

1 rotation

1 small eigenvalue

1 rotation

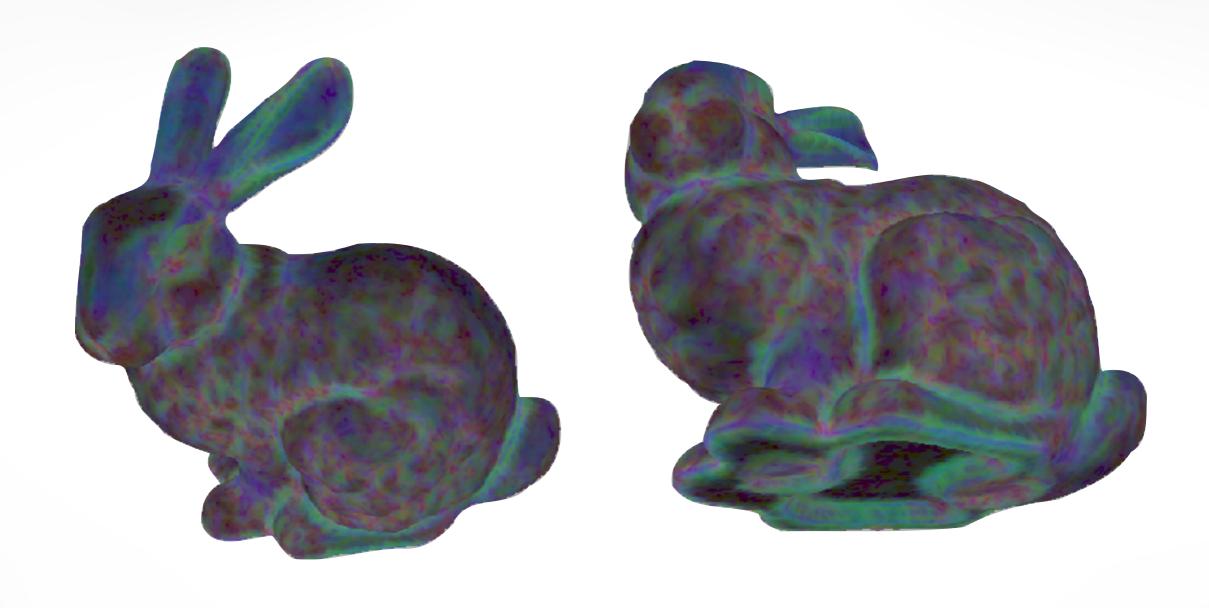


1 small eigenvalue

1 translation

[Gelfand]

