CSCI 621: Digital Geometry Processing

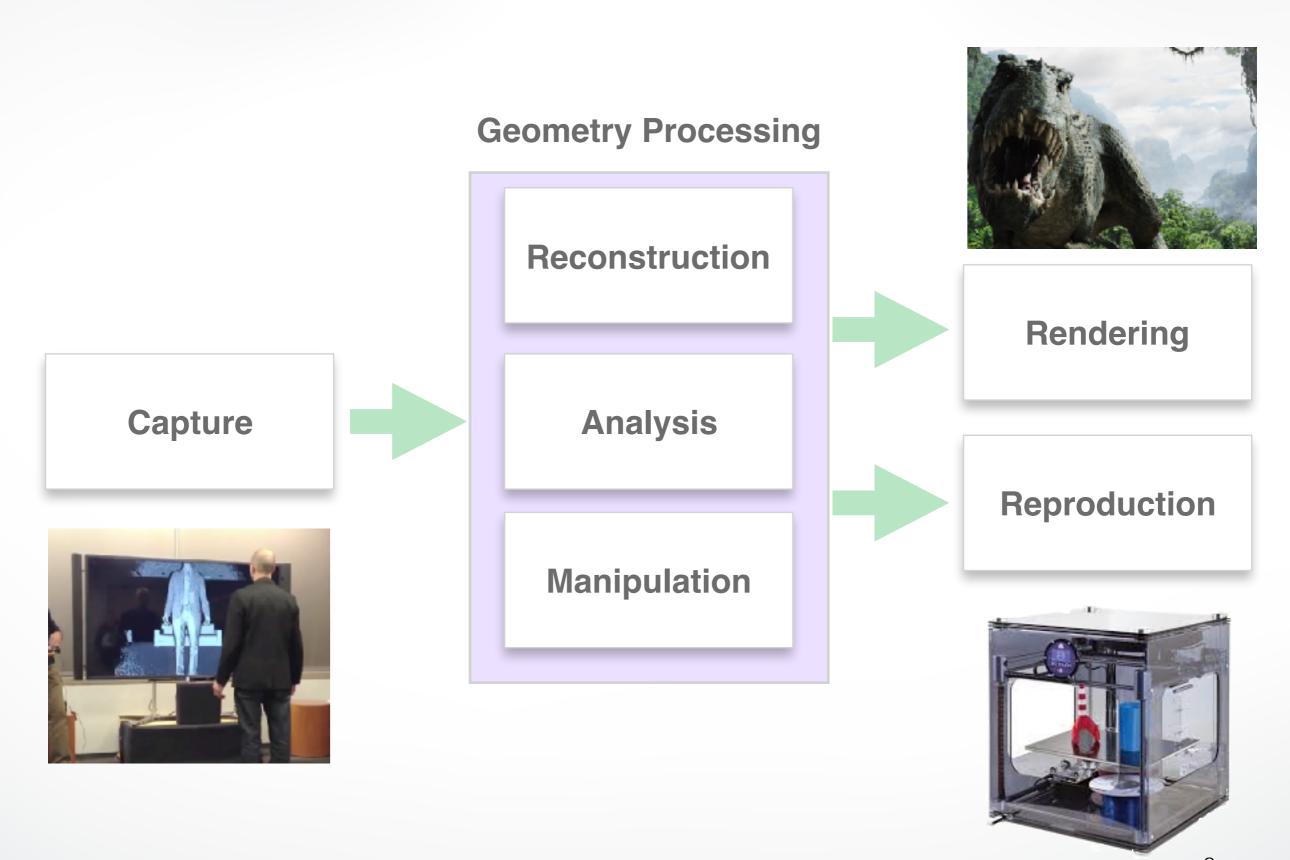
1.2 Surface Representation & Data Structures

Administrative

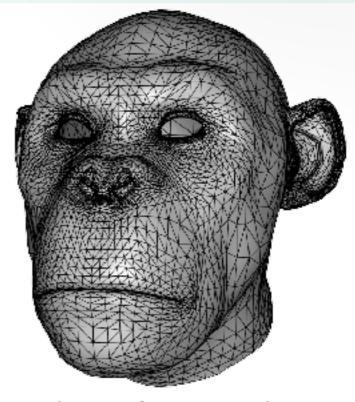
- No class next Tuesday, due to Siggraph deadline
- Introduction to first programming exercise on Jan
 25th

Siggraph Deadline 2013@ILM!

