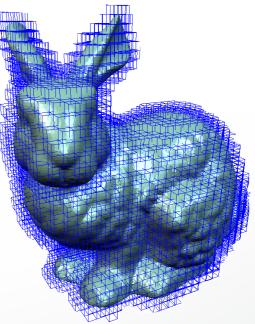
Spring 2018

CSCI 621: Digital Geometry Processing

2.1 Explicit & Implicit Surfaces

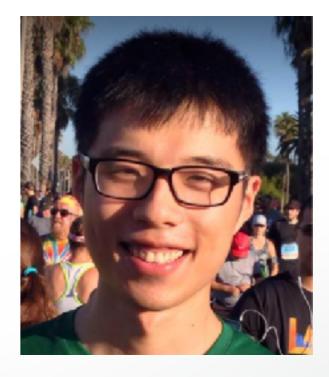


Administrative

- Exercise 1 discussion: Later
- Hao Li (Instructor)
 - Office Hour: Tue 12:30 PM 1:30 PM, SAL 244

• Tianye Li

- Office Hour: Mon 3:00 PM 4:00 PM, PHE 108
- Tianye Li, tianyeli@usc.edu

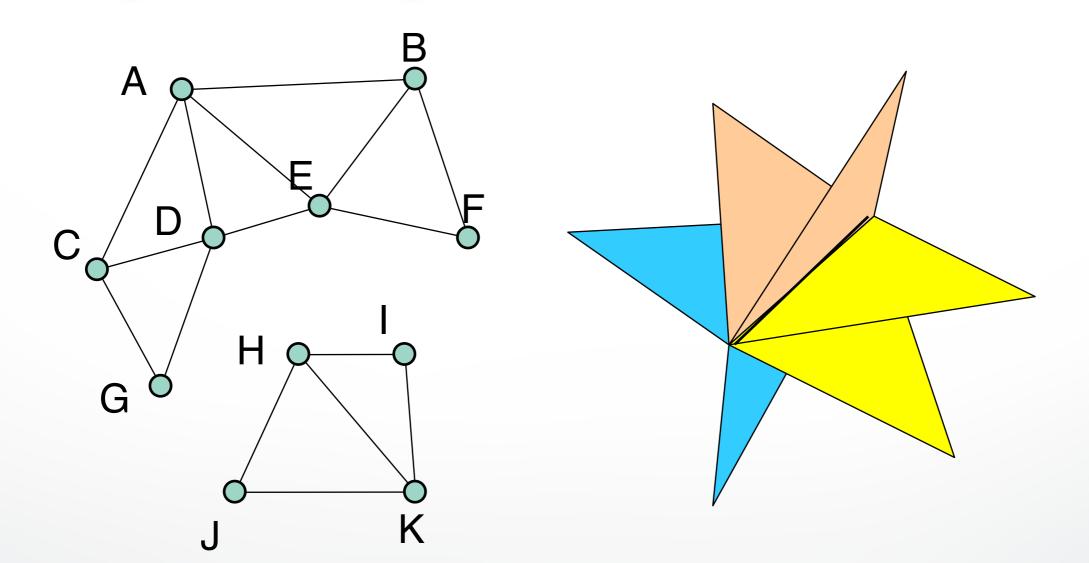


Polygonal meshes are

- Effective representations
- Flexible
- Efficient, simple, enables unified processing

Connection between Meshes and Graphs

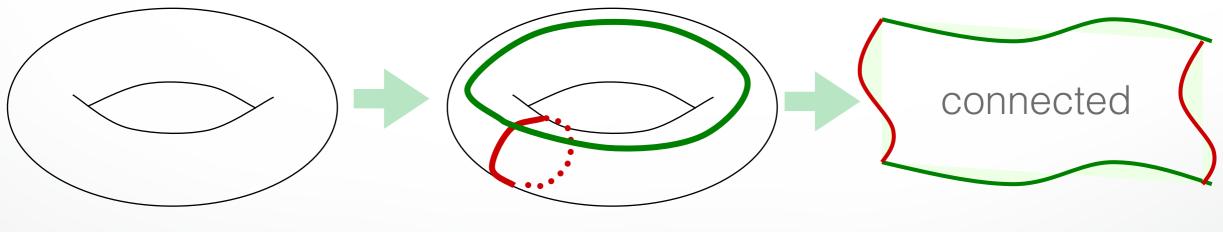
- Formalism (valence, connections, subgraph, embedding...)
- Definitions (boundary, regular edge, singular edge, closed mesh)
- triangulation \rightarrow triangle mesh



Topology

- Genus, Euler characteristic
- Euler Poincaré formula V E + F = 2(1 g)
- Average valence of triangle mesh: 6
- Triangles: F = 2V, E = 3V
- Quads: F = V, E = 2V

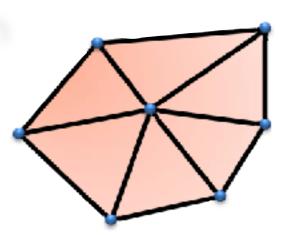
k=1 handle

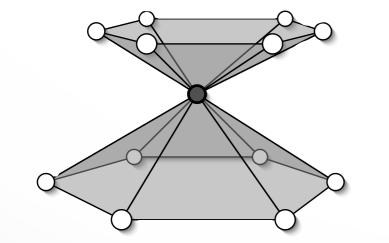


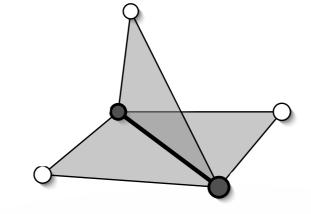
^{≤2}k edge loops

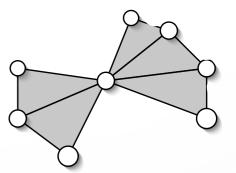
2-Manifold Surface

- Local Neighborhood is disk-shaped $\mathbf{f}(D_{\epsilon}[u,v]) = D_{\delta}[\mathbf{f}(u,v)]$
- Guarantees meaningful neighbor enumeration
- Non-manifold



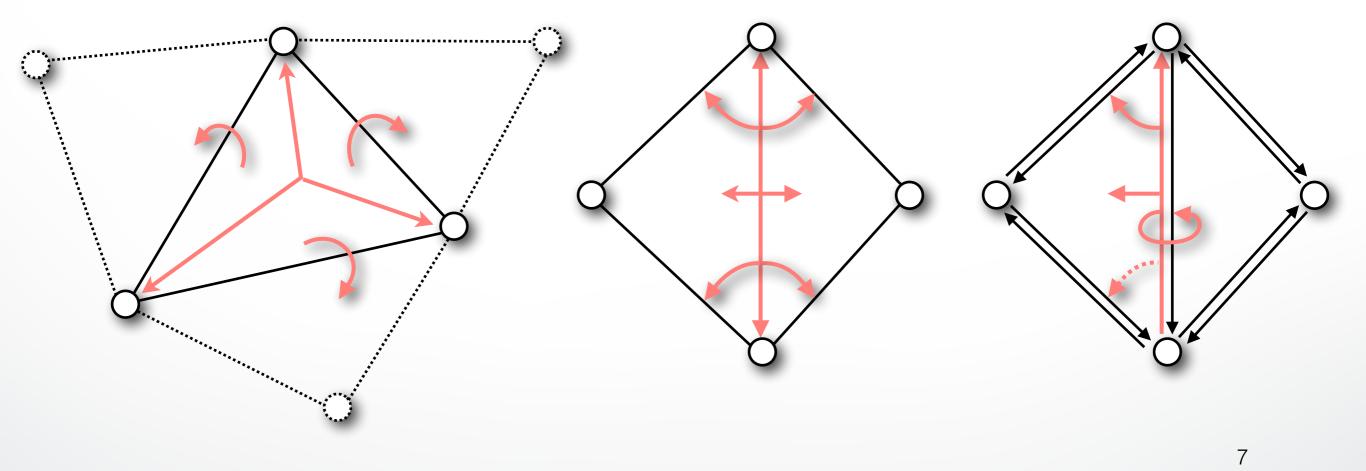






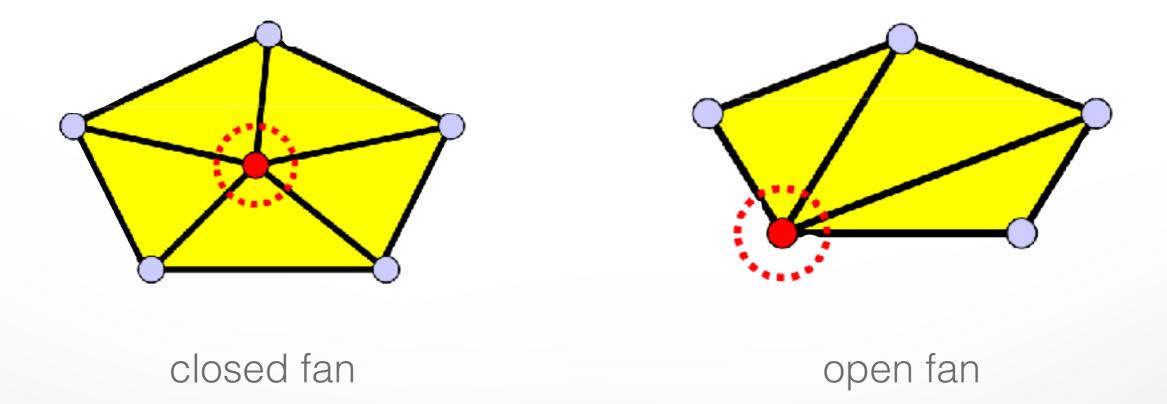
Data Structures

- Face-Based
- Edge-Based, edges always have two faces
- Halfedge-Based



When is a Triangle Mesh a Manifold?