Stability Analysis



3 DOFs stable

5 DOFs stable

4 DOFs stable

6 DOFs stable

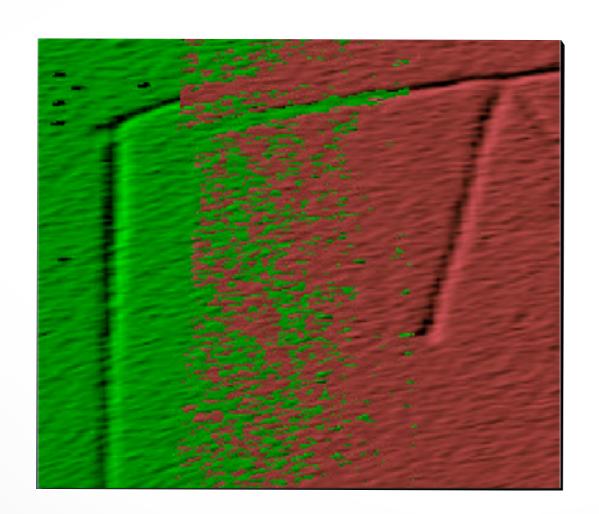
Sample Selection

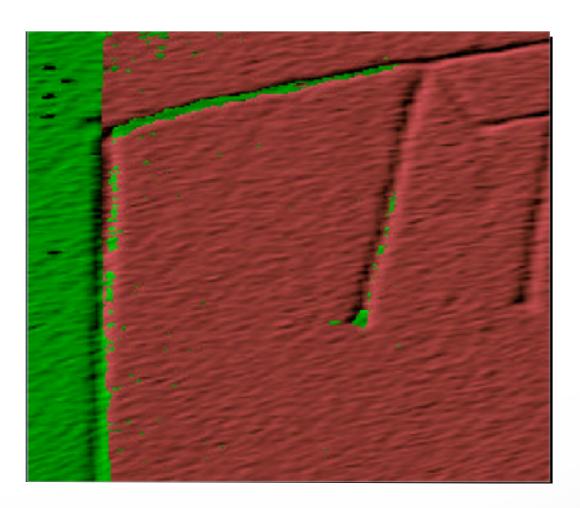
- Select points to prevent small eigenvalues
 - Based on C obtained from sparse sampling

- Simpler variant: normal-space sampling
 - select points with uniform distribution of normals
 - Pro: faster, does not require eigenanalysis
 - Con: only constrains translation

Result

Stability-based or normal-space sampling important for smooth areas with small features





Random Sampling

Normal-space Sampling

Selection vs. Weighting

- Could achieve same effect with weighting
- Hard to ensure enough samples in features except at high sampling rates
- However, have to build special data structure
- Preprocessing / run-time cost tradeoff

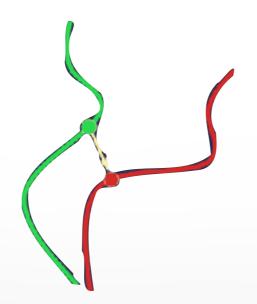
Improving ICP Speed

Projection-based matching

- 1. Selecting source points (from one or both meshes)
- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outliers) point pairs
- 5. Assining an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

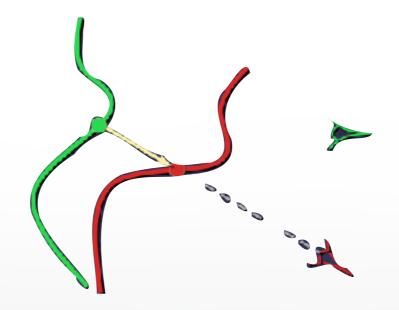
Finding Corresponding Points

- Finding Closest point is most expensive stage of the ICP algorithm
 - Brute force search O(n)
 - Spatial data structure (e.g., k-d tree) O(log n)



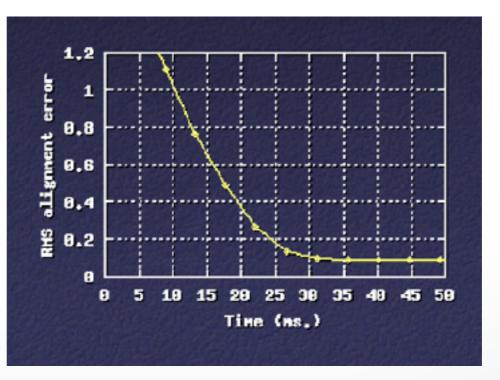
Projection to Find Correspondence

- Idea: use a simpler algorithm to find correspondences
- For range images, can simply project point [Blais 95]
 - Constant-time
 - Does not require precomputing a spatial data structure



Projection-Based Matching

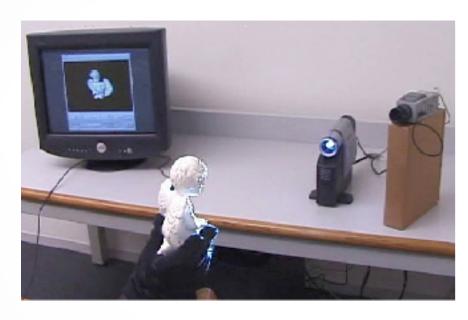
- Slightly worse performance per iteration
- Each iteration is one to two orders of magnitude faster than closest point
- Result: can align two range images in a few milliseconds,
 vs. a few seconds



Application

- Given:
 - A scanner that returns range images in real time
 - Fast ICP
 - Real-time merging and rendering
- Result: 3D model acquisition
 - Tight feedback loop with user
 - Can see and fill holes while scanning

Examples



[Rusinkiewicz et al. '02]

Artec Group

[Newcombe et al. '11] KinectFusion

Theoretical Analysis of ICP Variants

- One way of studying performance is via empirical tests on various scenes
- How to analyze performance analytically?
- For example, when does point-to-plane help? Under what conditions does projection-based matching work?