Last Time

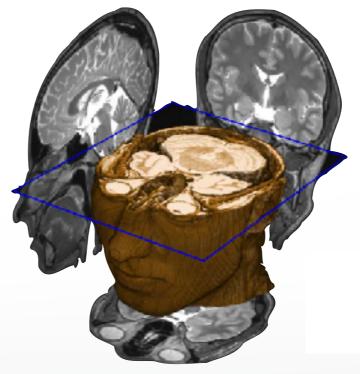


Geometric Representations

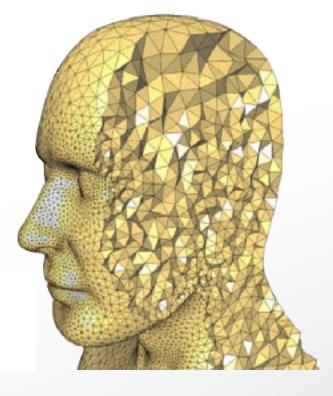


triangle mesh

implicit surfaces / particles

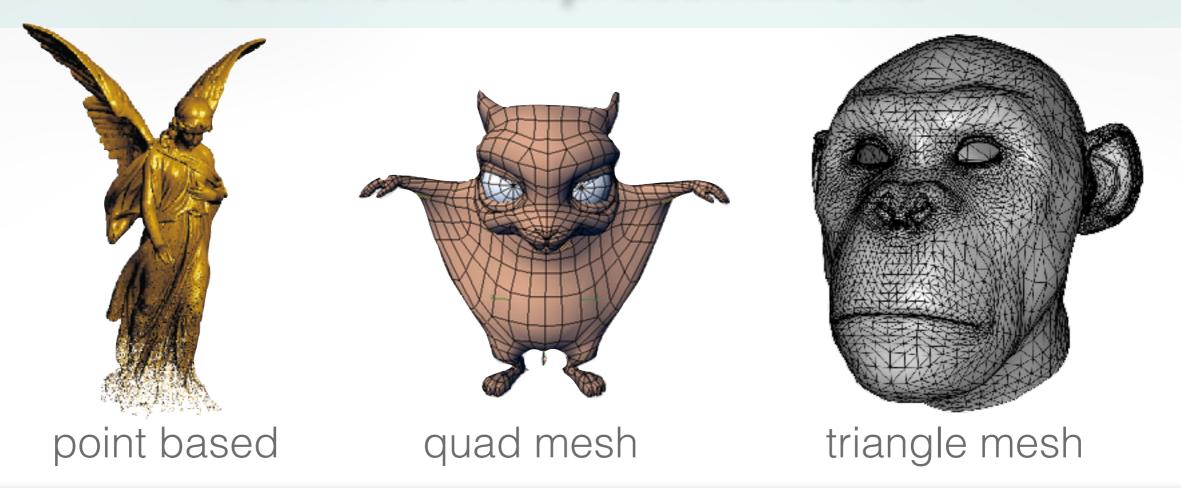


volumetric



tetrahedrons

Geometric Representations



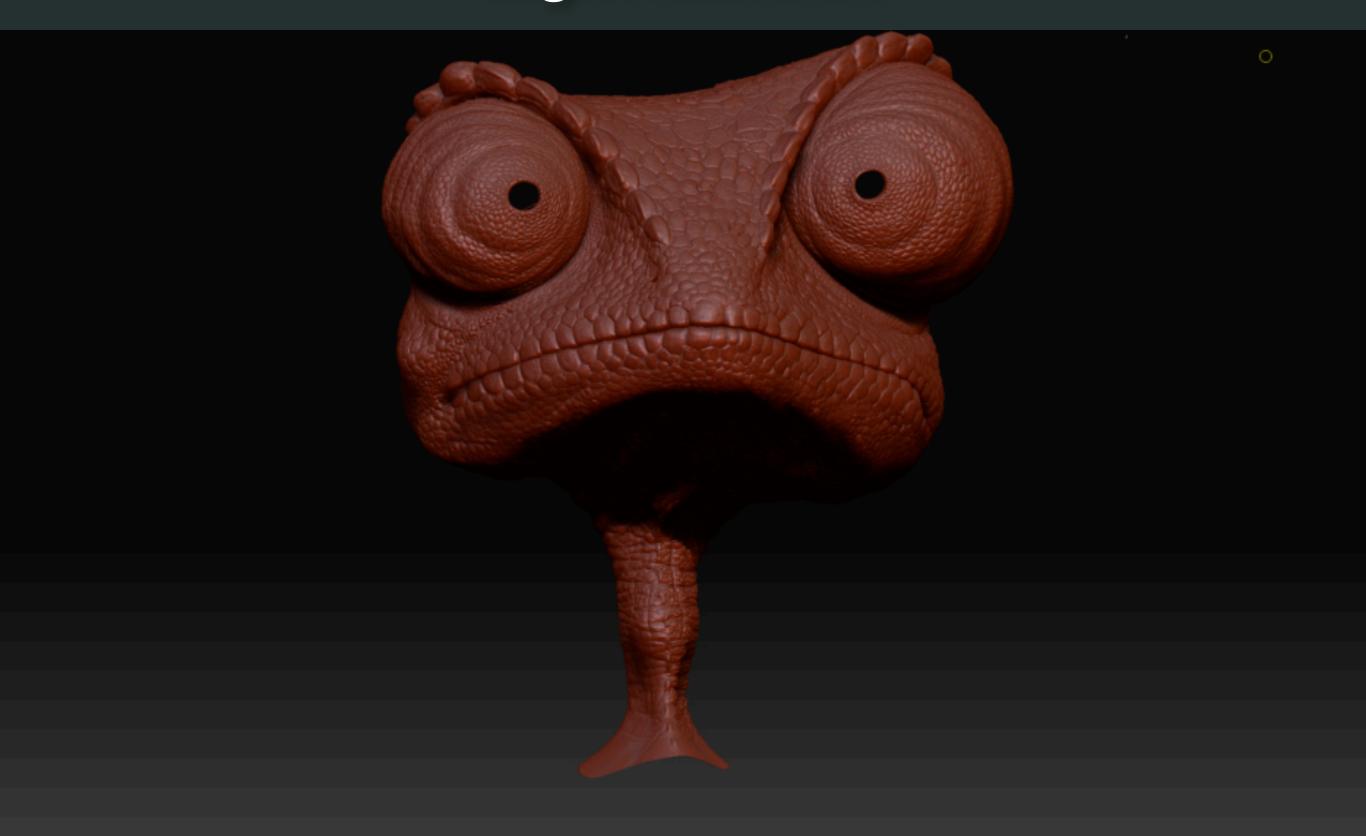
Surface Representations

implicit surfaces / particles

volumetric

tetrahed frons

High Resolution



Outline

- Parametric Approximations
- Polygonal Meshes
- Data Structures

Parametric Representation

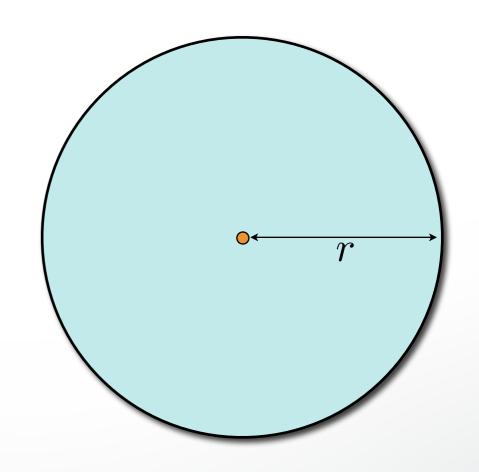
Surface is the range of a function

$$\mathbf{f}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^3, \quad \mathcal{S}_{\Omega} = \mathbf{f}(\Omega)$$

2D example: A Circle

$$\mathbf{f}:[0,2\pi]\to\mathrm{I\!R}^2$$

$$\mathbf{f}(t) = \begin{pmatrix} r\cos(t) \\ r\sin(t) \end{pmatrix}$$



Parametric Representation

Surface is the range of a function

$$\mathbf{f}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^3, \quad \mathcal{S}_{\Omega} = \mathbf{f}(\Omega)$$

2D example: Island coast line

$$\mathbf{f}:[0,2\pi]\to\mathrm{I\!R}^2$$

$$\mathbf{f}(t) = \begin{pmatrix} ? \\ ? \end{pmatrix}$$

Piecewise Approximation

Surface is the range of a function

$$\mathbf{f}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^3, \quad \mathcal{S}_{\Omega} = \mathbf{f}(\Omega)$$

2D example: Island coast line

$$\mathbf{f}:[0,2\pi]\to\mathrm{I\!R}^2$$

$$\mathbf{f}(t) = \begin{pmatrix} ? \\ ? \end{pmatrix}$$

Polynomial Approximation

Polynomials are computable functions

$$f(t) = \sum_{i=0}^{p} c_i t^i = \sum_{i=0}^{p} \tilde{c}_i \phi_i(t)$$

Taylor expansion up to degree p

$$g(h) = \sum_{i=0}^{p} \frac{1}{i!} g^{(i)}(0) h^{i} + O(h^{p+1})$$

Error for approximation g by polynomial f

$$f(t_i) = g(t_i), \quad 0 \le t_0 < \dots < t_p \le h$$

$$|f(t) - g(t)| \le \frac{1}{(p+1)!} \max f^{(p+1)} \prod_{i=0}^{p} (t - t_i) = O(h^{(p+1)})$$

Polynomial Approximation

Approximation error is $O(h^{p+1})$

Improve approximation quality by

- increasing p... higher order polynomials
- decreasing h ... shorter / more segments

ssues

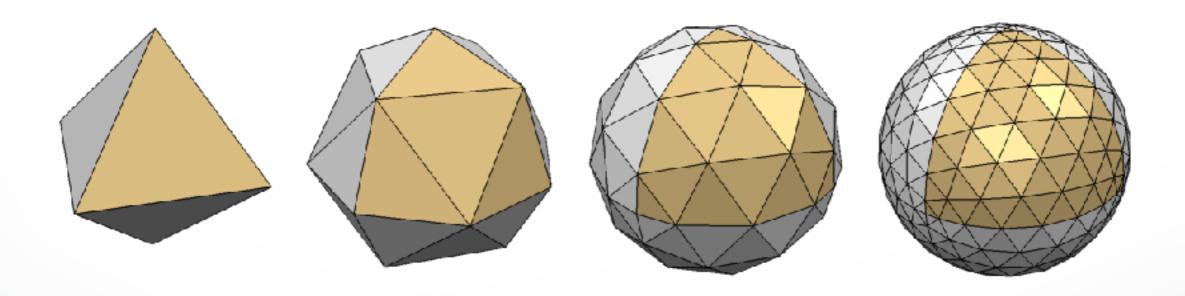
- smoothness of the target data ($\max_t f^{(p+1)}(t)$)
- smoothness condition between segments

Polygonal meshes are a good compromise

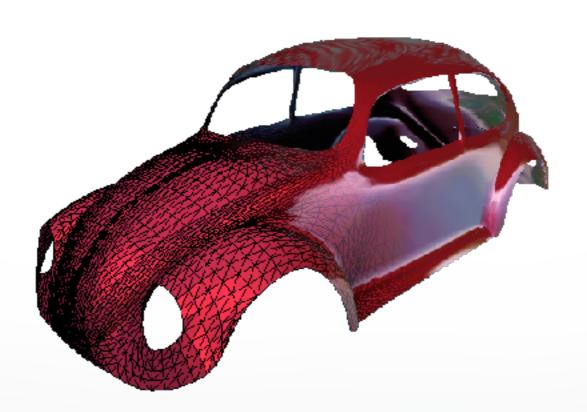
• Piecewise linear approximation \rightarrow error is $O(h^2)$