- Every Edge incident to 1 or 2 Triangles
- Faces incident to a vertex form closed or open fan



Outline

Surface Representations

- Explicit Surfaces
- Implicit Surfaces
- Conversion

Explicit vs. Implicit

Explicit: $\mathbf{f}(x) = (r\cos(x), r\sin(x))^T$

Range of parameterization function

Implicit:
$$F(x,y) = \sqrt{x^2 + y^2} - r$$

• Kernel of implicit function

 $f([0, 2\pi])$ F(x,y) < 0F(x, y) = 0F(x, y) > 0

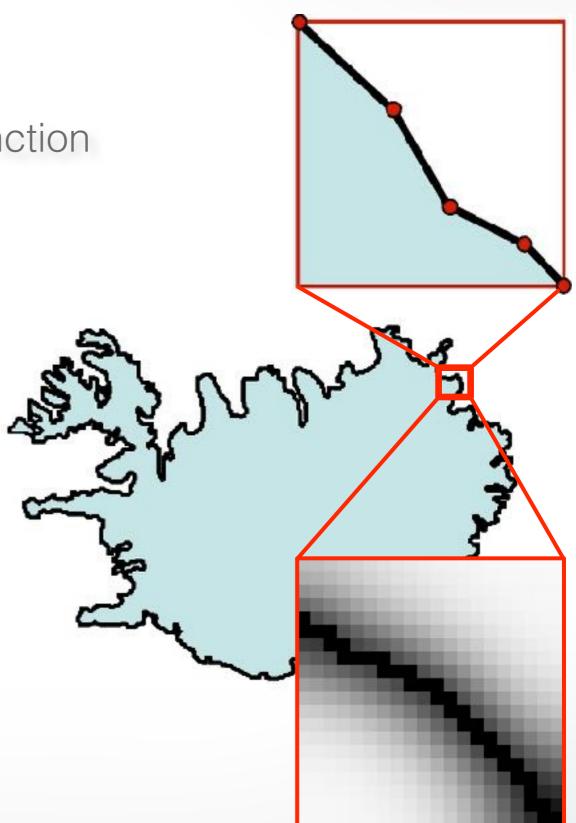
Explicit vs. Implicit

Explicit: $\mathbf{f}(x) = ?$

- Range of parameterization function
- Piecewise approximation

Implicit: F(x, y) = ?

- Kernel of implicit function
- Piecewise approximation



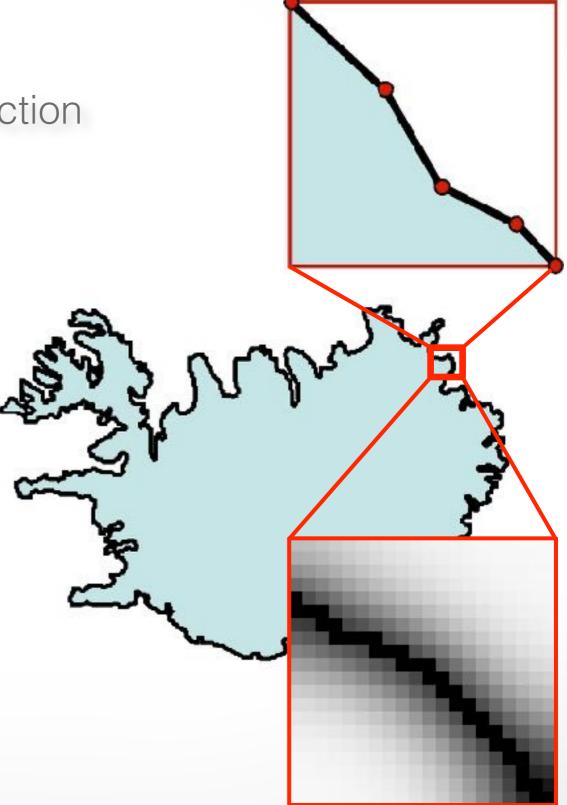
Explicit vs. Implicit

Explicit:

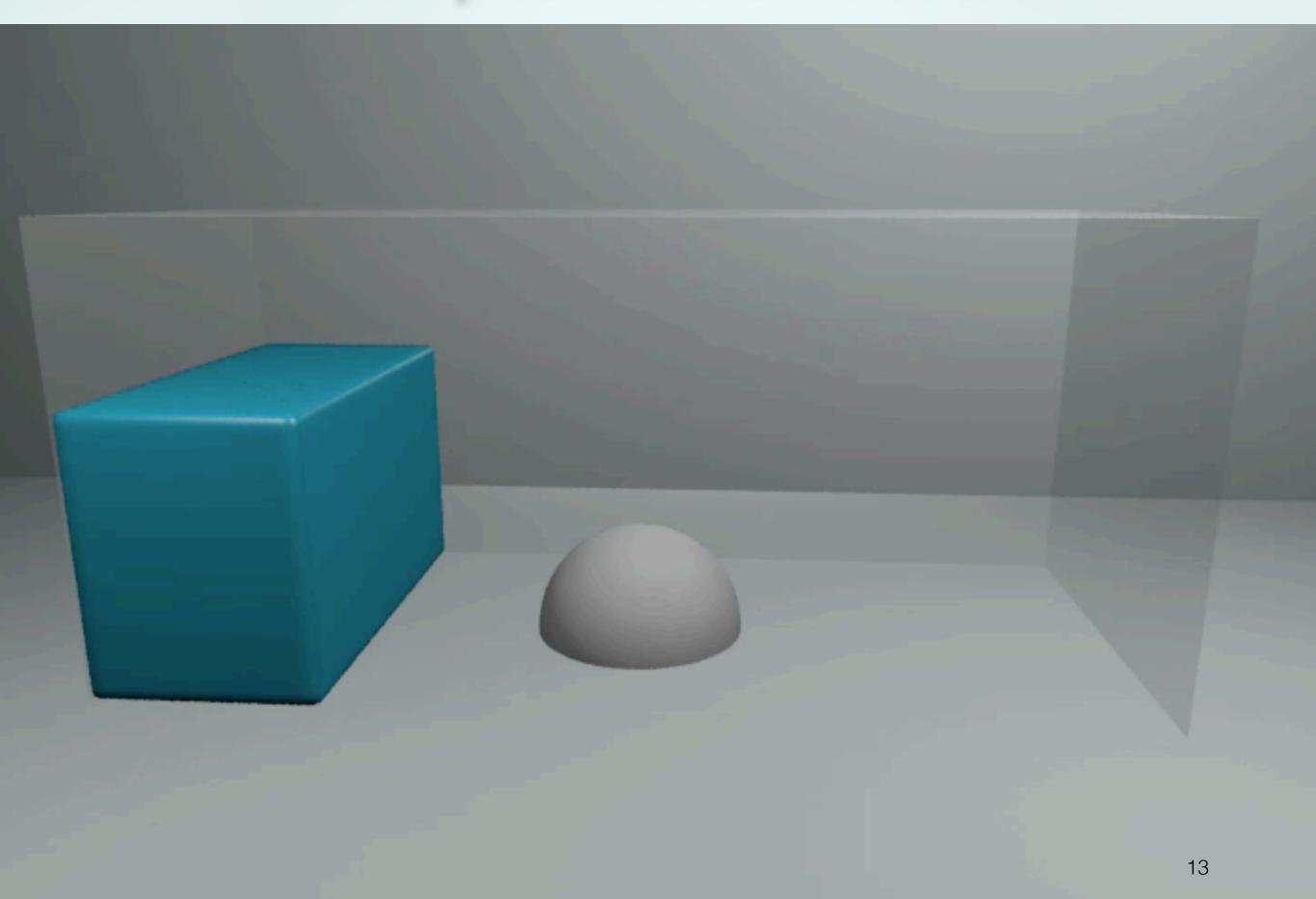
- Range of parameterization function
- Piecewise approximation
- Splines, triangle mesh, points
- Easy enumeration
- Easy geometry modification

Implicit:

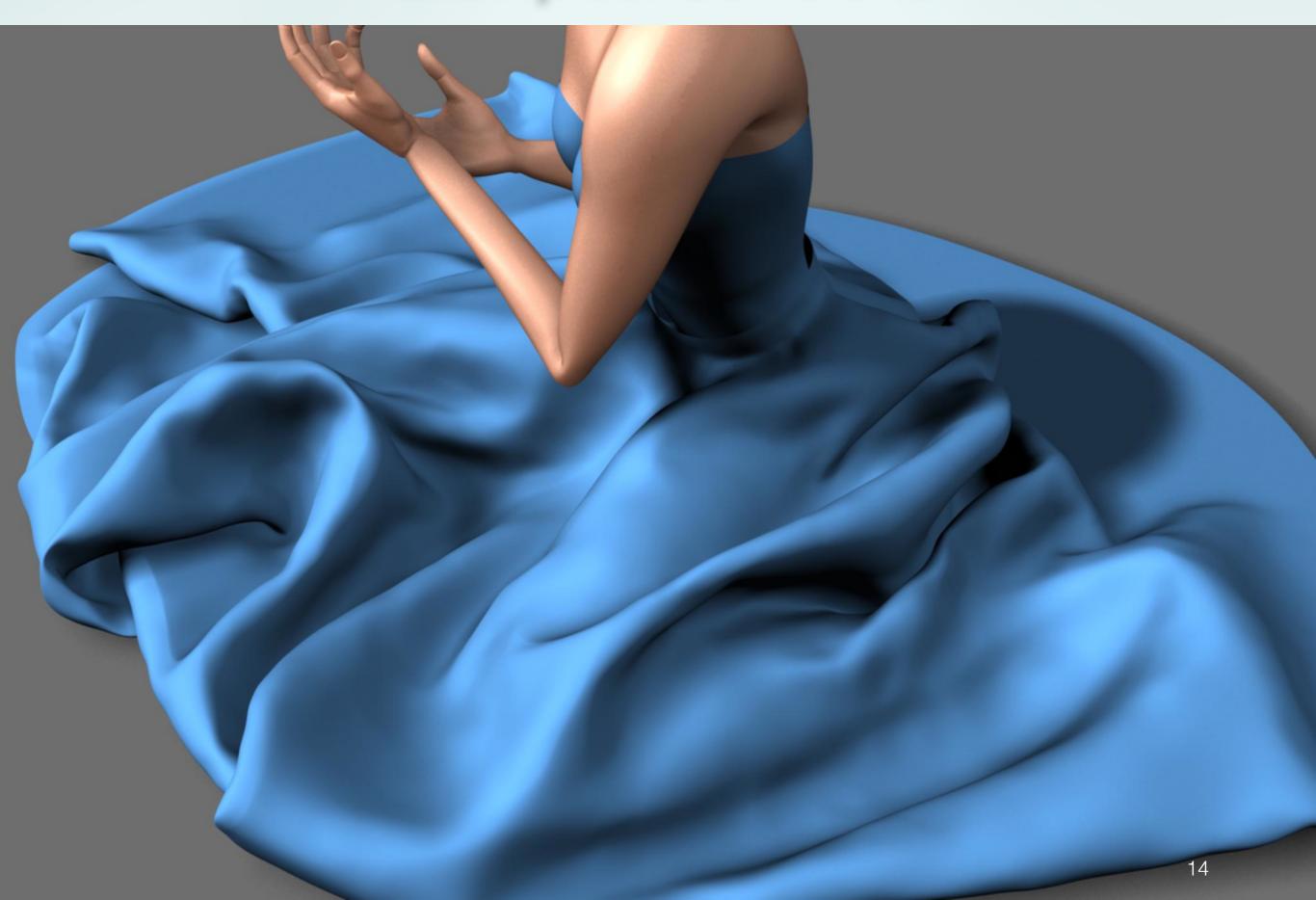
- Kernel of implicit function
- Piecewise approximation
- Scalar-valued 3D grid
- Easy in/out test
- Easy topology modification