What does ICP do?

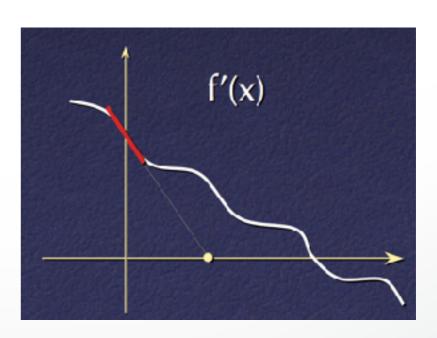
- Two ways of thinking about ICP:
 - Solving correspondence problem
 - Minimizing point-to-surface squared distance

ICP is like Newton's method on an approximation of the distance function

f(x)

What does ICP do?

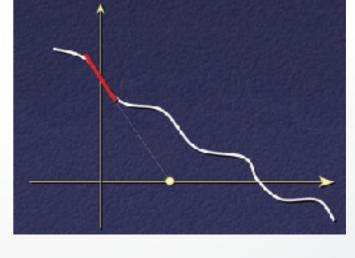
- Two ways of thinking about ICP:
 - Solving correspondence problem
 - Minimizing point-to-surface squared distance
- ICP is like Newton's method on an approximation of the distance function



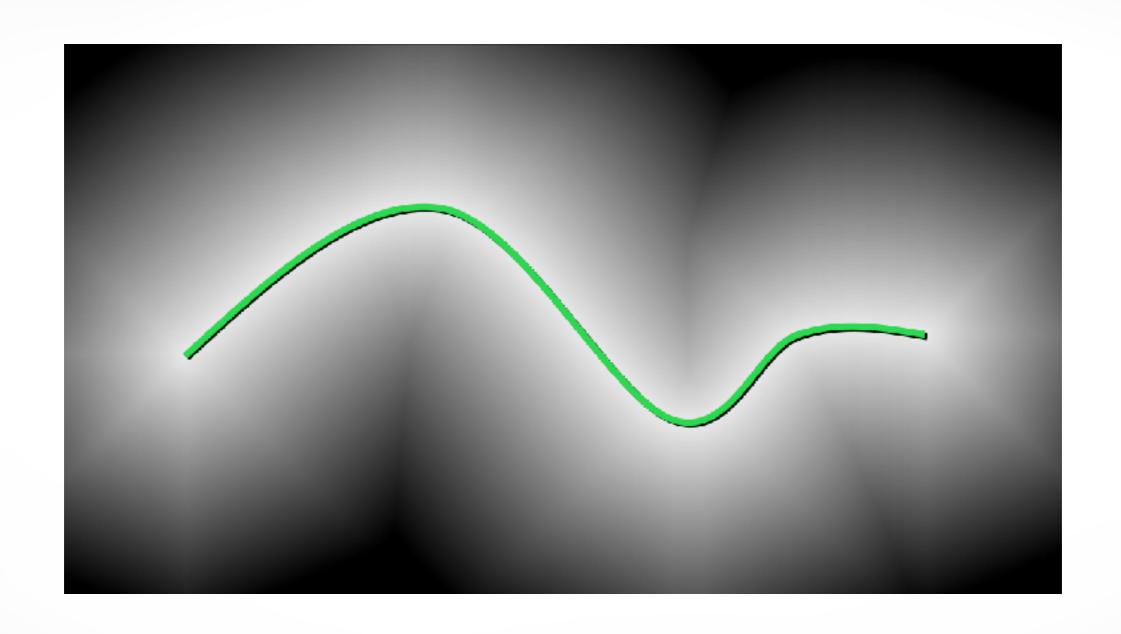
What does ICP do?