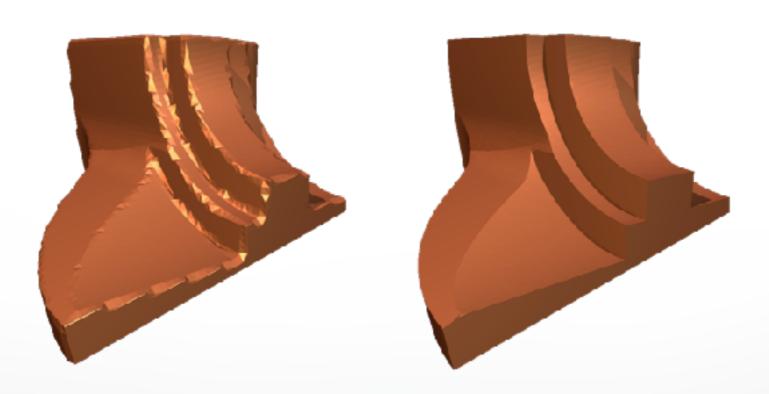
- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces



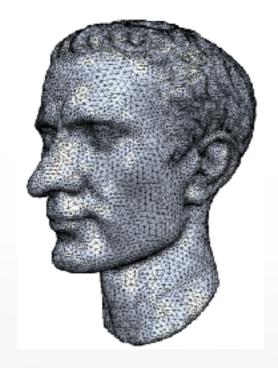
- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces

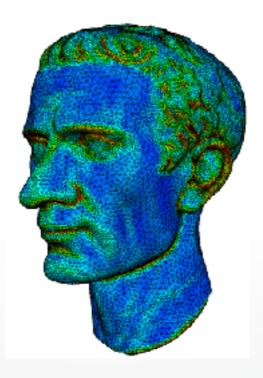


- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces



- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling





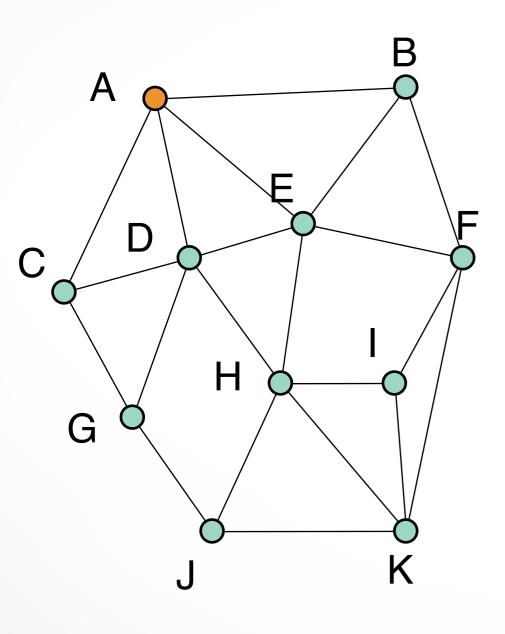
- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling
- Efficient GPU-based rendering/processing

Outline

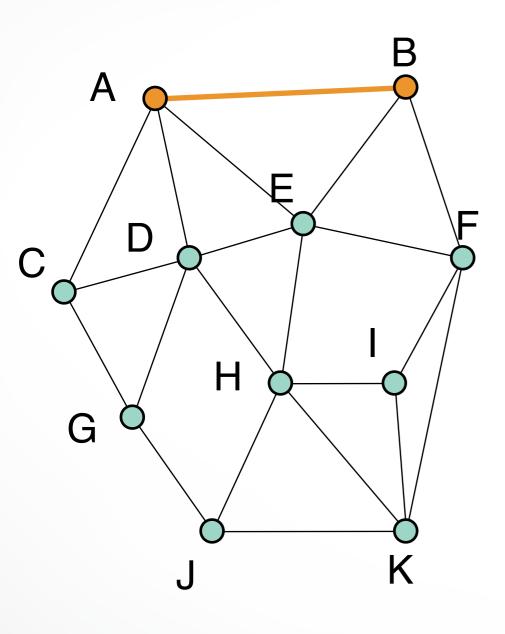
- Parametric Approximations
- Polygonal Meshes
- Data Structures



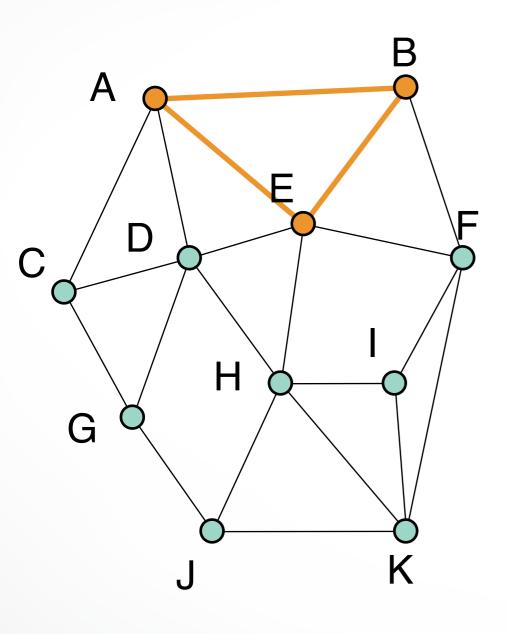
• Graph { *V*, *E*}



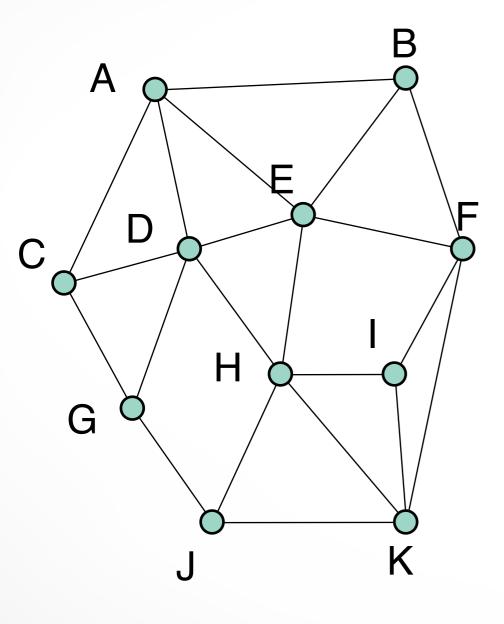
- Graph { *V*, *E*}
- Vertices $V = \{A,B,C,...,K\}$



- Graph { *V*, *E*}
- Vertices $V = \{A, B, C, \dots, K\}$
- Edges $E = \{(AB), (AE), (CD), ...\}$

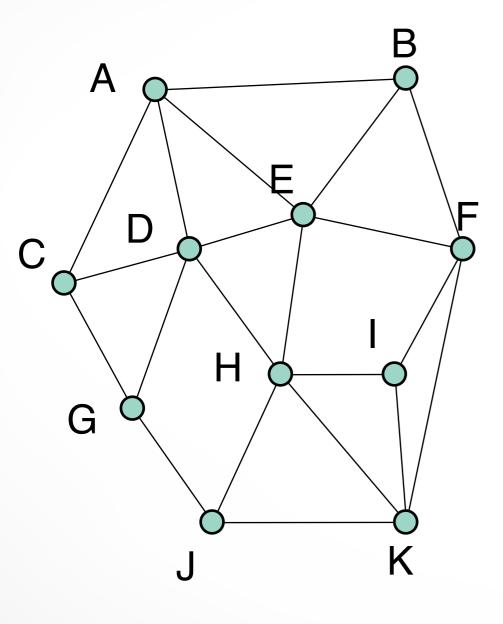


- Graph { *V*, *E*}
- Vertices $V = \{A,B,C,...,K\}$
- Edges $E = \{(AB), (AE), (CD), ...\}$
- Faces $F = \{(ABE), (EBF), (EFIH), \ldots\}$