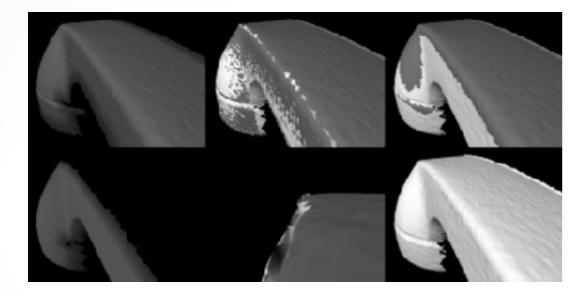
Examples: Fluid Simulation

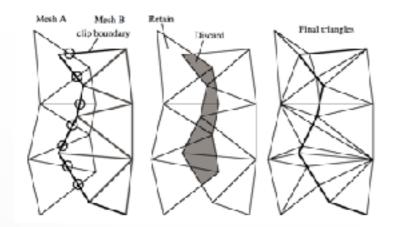


Examples: Collisions

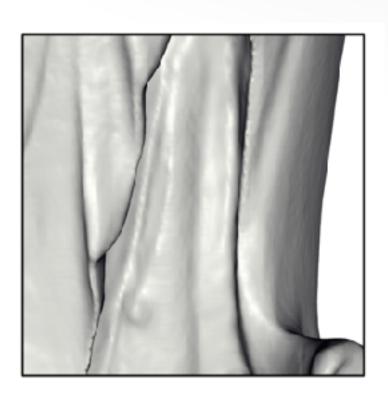


Examples: 3D Reconstruction





Zippering



 $\begin{array}{c} x^{1} 1^{1}$

Poisson Reconstruction

Examples: Kinect Fusion

- 1. Capture
- 2. Align
- 3. Fuse

http://msdn.microsoft.com/en-us/library/dn188670.aspx

Outline

- Surface Representations
- Explicit Surfaces
- Implicit Surfaces
- Conversion

Polynomial Approximation

Polynomials are computable functions

$$f(t) = \sum_{i=0}^{p} c_i t^i = \sum_{i=0}^{p} \tilde{c}_i \phi_i(t)$$

Taylor expansion up to degree p

$$g(h) = \sum_{i=0}^{p} \frac{1}{i!} g^{(i)}(0) h^{i} + O(h^{p+1})$$

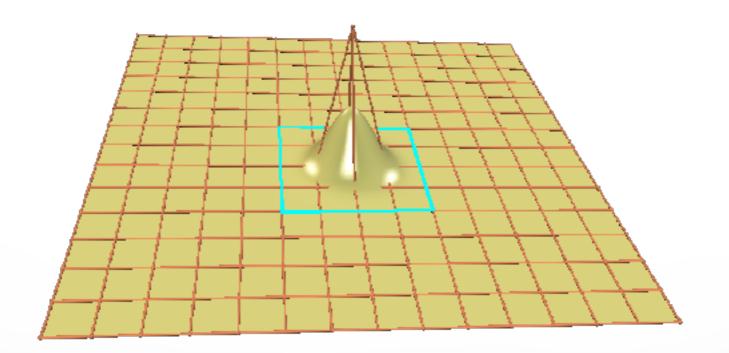
Error for approximation g by polynomial f

$$f(t_i) = g(t_i), \quad 0 \le t_0 < \dots < t_p \le h$$
$$|f(t) - g(t)| \le \frac{1}{(p+1)!} \max f^{(p+1)} \prod_{i=0}^p (t - t_i) = O(h^{(p+1)})$$

Spline Surfaces

Piecewise polynomial approximation

$$\mathbf{f}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{c}_{ij} N_i^n(u) N_j^m(v)$$



Spline Surfaces

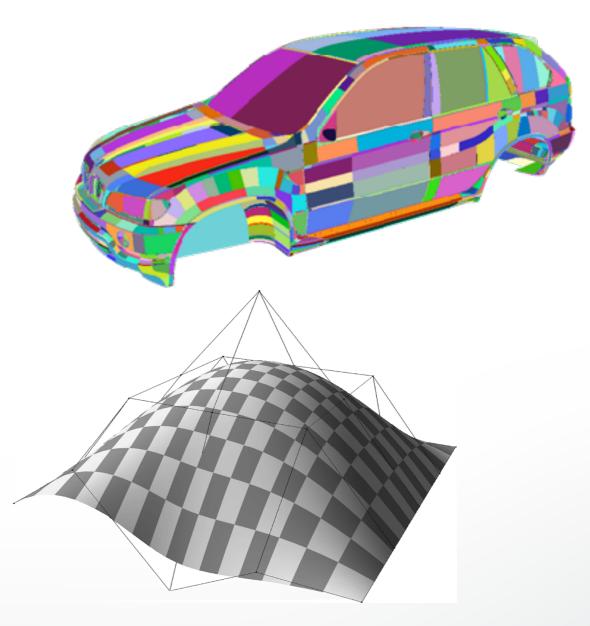
Piecewise polynomial approximation

Geometric constraints

- Large number of patches
- Continuity between patches
- Trimming

Topological constraints

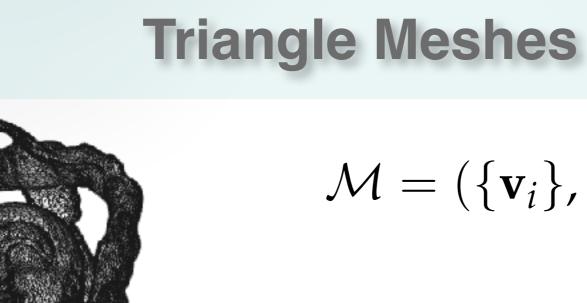
- Rectangular patches
- Regular control mesh



Polygon Meshes

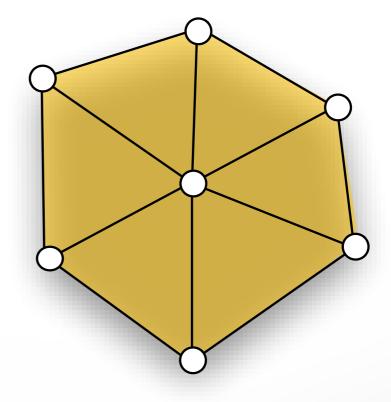
Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling
- Efficient GPU-based rendering/processing



$$\mathcal{M} = (\{\mathbf{v}_i\}, \{e_j\}, \{f_k\})$$

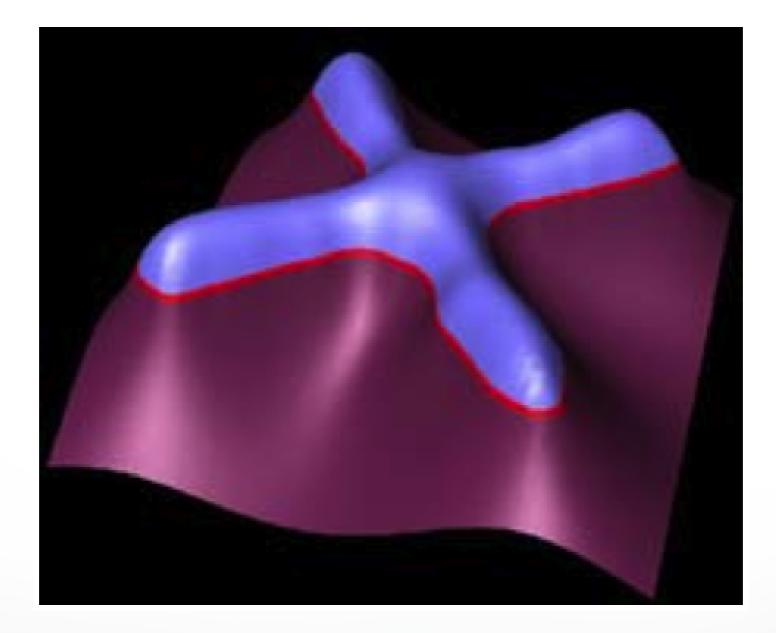
geometry $\mathbf{v}_i \in \mathbb{R}^3$ **topology** $e_i, f_i \subset \mathbb{R}^3$



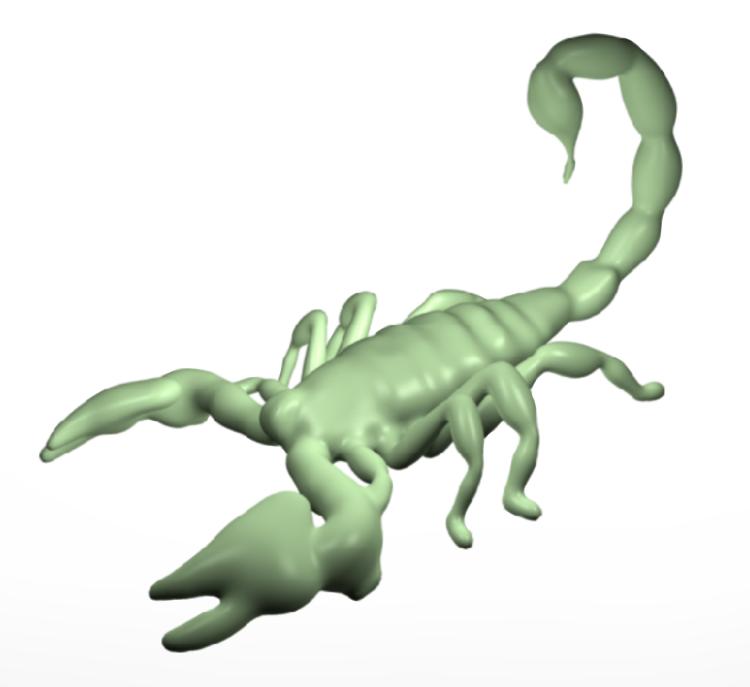
Outline

- Surface Representations
- Explicit Surfaces
- Implicit Surfaces
- Conversion

Level set of 2D function defines 1D curve

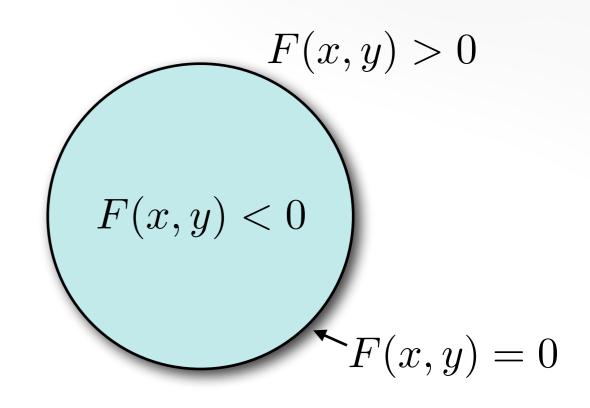


Level set of 3D function defines 2D surface



General implicit function:

- Interior: F(x, y, z) < 0
- Exterior: F(x, y, z) > 0
- Surface: F(x, y, z) = 0



Gradient ∇F is orthogonal to level set

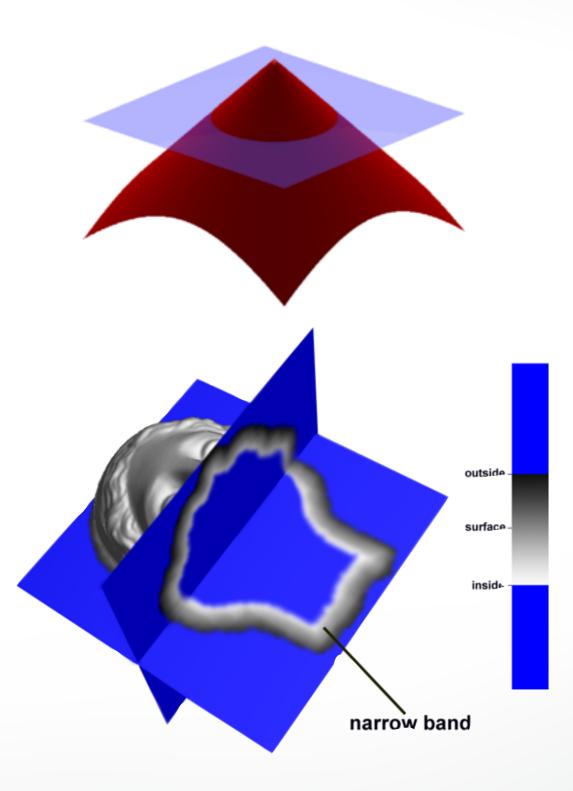
Special case

- Signed distance function (SDF)
- Gradient ∇F is unit surface normal

Signed Distance Function

SDF of a circle?

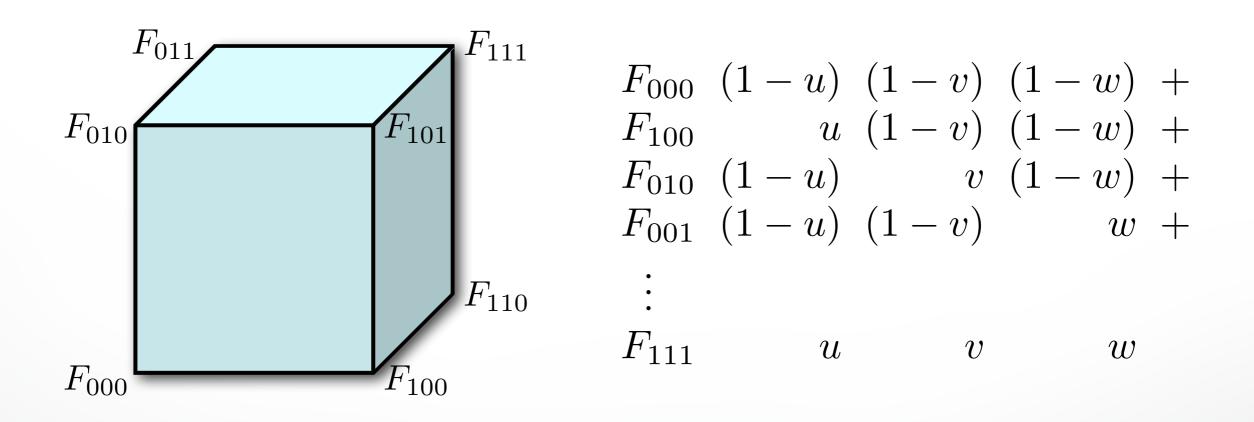
General shapes



SDF Discretization

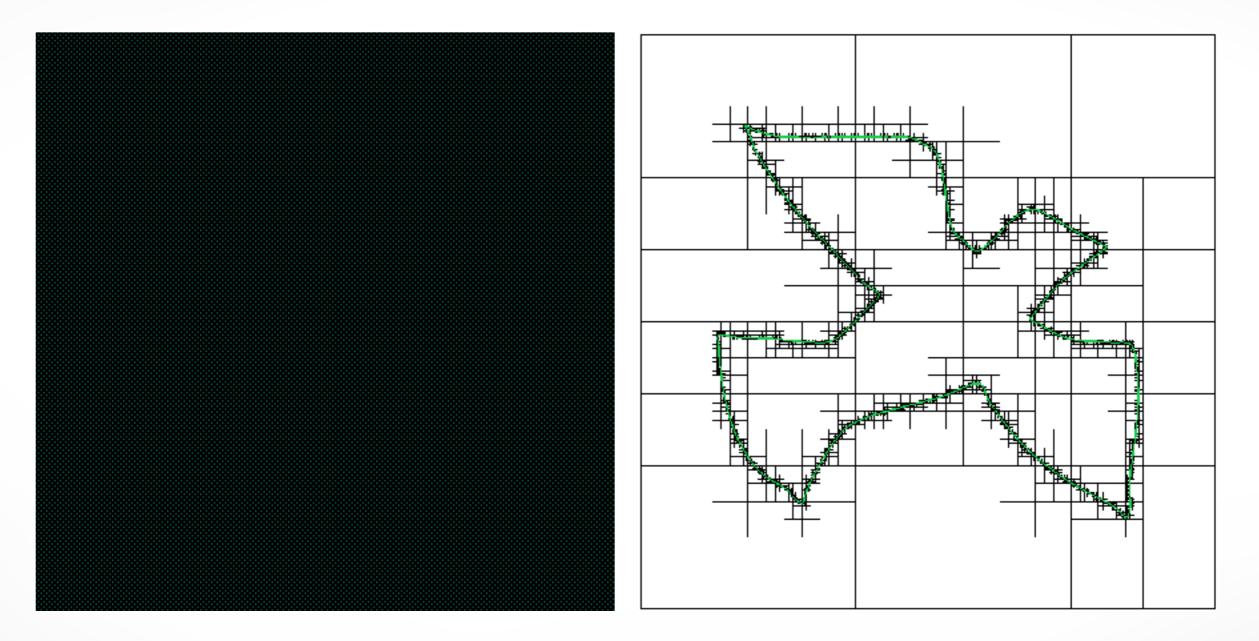
Regular cartesian 3D grid

- Compute signed distance at nodes
- Tri-linear interpolation within cells



3-Color Octree

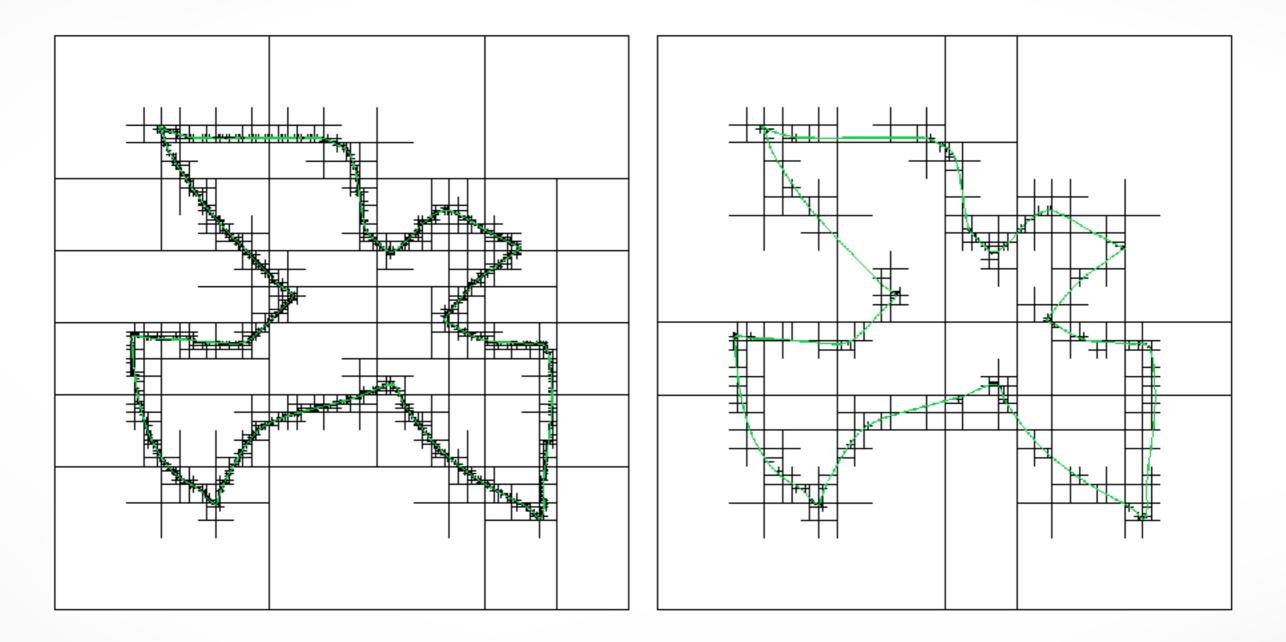
3 Colors: interior, exterior, boundary



1048576 cells

12040 cells

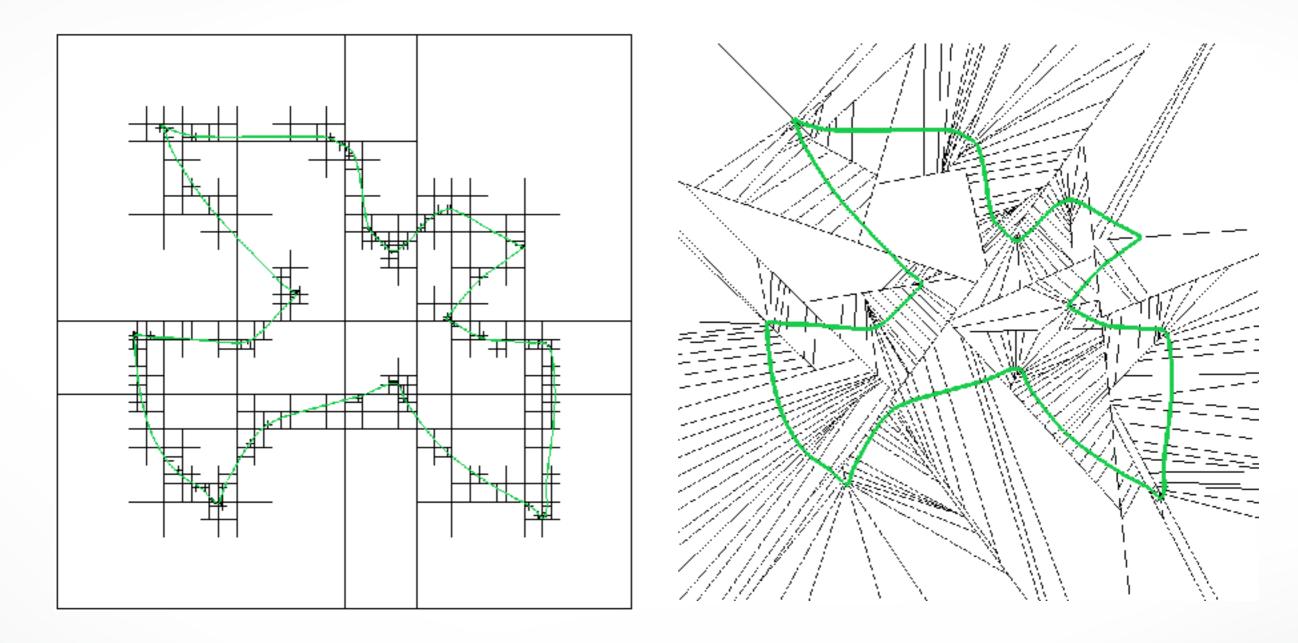
Adaptively Sampled Distance Fields



12040 cells

895 cells

Binary Space Partitions



895 cells

254 cells

Regularity vs. Complexity

Implicit surface discretizations

- Uniform, regular voxel grids
- Adaptive, 3-color octrees
 - Surface-adaptive refinement
 - Feature-adaptive refinement
- Irregular hierarchies
 - Binary space partition (BSP)