- Two ways of thinking about ICP:
 - Solving correspondence problem
 - Minimizing point-to-surface squared distance
- ICP is like Newton's method on an approximation of the distance function
 - ICP variants affect shape of the global error function or

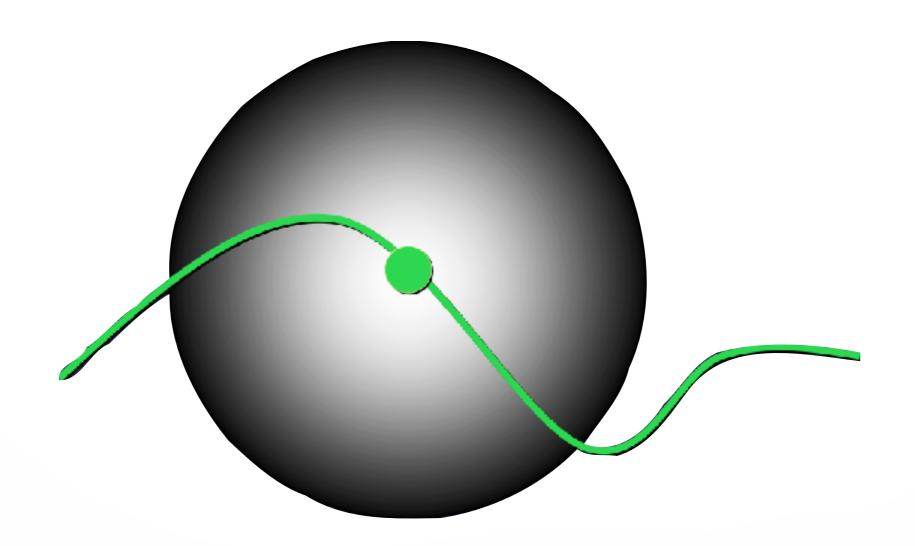
local approximation



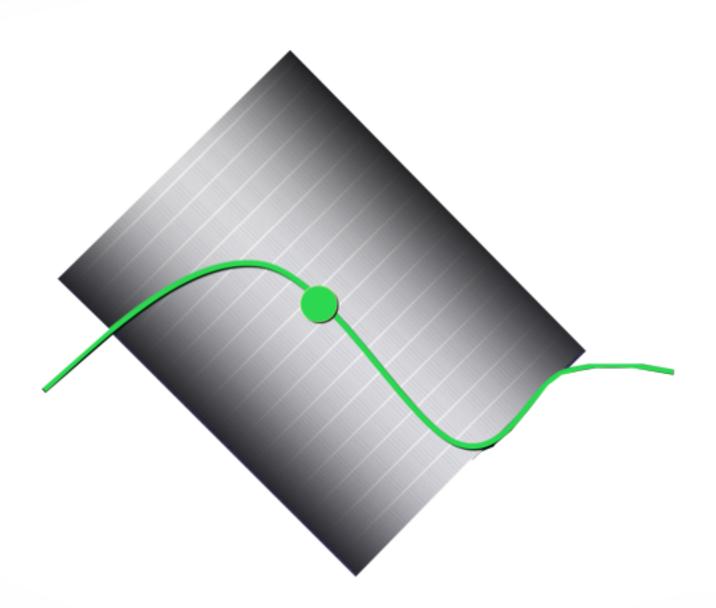
Point-to-Surface Distance



Point-to-Point Distance

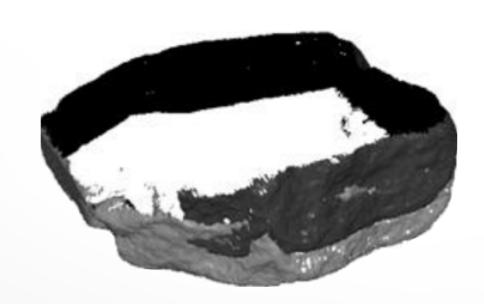


Point-to-Plane Distance



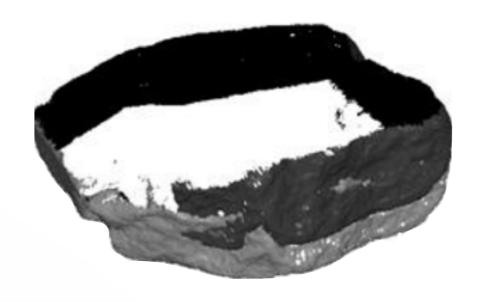
Global Registration Goal

- Given: n scans around an object
- Goal: align them all
- First attempt: apply ICP to each scan to one other