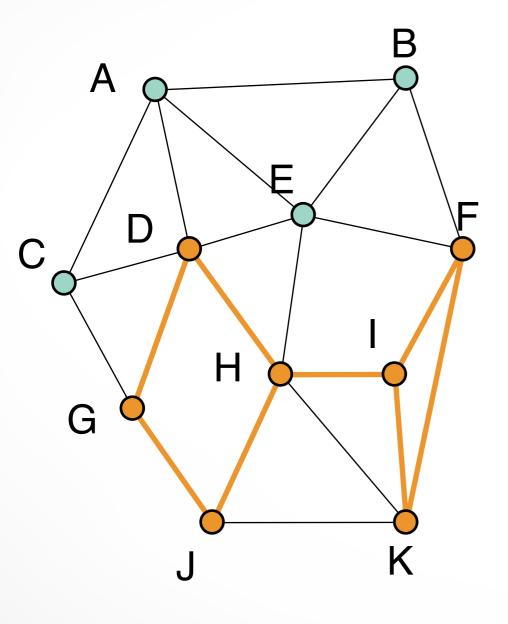
Vertex degree or valence: number of incident edges

- deg(A) = 4
- deg(E) = 5



Connected:

Path of edges connecting every two vertices

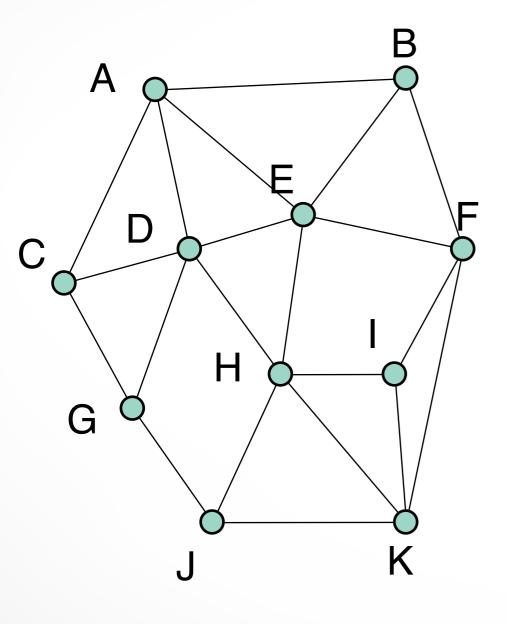


Connected:

Path of edges connecting every two vertices

Subgraph:

Graph $\{V', E'\}$ is a subgraph of graph $\{V, E\}$ if V' is a subset of V and E' is a subset of E incident on E'.

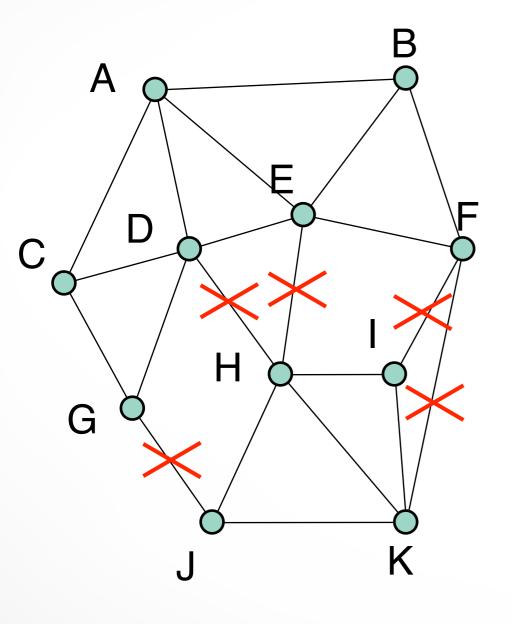


Connected:

Path of edges connecting every two vertices

Subgraph:

Graph $\{V', E'\}$ is a subgraph of graph $\{V, E\}$ if V' is a subset of V and E' is a subset of E incident on E'.



Connected:

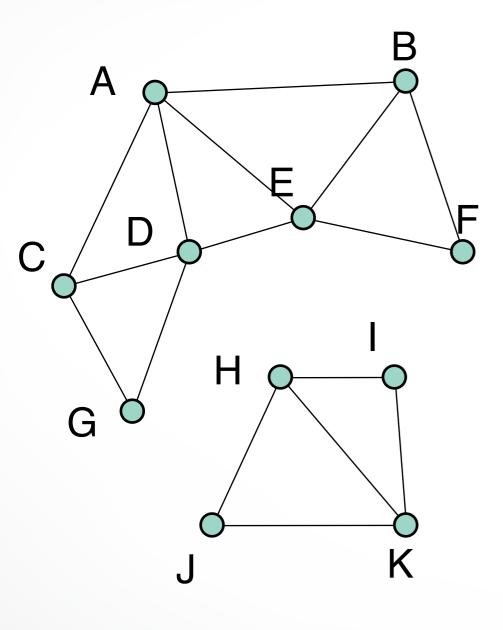
Path of edges connecting every two vertices

Subgraph:

Graph $\{V', E'\}$ is a subgraph of graph $\{V, E\}$ if V' is a subset of V and E' is a subset of E incident on E'.

Connected Components:

Maximally connected subgraph



Connected:

Path of edges connecting every two vertices

Subgraph:

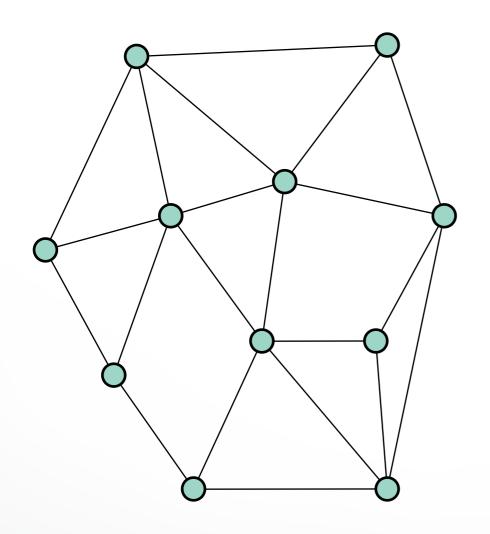
Graph $\{V',E'\}$ is a subgraph of graph $\{V,E\}$ if V' is a subset of V and E' is a subset of E incident on E'.

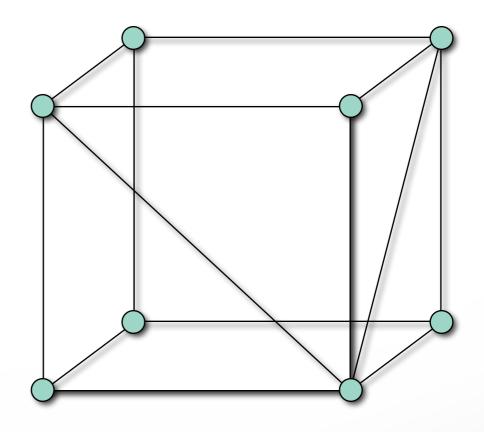
Connected Components:

Maximally connected subgraph

Graph Embedding

Embedding: Graph is **embedded** in \mathbb{R}^d , if each vertex is assigned a position in \mathbb{R}^d .



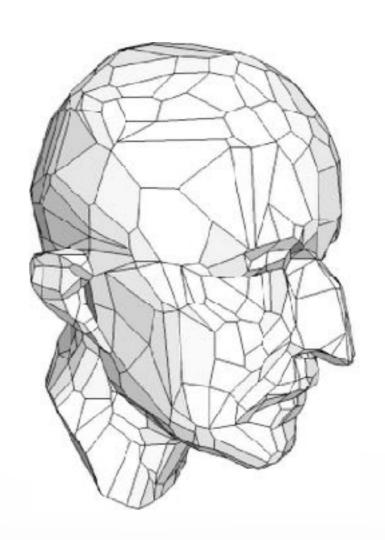


Embedding in \mathbb{R}^2

Embedding in \mathbb{R}^3

Graph Embedding

Embedding: Graph is **embedded** in \mathbb{R}^d , if each vertex is assigned a position in \mathbb{R}^d .