 $O(h^{-2})$

 $O(h^{-3})$

 $O(h^{-1})$

 $O(h^{-1})$

Literature

- Frisken et al., "Adaptively Sampled Distance Fields: A general representation of shape for computer graphics", SIGGRAPH 2000
- Wu & Kobbel, "Piecewise Linear Approximation of Signed Distance Fields", VMV 2003

- Natural representation for **volumetric data**: CT scans, density fields, etc.
- Advantageous when modeling shapes with complex and/or changing topology (e.g., fluids)
- Very suitable representation for **Constructive Solid Geometry** (CSG)

CSG Example

Union

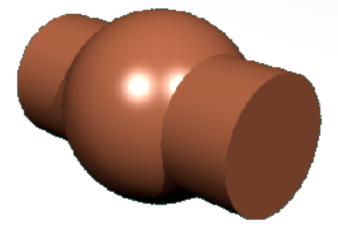
$$F_{C\cup S}(\cdot) = \min\left\{F_C(\cdot), F_S(\cdot)\right\}$$

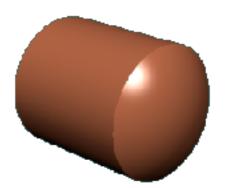
Intersection

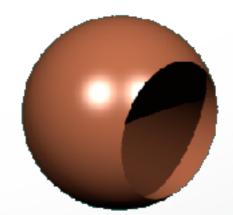
 $F_{C\cap S}(\cdot) = \max\left\{F_C(\cdot), F_S(\cdot)\right\}$

Difference

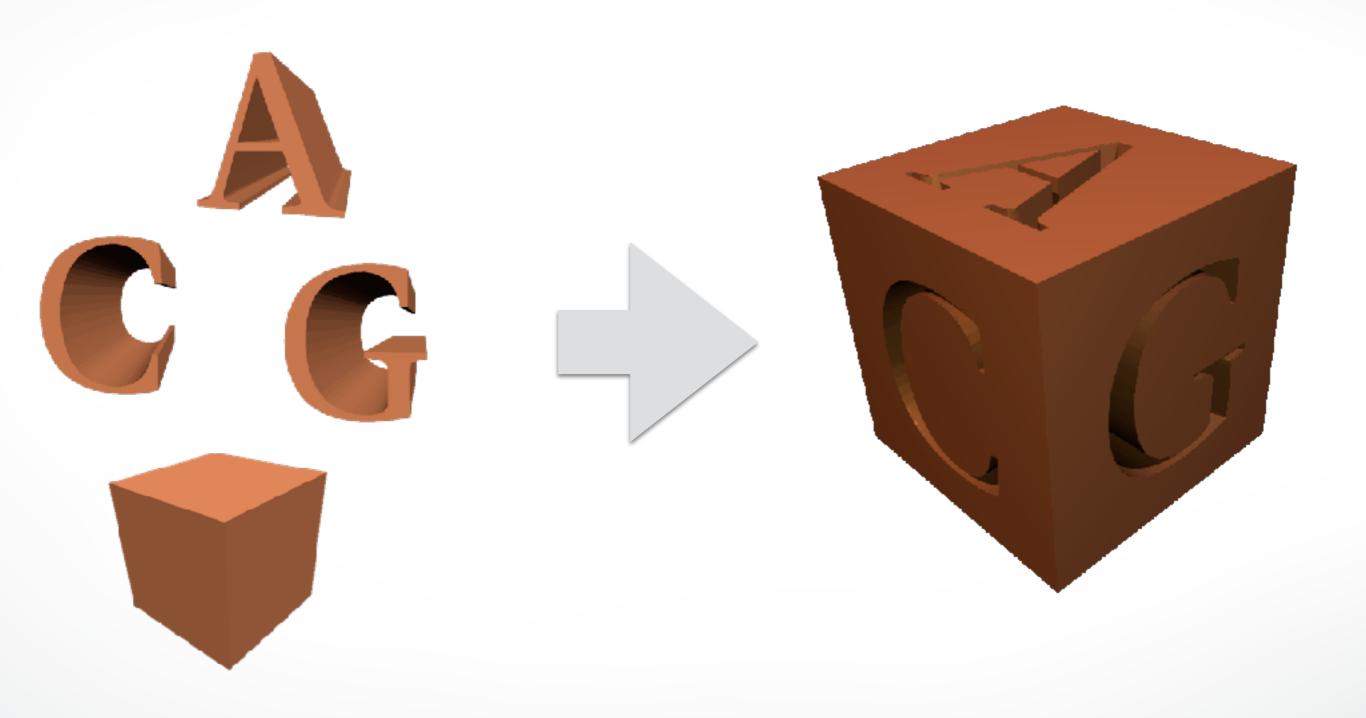
$$F_{S\setminus C}(\cdot) = \max\left\{-F_C(\cdot), F_S(\cdot)\right\}$$



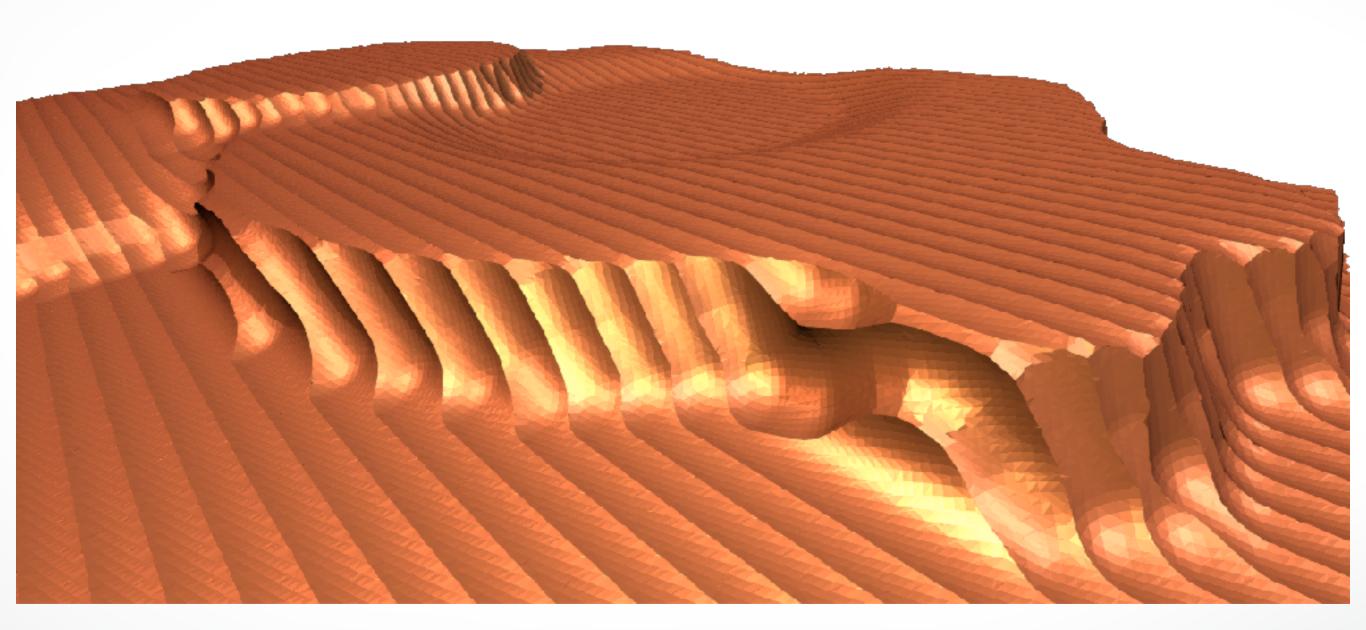




CSG Example



CSG Example: Milling



Outline

- Surface Representations
- Explicit Surfaces
- Implicit Surfaces
- Conversion

Conversion

Explicit to Implicit

- Compute signed distance at grid points
- Compute distance point-mesh
- Fast marching

Implicit to Explicit

- Extract zero-level iso-surface F(x, y, z) = 0
- Other iso-surfaces F(x, y, z) = C
- Medical imaging, simulations, measurements, ...

Signed Distance Computation

Find closest mesh triangle

• Use spatial hierarchies (octree, BSP tree)

Distance point-triangle

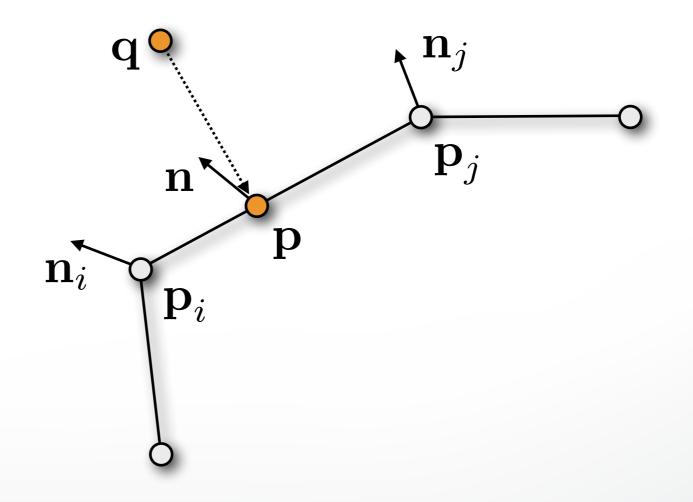
- Distance to plane, edge, or vertex
- http://www.geometrictools.com

Inside or outside?

