Spring 2018

CSCI 621: Digital Geometry Processing

2.2 Classic Differential Geometry 1

Spring 2018

CSCI 621: Digital Geometry Processing

2.2 Classic Differential Geometry 1

Some Updates: run.usc.edu/vega

Another awesome free library with half-edge data-structure By Prof. Jernej Barbic

- co-rotational linear FEM elasticity [MG04]; it can also compute the exact tangent stiffness matrix [Bar12] (similar to [CPSS10]),
- linear FEM elasticity [Sha90],
- invertible isotropic nonlinear FEM models [ITF04, TSIF05],

FYI

MeshLab

Popular Mesh Processing Software (meshlab.sourceforge.net)

FYI

BeNTO3D

Mesh Processing Framework for Mac (www.bento3d.com)

Last Time

Discrete Representations

- Explicit (parametric, polygonal meshes)
- Implicit Surfaces (SDF, grid representation)
- Conversions
 - E→I: Closest Point, SDF, Fast Marching
 - I→E: Marching Cubes Algorithm

Geometry

Topology

Differential Geometry

Why do we care?

- Geometry of surfaces
- Mothertongue of physical theories
- Computation: processing / simulation

Motivation

We need differential geometry to compute

- surface curvature
- paramaterization distortion
- deformation energies

Applications: 3D Reconstruction

Applications: Head Modeling

Applications: Facial Animation

Motivation

Geometry is the key

- studied for centuries (Cartan, Poincaré, Lie, Hodge, de Rham, Gauss, Noether...)
- mostly differential geometry
 - differential and integral calculus
- invariants and symmetries

Getting Started

How to apply DiffGeo ideas?

- surfaces as a collection of samples
 - and topology (connectivity)
- apply continuous ideas
 - BUT: setting is discrete
- what is the right way?
 - discrete vs. discretized

Let's look at that first

Getting Started

What characterizes structure(s)?

- What is shape?
 - Euclidean Invariance
- What is physics?
 - Conservation/Balance Laws
- What can we measure?
 - area, curvature, mass, flux, circulation

Getting Started

Invariant descriptors

• quantities invariant under a set of transformations

Intrinsic descriptor

• quantities which do not depend on a coordinate frame

Outline

Parametric Curves

Parametric Surfaces

Formalism & Intuition

Differential Geometry

Leonard Euler (1707-1783)

Carl Friedrich Gauss (1777-1855)

Parametric Curves

Recall: Mappings

Bijective

Injective

NO SELF-INTERSECTIONS

SELF-INTERSECTIONS

Surjective

AMBIGUOUS PARAMETERIZATION

Parametric Curves

A parametric curve $\mathbf{x}(t)$ is

- simple: $\mathbf{x}(t)$ is injective (no self-intersections)
- differentiable: $\mathbf{x}_t(t)$ is defined for all $t \in [a, b]$
- regular: $\mathbf{x}_t(t) \neq 0$ for all $t \in [a, b]$

Length of a Curve

Let
$$t_i = a + i\Delta t$$
 and $\mathbf{x}_i = \mathbf{x}(t_i)$

Length of a Curve

Polyline chord length

$$S = \sum_{i} \|\Delta \mathbf{x}_{i}\| = \sum_{i} \left\|\frac{\Delta \mathbf{x}_{i}}{\Delta t}\right\| \Delta t, \quad \Delta \mathbf{x}_{i} := \|\mathbf{x}_{i+1} - \mathbf{x}_{i}\|$$

norm change

Curve arc length ($\Delta t \rightarrow 0$)

$$s = s(t) = \int_a^t \|\mathbf{x}_t\| \,\mathrm{d}t$$

 Δt

a

 t_i

b

Re-Parameterization

Mapping of parameter domain

$$u:[a,b]\to [c,d]$$

Re-parameterization w.r.t. u(t)

$$[c,d] \to \mathbb{R}^3, \quad t \mapsto \mathbf{x}(u(t))$$

Derivative (chain rule)

$$\frac{\mathrm{d}\mathbf{x}(u(t))}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}t} = \mathbf{x}_u(u(t)) \ u_t(t)$$