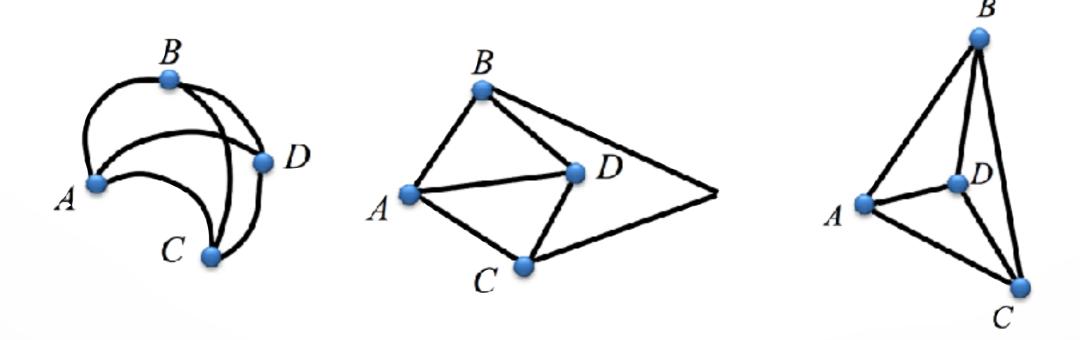


Embedding in \mathbb{R}^3

Planar Graph

Planar Graph

Graph whose vertices and edges can be embedded in \mathbb{R}^2 such that its edges do not intersect

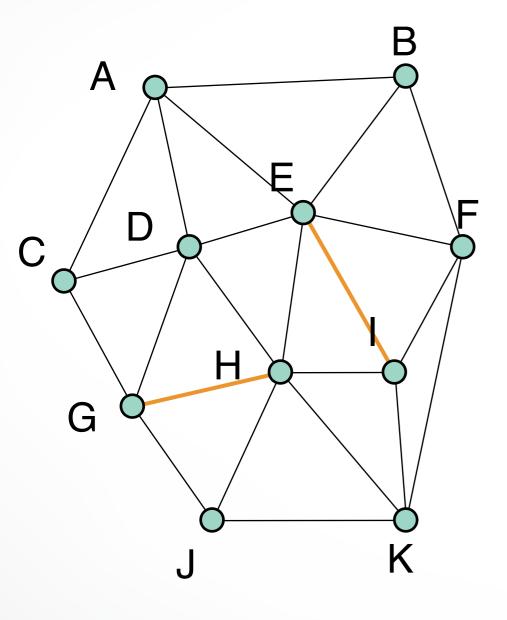


Planar Graph

Plane Graph

Straight Line Plane Graph

Triangulation



Triangulation:

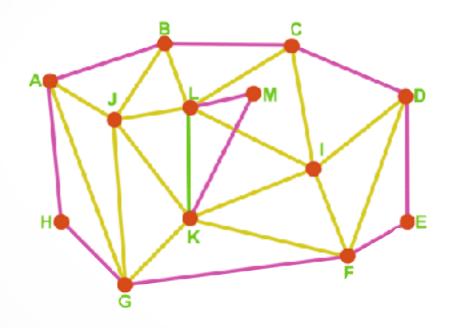
Straight line plane graph where every face is a triangle

Why?

- simple homogenous data structure
- efficient rendering
- simplifies algorithms
- by definition, triangle is planar
- any polygon can be triangulated

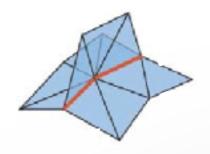
Mesh

ullet Mesh: straight-line graph embedded in \mathbb{R}^3



 Boundary edge: adjacent to exactly 1 face

 Regular edge: adjacent to exactly 2 faces



 Closed mesh: mesh with no boundary edges

Polygon

A geometric graph Q=(V,E) with $V=\{\mathbf{p}_0,\mathbf{p}_1,\ldots,\mathbf{p}_{n-1}\}$ in \mathbb{R}^d , $d\geq 2$ and $E=\{(\mathbf{p}_0,\mathbf{p}_1)\ldots(\mathbf{p}_{n-2},\mathbf{p}_{n-1})\}$ is called a **polygon**

A polygon is called

- flat, if all edges are on a plane
- closed, if $\mathbf{p}_0 = \mathbf{p}_{n-1}$

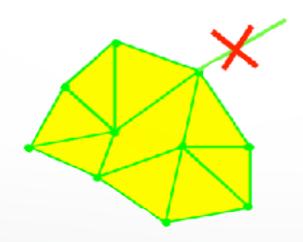
 p_3

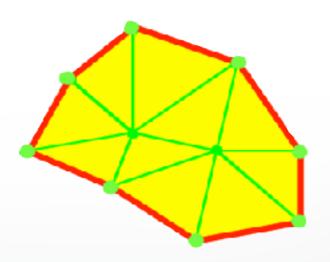
While digital artists call it Wireframe, ...

Polygonal Mesh

A set M of finite number of closed polygons Q_i if:

- Intersection of inner polygonal areas is empty
- Intersection of 2 polygons from M is either empty, a point $\,p\in P\,$ or an edge $e\in E$
- Every edge $e \in E$ belongs to at least one polygon
- The set of all edges which belong only to one polygon are called edges of the polygonal mesh and are either empty or form a single closed polygon

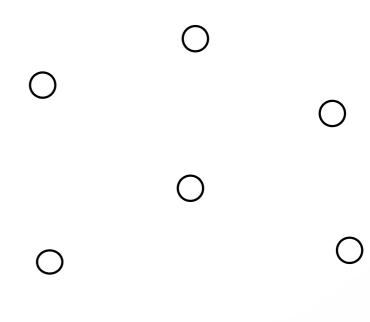




Polygonal Mesh Notation

$$\mathcal{M} = (\{\mathbf{v}_i\}, \{e_j\}, \{f_k\})$$

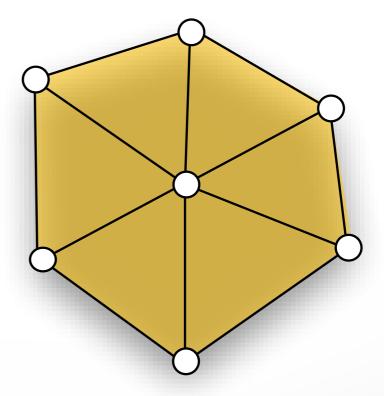
geometry $\mathbf{v}_i \in \mathbb{R}^3$



Polygonal Mesh Notation

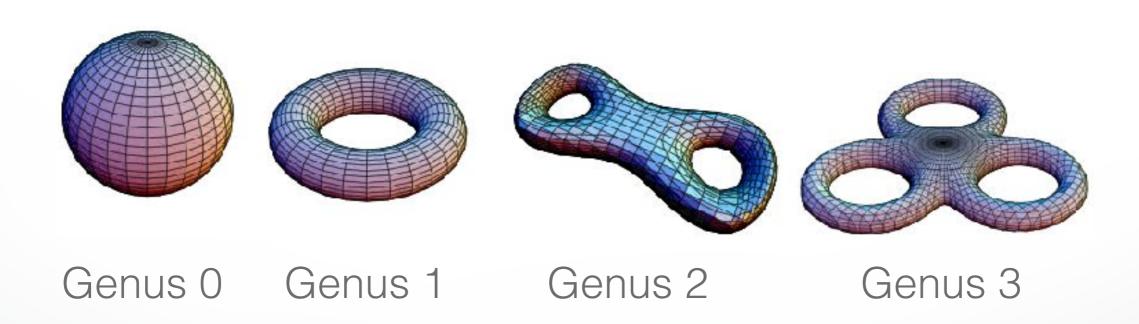
$$\mathcal{M} = (\{\mathbf{v}_i\}, \{e_j\}, \{f_k\})$$

geometry $\mathbf{v}_i \in \mathbb{R}^3$ topology $e_i, f_i \subset \mathbb{R}^3$