Based on interpolated surface normals

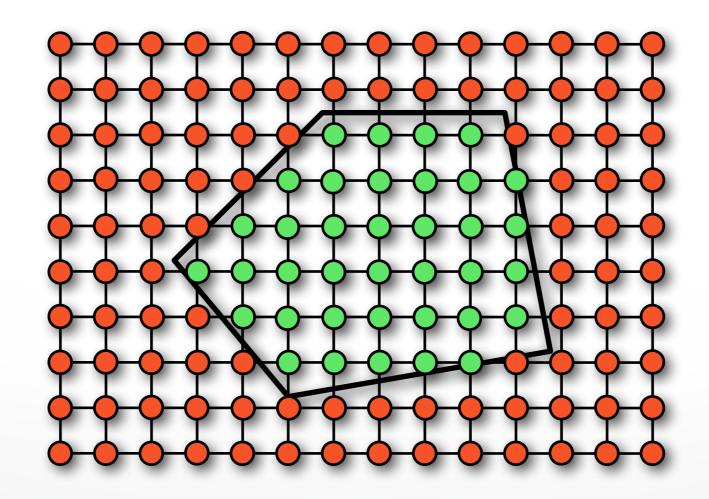
Signed Distance Computation

- Closest point $\mathbf{p} = \alpha \mathbf{p}_i + (1 \alpha) \mathbf{p}_j$
- Interpolated normal $\mathbf{n} = \alpha \mathbf{n}_i + (1 \alpha) \mathbf{n}_j$
- Inside if $(\mathbf{q} \mathbf{p})^\top \mathbf{n} < 0$



Fast Marching Techniques

- Initialize with exact distance in mesh's vicinity
- Fast-march outwards
- Fast-march inwards



Literature

- Schneider, Eberly, "Geometric Tools for Computer Graphics", Morgan Kaufmann, 2002
- Sethian, "Level Set and Fast Marching Methods", Cambridge University Press, 1999

Conversion

Explicit to Implicit

- Compute signed distance at grid points
- Compute distance point-mesh
- Fast marching

Implicit to Explicit

- Extract zero-level iso-surface F(x, y, z) = 0
- Other iso-surfaces F(x, y, z) = C
- Medical imaging, simulations, measurements, ...

2D: Marching Square

1. Classify grid nodes as inside/outside

• Is $F(\mathbf{x}_{i,j}) > 0$ or < 0 ?

2. Classify cell: 2⁴ configurations

• In/out for each corner

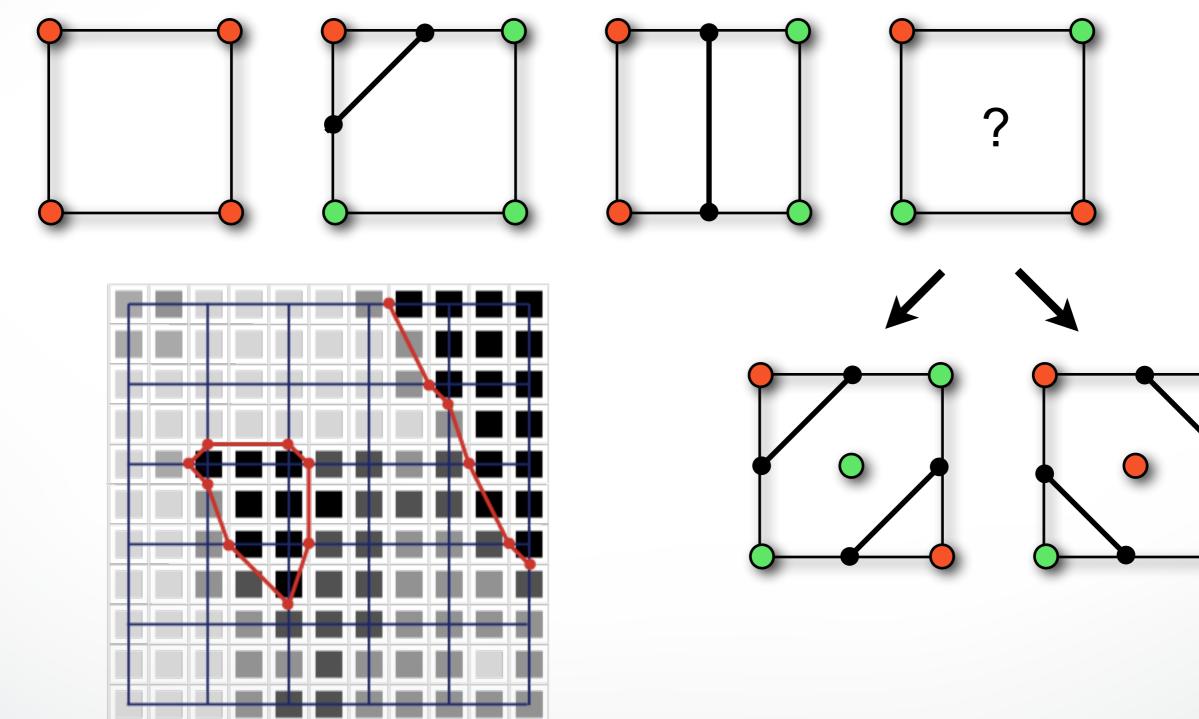
3. Compute intersection points

• Linear interpolation along edges

4. Connect them by edges

• Look-up table for edge configuration

2D: Marching Square



1. Classify grid nodes as inside/outside

• Is $F(\mathbf{x}_{i,j,k}) > 0$ or < 0

2. Classify cell: 2⁸ configurations

In/out for each corner

3. Compute intersection points

• Linear interpolation along edges

4. Connect them by edges

- Look-up table for path configuration
- Disambiguation by modified table [Montani '94]

Classify grid nodes $\mathbf{x}_{i,j,k}$ based on $F_{i,j,k} = F(\mathbf{x}_{i,j,k})$

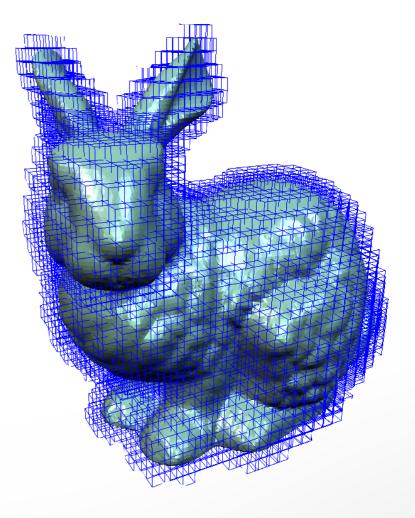
• Inside or outside

Classify all cubes based on $F_{i,j,k}$

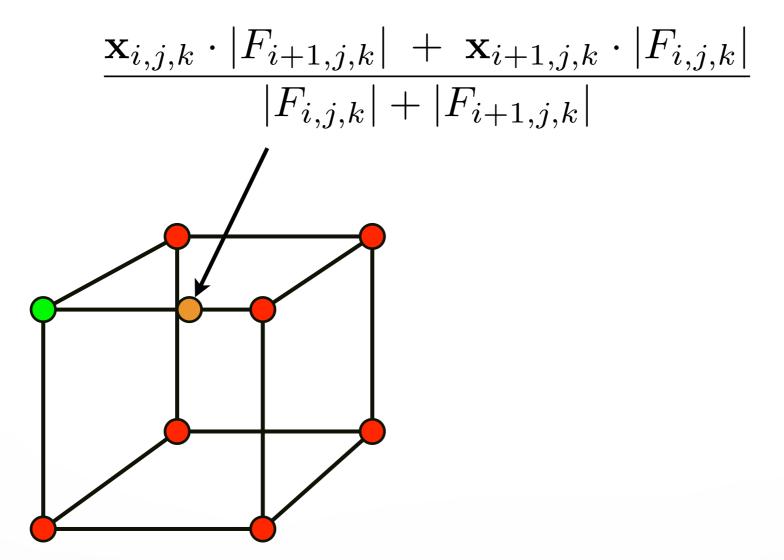
• Inside, outside, or intersecting

Refined only intersected cells

- 3-color adaptive octree
- $O(h^{-2})$ complexity



Linear interpolation along edges



Linear interpolation along edges

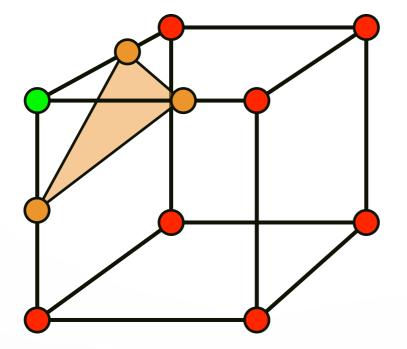
$$\frac{\mathbf{x}_{i,j,k} \cdot |F_{i,j+1,k}| + \mathbf{x}_{i,j+1,k} \cdot |F_{i,j,k}|}{|F_{i,j,k}| + |F_{i,j+1,k}|}$$

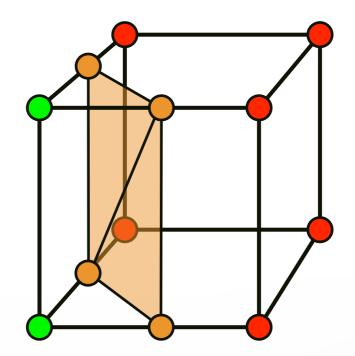
Linear interpolation along edges

$$\frac{\mathbf{x}_{i,j,k} \cdot |F_{i,j,k+1}| + \mathbf{x}_{i,j,k+1} \cdot |F_{i,j,k}|}{|F_{i,j,k}| + |F_{i,j,k+1}|}$$