Re-Parameterization

Example

$$\mathbf{f}: \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \to \mathbb{R}^2 \quad , \quad t \mapsto (4t, 2t)$$
$$\phi: \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \to \begin{bmatrix} 0, 1 \end{bmatrix} \quad , \quad t \mapsto 2t$$
$$\mathbf{g}: \begin{bmatrix} 0, 1 \end{bmatrix} \to \mathbb{R}^2 \quad , \quad t \mapsto (2t, t)$$

$$\Rightarrow$$
 $\mathbf{g}(\phi(t)) = \mathbf{f}(t)$

Arc Length Parameterization

Mapping of parameter domain:

$$t \mapsto s(t) = \int_a^t \|\mathbf{x}_t\| \,\mathrm{d}t$$

Parameter s for $\mathbf{x}(s)$ equals length from $\mathbf{x}(a)$ to $\mathbf{x}(s)$

$$\mathbf{x}(s) = \mathbf{x}(s(t)) \qquad \mathrm{d}s = \|\mathbf{x}_t\| \,\mathrm{d}t$$

same infinitesimal change

Special properties of resulting curve

$$\|\mathbf{x}_s(s)\| = 1, \quad \mathbf{x}_s(s) \cdot \mathbf{x}_{ss}(s) = 0$$

defines orthonormal frame

The Frenet Frame

Taylor expansion

1

$$\mathbf{x}(t+h) = \mathbf{x}(t) + \mathbf{x}_t(t)h + \frac{1}{2}\mathbf{x}_{tt}(t)h^2 + \frac{1}{6}\mathbf{x}_{ttt}(t)h^3 + \dots$$

for convergence analysis and approximations

Define local frame (t, n, b) (Frenet frame)

$$\mathbf{t} = \frac{\mathbf{x}_t}{\|\mathbf{x}_t\|} \qquad \mathbf{n} = \mathbf{b} \times \mathbf{t} \qquad \mathbf{b} = \frac{\mathbf{x}_t \times \mathbf{x}_{tt}}{\|\mathbf{x}_t \times \mathbf{x}_{tt}\|}$$
$$tangent \qquad main normal \qquad binormal$$

The Frenet Frame

Orthonormalization of local frame

local affine frame Frenet frame

The Frenet Frame

Frenet-Serret: Derivatives w.r.t. arc length *s*

Curvature (deviation from straight line)

$$\kappa = \|\mathbf{x}_{ss}\|$$

Torsion (deviation from planarity)

$$\tau = \frac{1}{\kappa^2} \det([\mathbf{x}_s, \mathbf{x}_{ss}, \mathbf{x}_{sss}])$$

Curvature and Torsion

Planes defined by x and two vectors:

- osculating plane: vectors \boldsymbol{t} and \boldsymbol{n}
- normal plane: vectors \boldsymbol{n} and \boldsymbol{b}
- rectifying plane: vectors \boldsymbol{t} and \boldsymbol{b}

Osculating circle

- second order contact with curve
- center $\mathbf{c} = \mathbf{x} + (1/\kappa)\mathbf{n}$
- radius $1/\kappa$

Curvature and Torsion

- Curvature: Deviation from straight line
- **Torsion**: Deviation from planarity
- Independent of parameterization
 - intrinsic properties of the curve
- Euclidean invariants
 - invariant under rigid motion
- Define curve **uniquely** up to a rigid motion

A line through two points on the curve (Secant)

A line through two points on the curve (Secant)

Tangent, the first approximation

limiting secant as the two points come together

Circle of curvature

Consider the circle passing through 3 pints of the curve

Circle of curvature

The limiting circle as three points come together

Radius of curvature *r*

Radius of curvature *r*

Signed curvature

Sense of traversal along curve

Gauß map $\hat{n}(x)$

Point on curve maps to point on unit circle

Shape operator (Weingarten map)

Change in normal as we slide along curve

negative directional derivative D of Gauß map

$$S(v) = -D_v \hat{n}$$

describes directional curvature

using normals as degrees of freedom

→ accuracy/convergence/implementation (discretization)

Turning number, *k*

Number of orbits in Gaussian image

Turning number theorem

For a closed curve, the integral of curvature is an integer multiple of 2π

 $\int_{\Omega} \kappa ds = 2\pi k$

Take Home Message

In the limit of a refinement sequence, discrete measure of length and curvature **agree** with continuous measures

http://cs621.hao-li.com

Thanks!