Global Registration Goal

Want method for distributing accumulated error among all scans



Approach #1: Avoid the Problem

- In some cases, have 1 (possibly low-resolution) scan that covers most surface
- Align all other scans to this "anchor" [Turk 94]
- Disadvantage: not always practical to obtain anchor scan

Approach #2: The Greedy Solution

- Align each new scan to all previous scans [Masuda '96]
- Disadvantages:
 - Order dependent
 - Doesn't spread out error

Approach #3: The Brute-Force Solution

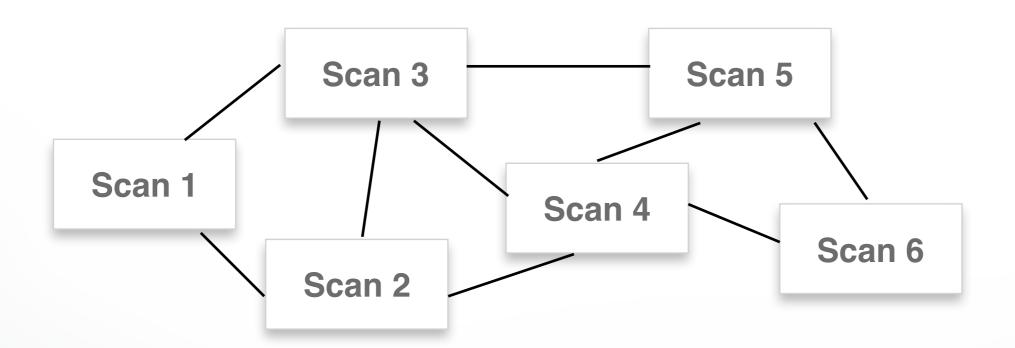
- While not converged:
 - For each scan:
 - For each point:
 - For every other scan
 - Find closest point
 - Minimize error w.r.t. transforms of all scans
- Disadvantage:
 - Solve (6n)x(6n) matrix equation, where n is number of scans

Approach #3a: Slightly Less Brute-Force Solution

- While not converged:
 - For each scan:
 - For each point:
 - For every other scan
 - Find closest point
 - Minimize error w.r.t. transforms of this scans
- Faster than previous method (matrices are 6x6) [Bergevin '96, Benjemaa '97]

Graph Methods

 Many global registration algorithms create a graph of pairwise alignments between scans



Sharp et al. Algorithm

- Perform pairwise ICPs, record sample (e.g., 200) of corresponding points
- For each scan, starting w most connected
 - Align scan to existing set
 - While (change in error) > threshold
 - Align each scan to others
- All alignments during global reg phase use precomputed corresponding points.

Lu and Milios Algorithm

- Perform pairwise ICPs, record optimal rotation/translation and covariance for each
- Least squares simultaneous minimization of all errors (covariance-weighted)
- Requires linearization of rotations
 - Worse than the ICP case, since don't converge to (incremental rotation) = 0

Bad ICP in Global Registration

One bad ICP can throw off the entire model!

Correct Global Registration

Global Registration Including Bad ICP

Literature

- Rusinkiewicz & Levoy, Efficient Variants of the ICP Algorithm, 3DIM 2001
- Chen & Medioni, "Object modeling by registration of multiple range images", ICRA1991
- Besl & McKay: A method for registration of 3D shapes, PAMI 1992
- Horn: Closed-form solution of absolute orientation using unit quaternions, Journal Opt. Soc. Amer. 4(4), 1987
- Gelfand et al: Geometrically Stable Sampling for the ICP Algorithm, 3DIM, 2001.
- Pulli, Multiview Registration for Large Data Sets, 3DIM 1999

http://cs621.hao-li.com

Thanks!