Global Topology: Genus

- Genus: Maximal number of closed simple cutting curves that do not disconnect the graph into multiple components.
- Or half the maximal number of closed paths that do no disconnect the mesh
- Informally, the number of holes or handles



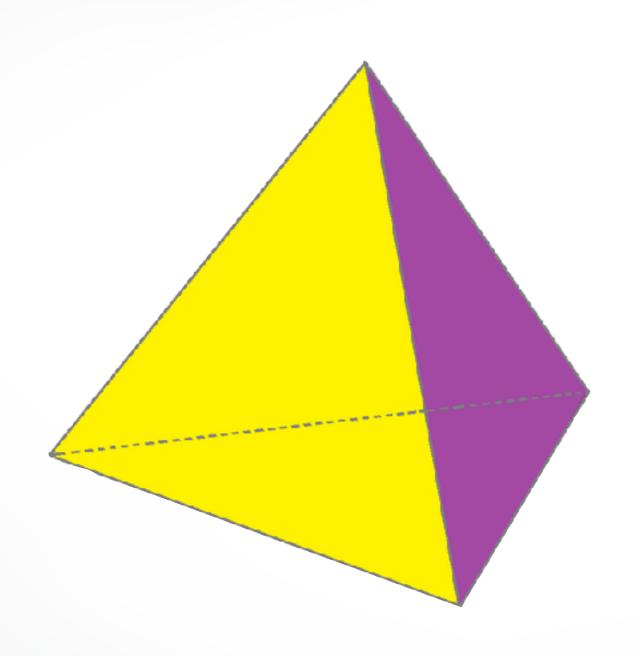
Euler Poincaré Formula

• For a closed polygonal mesh of **genus** g, the relation of the number V of vertices, E of edges, and F of faces is given by **Euler's formula**:

$$V - E + F = 2(1 - g)$$

• The term 2(1-g) is called the **Euler characteristic** χ

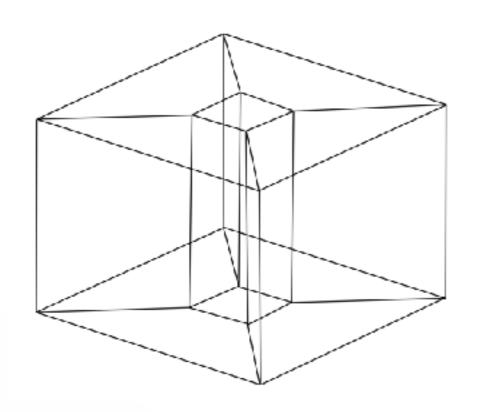
Euler Poincaré Formula



$$V - E + F = 2(1 - g)$$

$$4 - 6 + 4 = 2(1 - 0)$$

Euler Poincaré Formula



$$V - E + F = 2(1 - g)$$

$$16 - 32 + 16 = 2(1 - 1)$$

Average Valence of Closed Triangle Mesh

Theorem: Average vertex degree in a closed manifold triangle mesh is ~6

Proof: Each face has 3 edges and each edge is counted twice: 3F = 2E

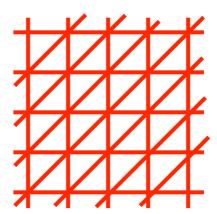
by Euler's formula: V+F-E = V+2E/3-E = 2-2gThus E = 3(V-2+2g)

So average degree = $2E/V = 6(V-2+2g)/V \sim 6$ for large V

Euler Consequences

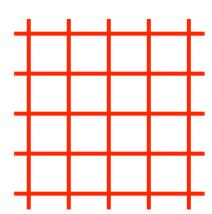
Triangle mesh statistics

- $F \approx 2V$
- $E \approx 3V$
- Average valence = 6

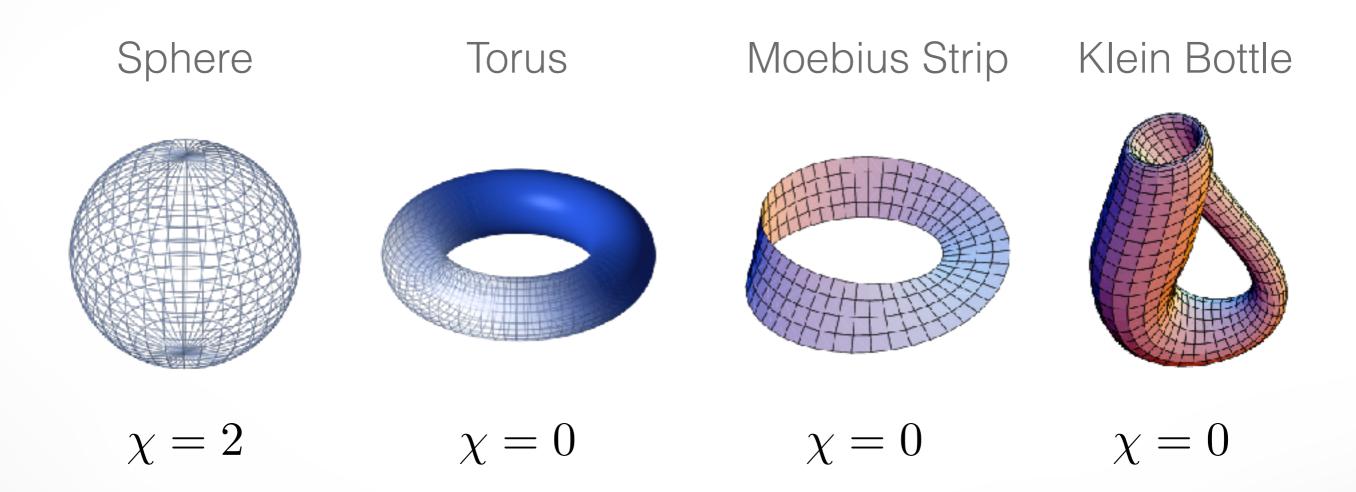


Quad mesh statistics

- $F \approx V$
- $E \approx 2V$
- Average valence = 4



Euler Characteristic



How many pentagons?

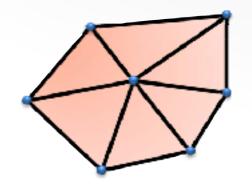
How many pentagons?

Any closed surface of genus 0 consisting only of hexagons and pentagons and where every vertex has valence 3 must have exactly 12 pentagons

Two-Manifold Surfaces

Local neighborhoods are disk-shaped

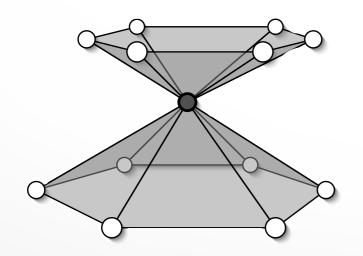
$$\mathbf{f}(D_{\epsilon}[u,v]) = D_{\delta}[\mathbf{f}(u,v)]$$

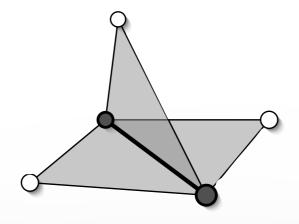


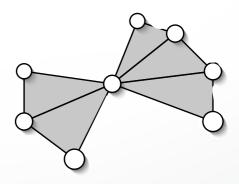
Guarantees meaningful neighbor enumeration

required by most algorithms

Non-manifold Examples:







Outline

- Parametric Approximations
- Polygonal Meshes
- Data Structures

Mesh Data Structures

- How to store geometry & connectivity?
- compact storage and file formats
- Efficient algorithms on meshes
 - Time-critical operations
 - All vertices/edges of a face
 - All incident vertices/edges/faces of a vertex

What should be stored?

- Geometry: 3D vertex coordinates
- Connectivity: Vertex adjacency
- Attributes:
 - normals, color, texture coordinates, etc.
 - Per Vertex, per face, per edge

What should it support?