Linear interpolation along edges

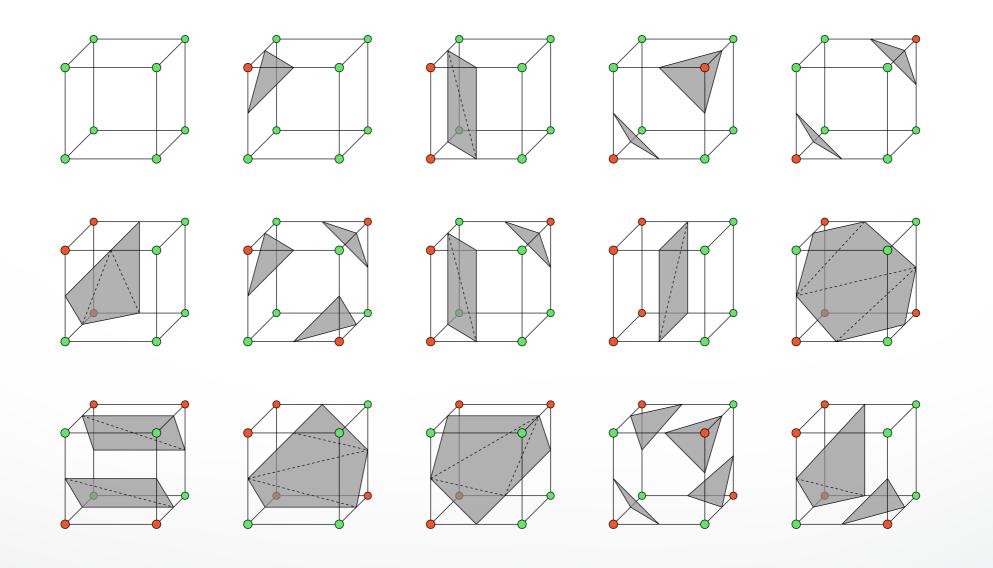
Lookup table for patch configuration



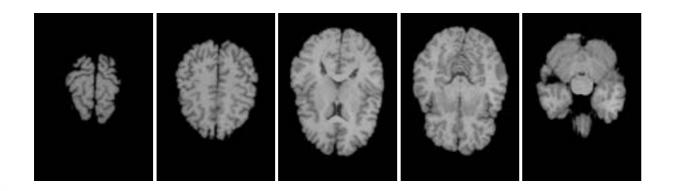


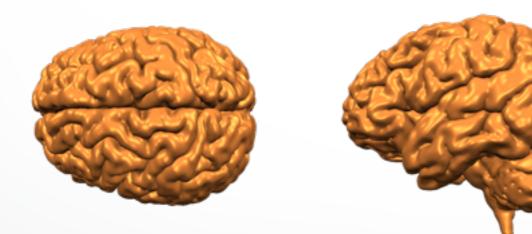
Look-up table with 2⁸ entries

- 15 representative cases shown
- Others follow by symmetry

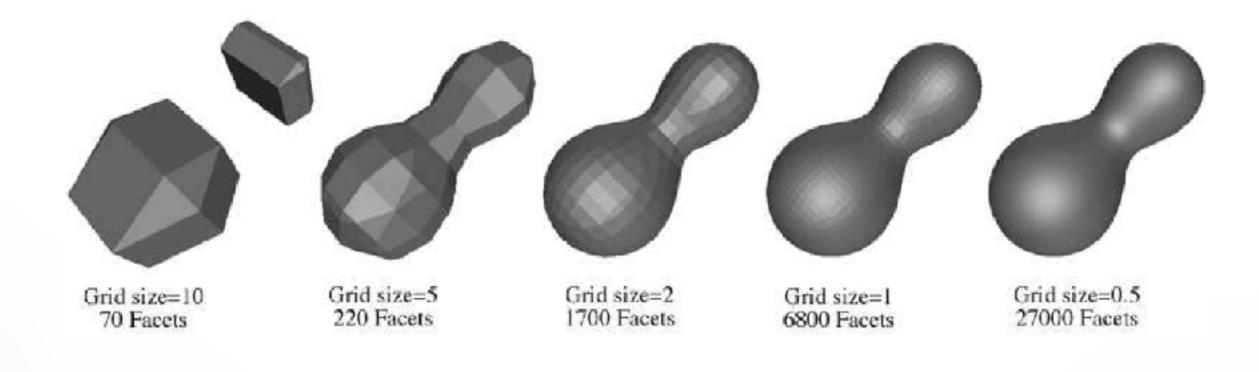


Algorithm for isosurface extraction from medical scans (CT, MRI)

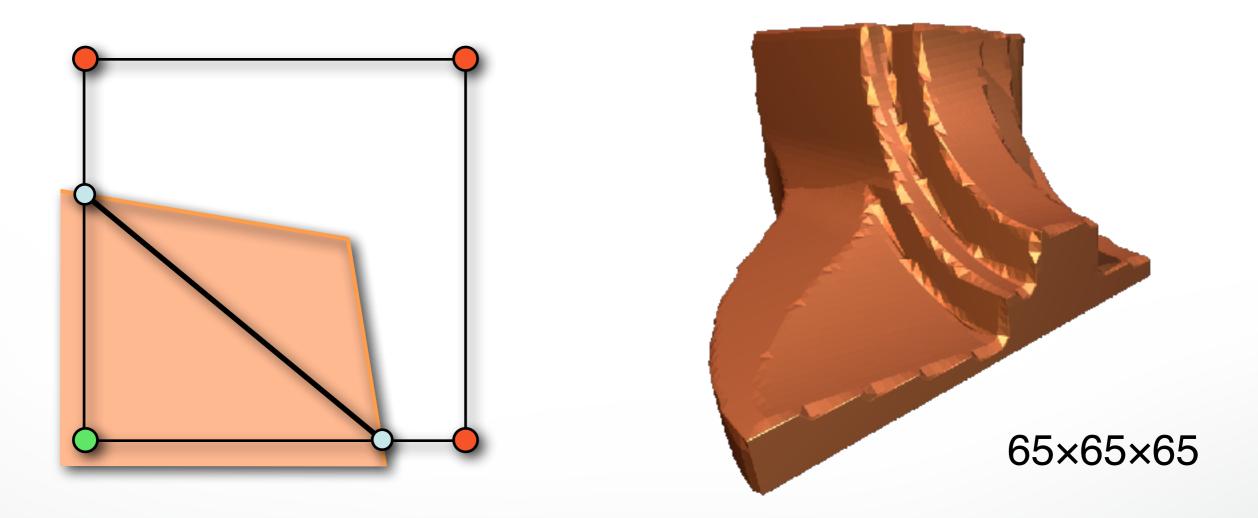




Effect of grid size

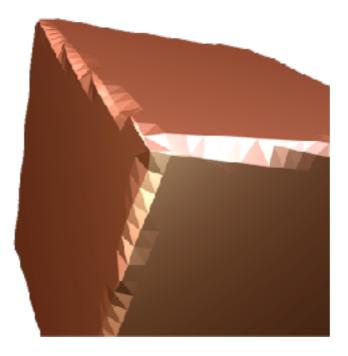


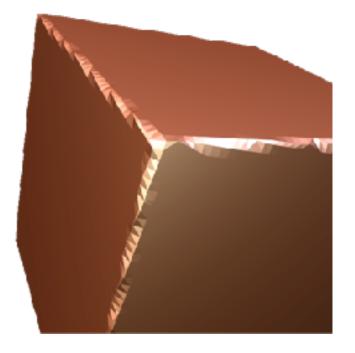
Sample points restricted to edges of regular grid Alias artifacts at sharp features



Increasing Resolution

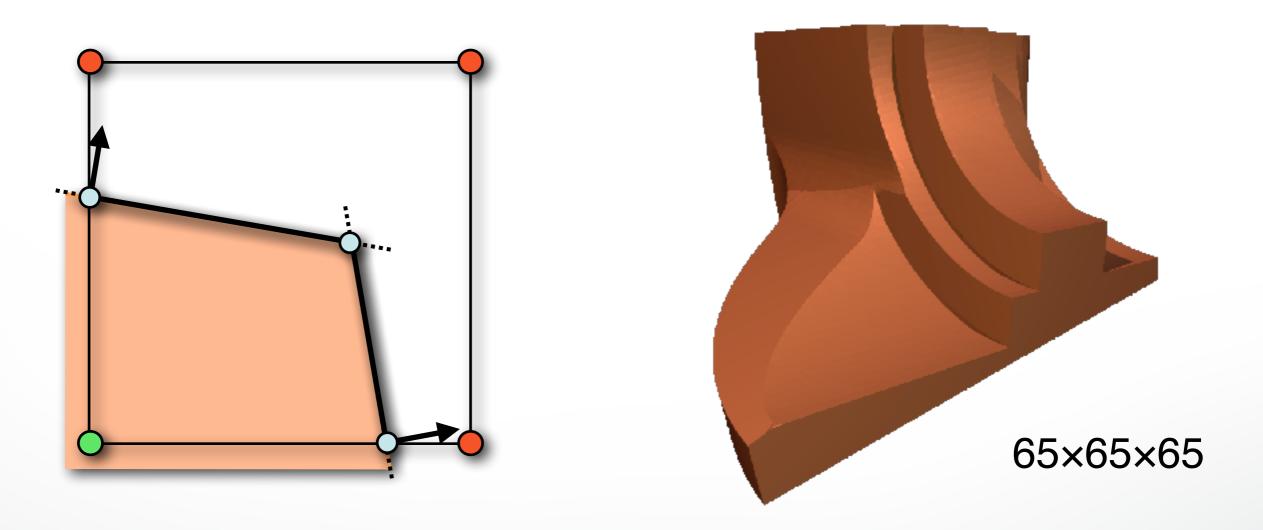






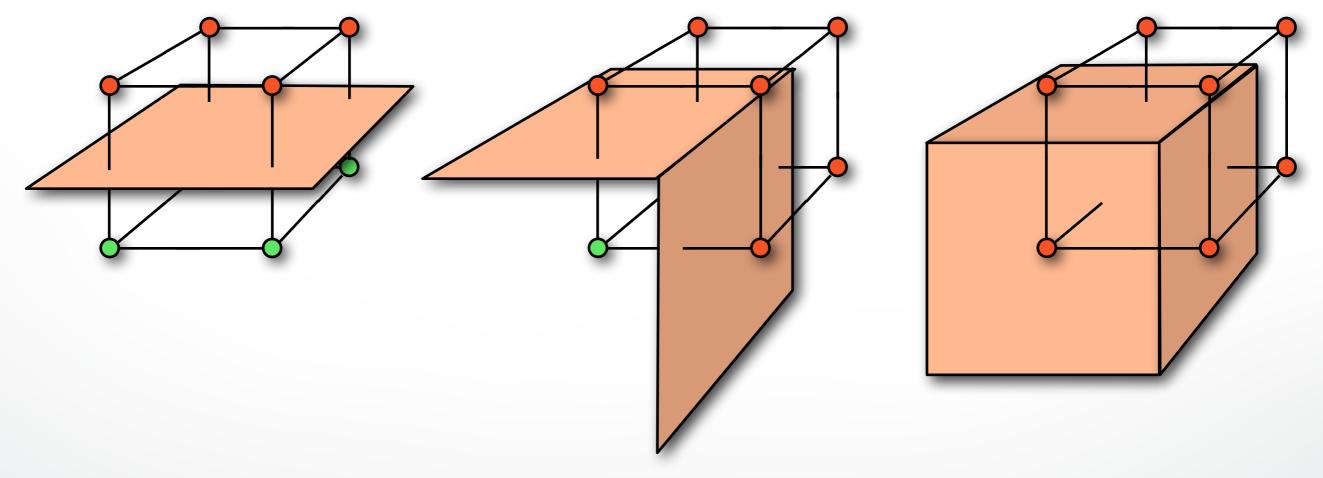
Does not remove alias problems!

Locally extrapolate distance gradient Place samples on estimated features



Feature detection

- Based on angle between normals \mathbf{n}_i
- Classify into edges / corners



Feature sampling

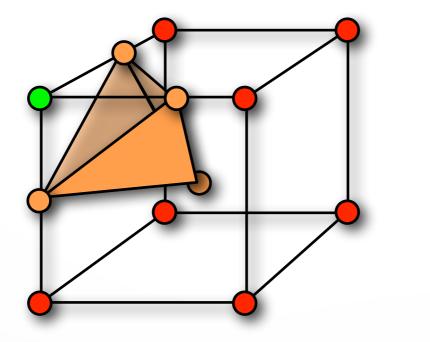
• Intersect tangent planes $(\mathbf{s}_i, \mathbf{n}_i)$

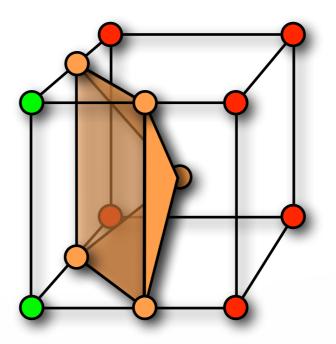
$$\left(\begin{array}{c} \vdots \\ \mathbf{n}_i \\ \vdots \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} \vdots \\ \mathbf{n}_i^T \mathbf{s}_i \\ \vdots \end{array}\right)$$

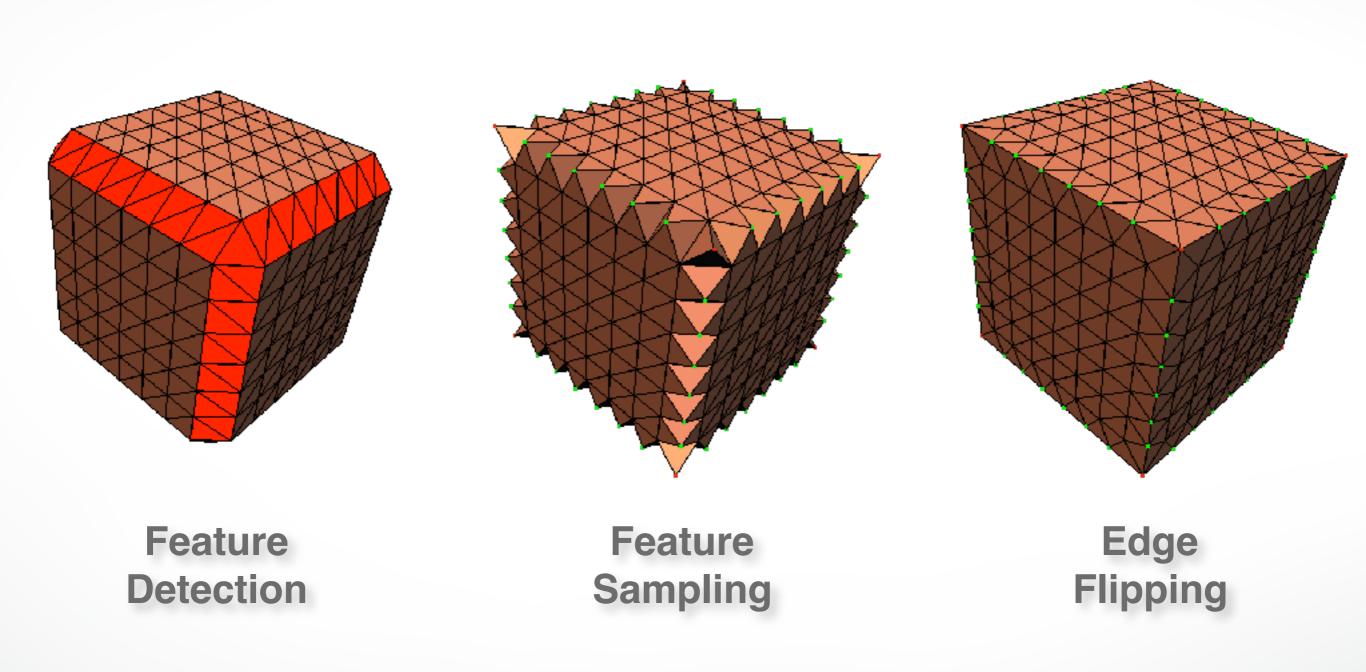
- Over- or under-determined system
- Solve by SVD pseudo-inverse

Feature sampling

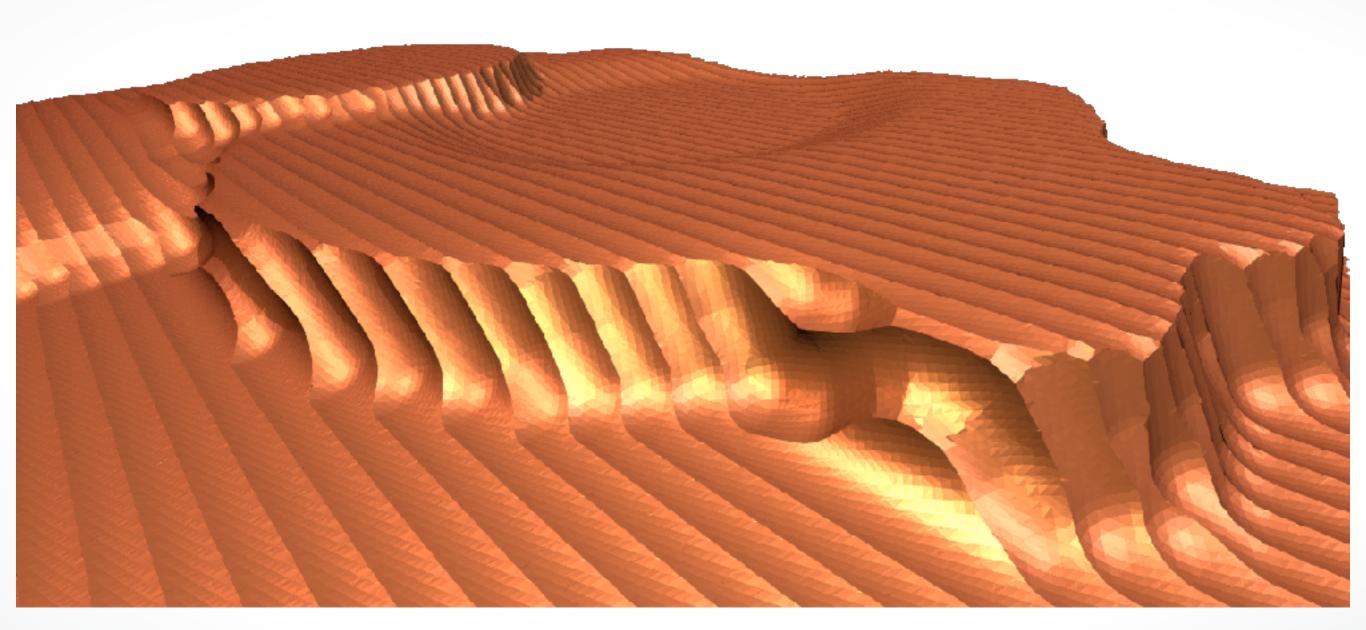
- Intersect tangent planes $(\mathbf{s}_i, \mathbf{n}_i)$
- Triangle fans centered at feature point





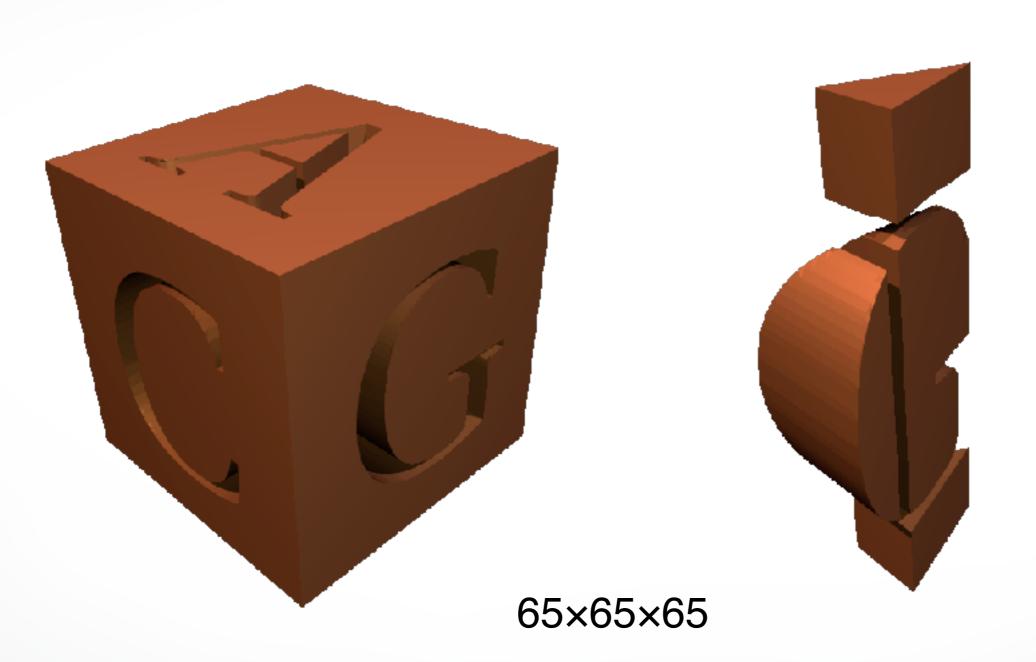


Milling Simulation



257×257×257

CSG Modeling



+ Result is watertight, closed 2-manifold surface!

- + Easy to parallelize
- Uniform (over-) sampling (→ mesh decimation)
- Degenerate triangles (→ remeshing)
- MC does not preserve features
- + EMC preserves features, but...

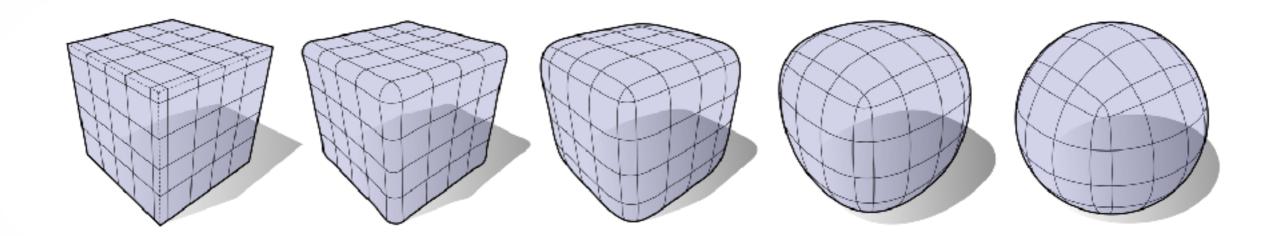
about 10% more triangles

20-40% computational overhead

Literature

- Lorensen & Cline, "Marching Cubes: A High Resolution 3D Surface Construction Algorithm", SIGGRAPH 1987
- Montani et al., "A modified look-up table for implicit disambiguation of Marching Cubes", Visual Computer 1994
- Kobbelt et al., "Feature Sensitive Surface Extraction from Volume Data", SIGGRAPH 2001

Next Time



Discrete Differential Geometry

http://cs621.hao-li.com

Thanks!