- Rendering
- Queries
 - What are the vertices of face #3?
 - Is vertex #6 adjacent to vertex #12?
 - Which faces are adjacent to face #7?
- Modifications
 - Remove/add a vertex/face
 - Vertex split, edge collapse

Different Data Structures:

- Time to construct (preprocessing)
- Time to answer a query
 - Random access to vertices/edges/faces
 - Fast mesh traversal
 - Fast Neighborhood query
- Time to perform an operation
 - split/merge
- Space complexity
- Redundancy

Different Data Structures:

- Different topological data storage
- Most important ones are face and edge-based (since they encode connectivity)
- Design decision ~ memory/speed trade-off

Face Set (STL)

Face:

3 vertex positions

Triangles			
$x_{11} y_{11} z_{11}$	x_{12} y_{12} z_{12}	x_{13} y_{13} z_{13}	
x_{21} y_{21} z_{21}	$x_{22} y_{22} z_{22}$	x_{23} y_{23} z_{23}	
• • •	• • •	• • •	
$\mathbf{x}_{\mathrm{F}1}$ $\mathbf{y}_{\mathrm{F}1}$ $\mathbf{z}_{\mathrm{F}1}$	x_{F2} y_{F2} z_{F2}	x_{F3} y_{F3} z_{F3}	

9*4 = 36 B/f (single precision)
72 B/v (Euler Poincaré)

No explicit connectivity

Shared Vertex (OBJ, OFF)

Indexed Face List:

- Vertex: position
- Face: Vertex Indices

Vertices		
x_1 y_1 z_1		
• • •		
$\mathbf{x}_{V} \ \mathbf{y}_{V} \ \mathbf{z}_{V}$		

Triangles		
\mathtt{i}_{11}	i ₁₂ i ₁₃	
	• • •	
	• • •	
	• • •	
	• • •	
$\mathtt{i}_{\mathrm{F}1}$	\mathtt{i}_{F2} \mathtt{i}_{F3}	

12 B/v + 12 B/f = 36B/v

No explicit adjacency info

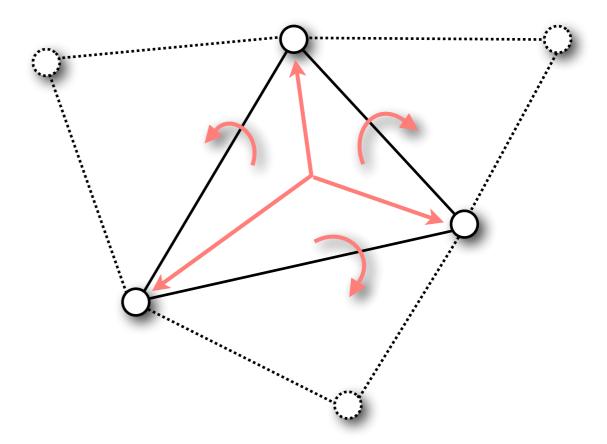
Face-Based Connectivity

Vertex:

- position
- 1 face

Face:

- 3 vertices
- 3 face neighbors



64 B/v

No edges: Special case handling for arbitrary polygons

Edges always have the same topological structure

Efficient handling of polygons with variable valence

(Winged) Edge-Based Connectivity

Vertex:

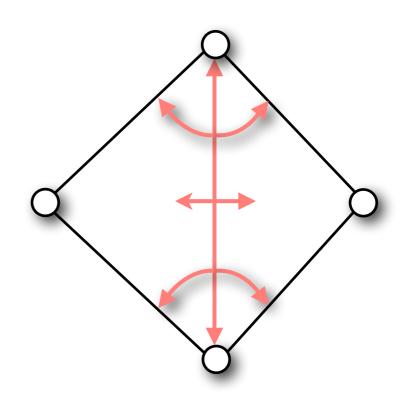
- position
- 1 edge

Edge:

- 2 vertices
- 2 faces
- 4 edges

Face:

1 edges



120 B/v

Edges have no orientation: special case handling for neighbors

Halfedge-Based Connectivity

Vertex:

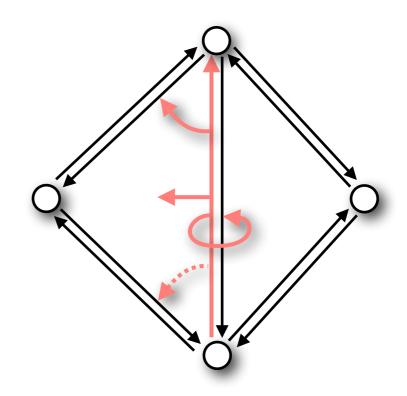
- position
- 1 halfedge

Edge:

- 1 vertex
- 1 face
- 1, 2, or 3 halfedges

Face:

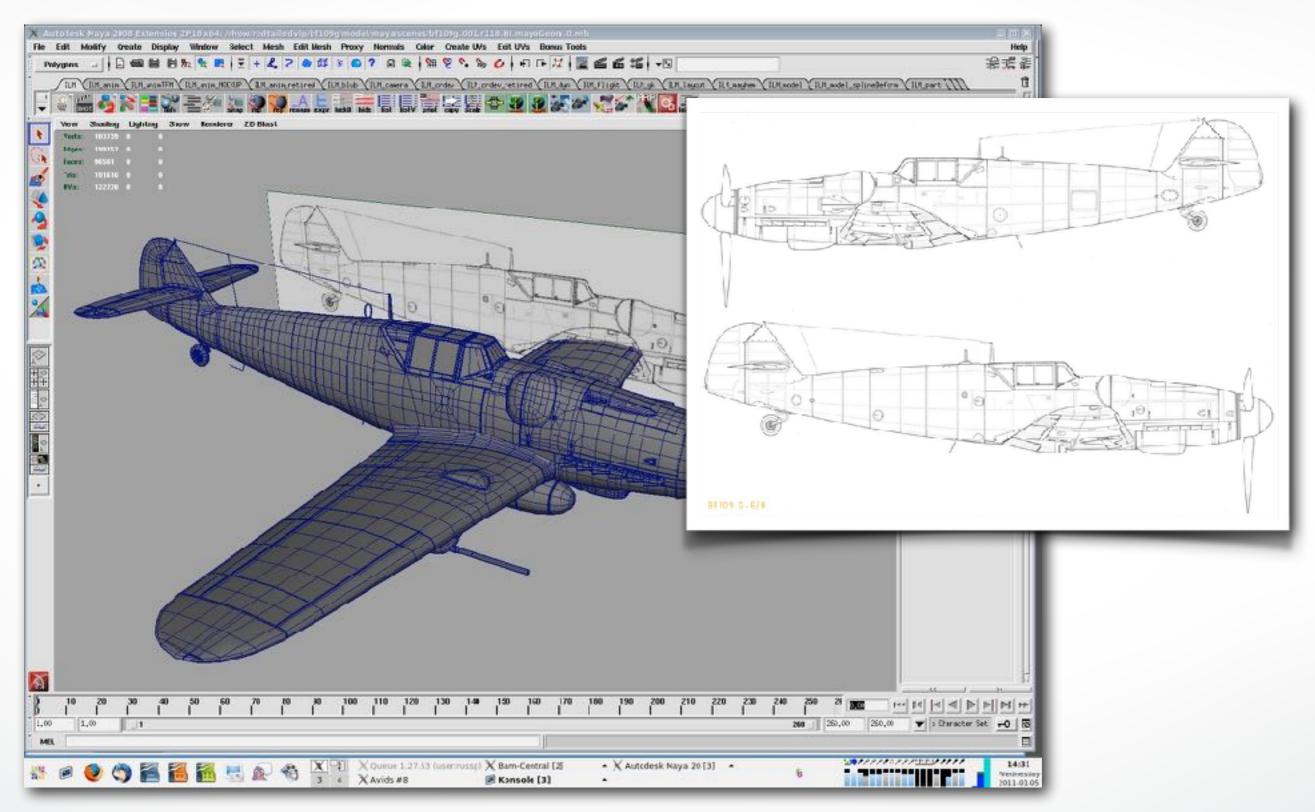
1 halfedge



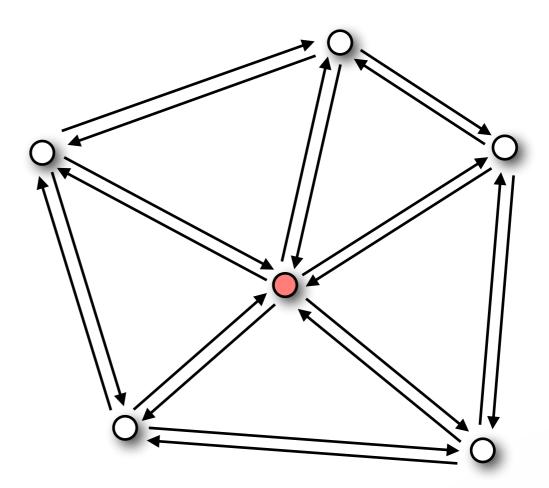
96 to 144 B/v

Edges have orientation: Noruntime overhead due to arbitrary faces

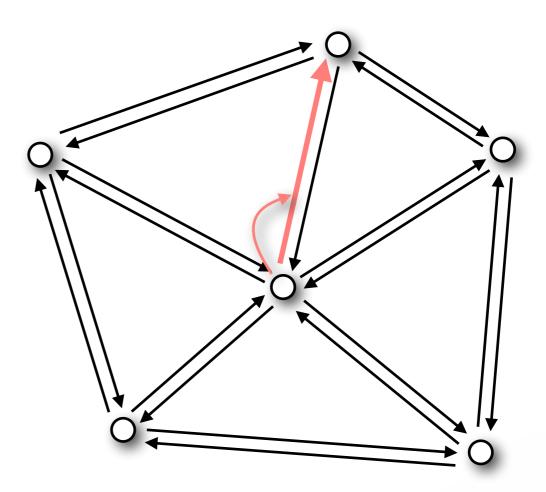
Arbitrary Faces during Modeling



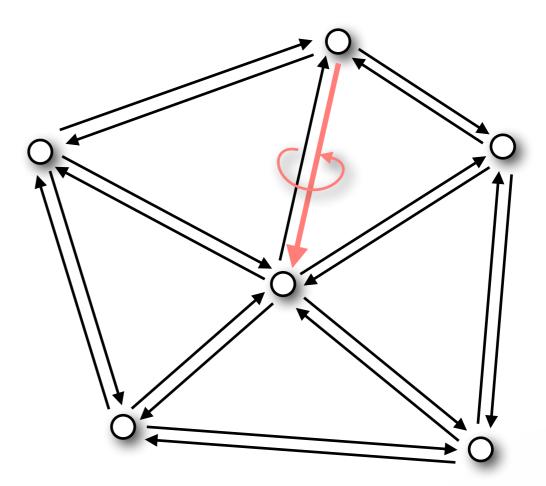
1. Start at vertex



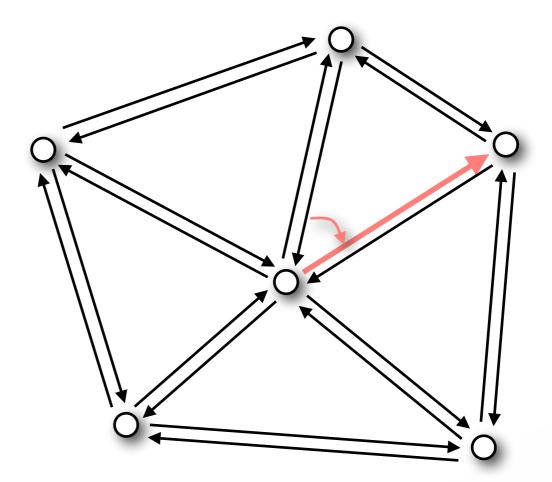
- 1. Start at vertex
- 2. Outgoing halfedge



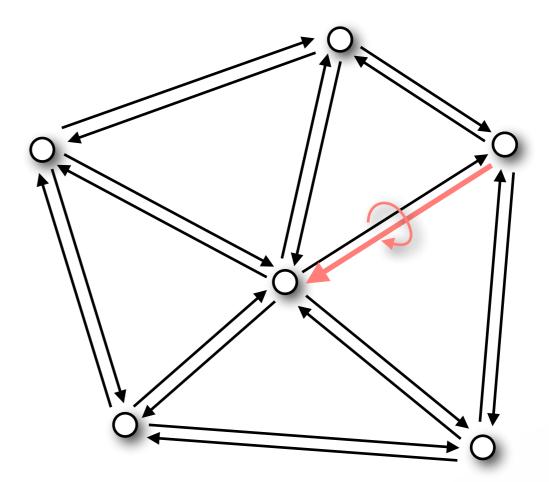
- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge



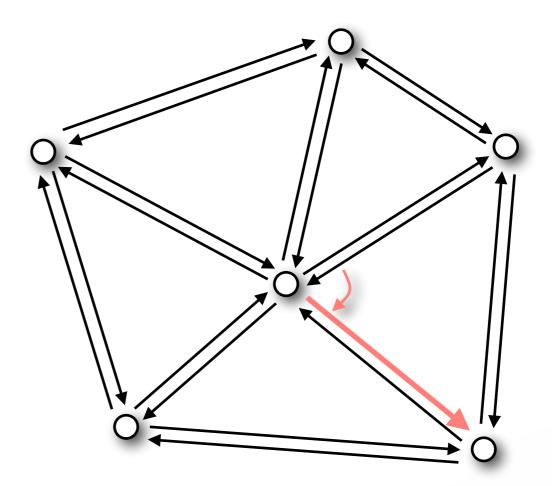
- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge



- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite



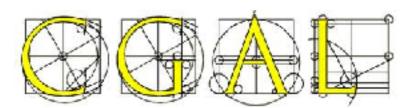
- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite
- 6. Next
- 7. ...



Halfedge datastructure Libraries

CGAL

- www.cgal.org
- Computational Geometry
- Free for non-commercial use



OpenMesh

- www.openmesh.org
- Mesh processing
- Free, LGPL license

Why Openmesh?

Flexible / Lightweight

- Random access to vertices/edges/faces
- Arbitrary scalar types
- Arrays or lists as underlying kernels

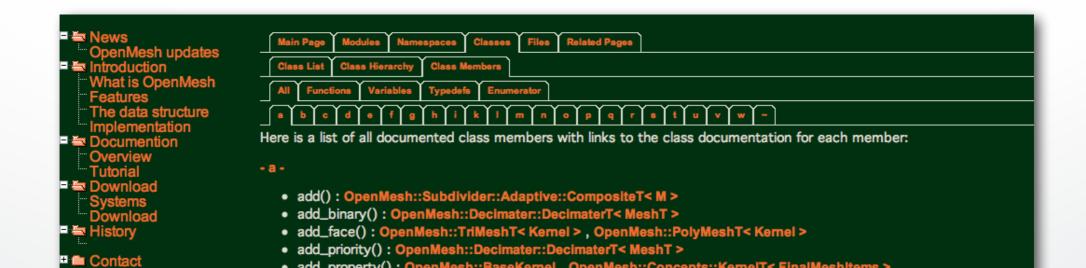
Efficient in space and time

- Dynamic memory management for array-based meshes (not in CGAL)
- Extendable to specialized kernels for non-manifold meshes (not in CGAL)

Easy to Use

Literature

- Textbook: Chapter
- http://www.openmesh.org
- Kettner, Using generic programming for designing a data structure for polyhedral surfaces, Symp. on Comp. Geom., 1998
- Campagna et al., Directed Edges A Scalable Representation for Triangle Meshes, Journal of Graphics Tools 4(3), 1998
- Botsch et al., OpenMesh A generic and efficient polygon mesh data structure, OpenSG Symp. 2002



TODO

Learn the terms and notations

Next Next Time

- Explicit & Implicit Surfaces
- Exercise 1: Getting Started with Mesh Processing

http://cs621.hao-li.com

Thanks!

