1.2 Surface Representation & Data Structures
Administrative

• No class next Tuesday, due to Siggraph deadline

• Introduction to first programming exercise on Jan 25th

Siggraph Deadline 2013@ILM!
Last Time

Geometry Processing

Capture → Reconstruction → Analysis → Manipulation

→ Rendering → Reproduction
Geometric Representations

- Point based
- Quad mesh
- Triangle mesh
- Implicit surfaces / particles
- Volumetric
- Tetrahedrons
Geometric Representations

- point based
- quad mesh
- triangle mesh

Surface Representations

- implicit surfaces / particles
- volumetric
- tetrahedrons
High Resolution
Large scenes
• Parametric Approximations
• Polygonal Meshes
• Data Structures
Parametric Representation

Surface is the range of a function

$$f : \Omega \subset \mathbb{R}^2 \rightarrow \mathbb{R}^3, \quad S_\Omega = f(\Omega)$$

2D example: A Circle

$$f : [0, 2\pi] \rightarrow \mathbb{R}^2$$

$$f(t) = \begin{pmatrix} r \cos(t) \\ r \sin(t) \end{pmatrix}$$
Parametric Representation

Surface is the range of a function

\[f : \Omega \subset \mathbb{R}^2 \rightarrow \mathbb{R}^3, \quad \mathcal{S}_\Omega = f(\Omega) \]

2D example: Island coast line

\[f : [0, 2\pi] \rightarrow \mathbb{R}^2 \]

\[f(t) = \left(\begin{array}{c} \text{?} \\ \text{?} \end{array} \right) \]
Piecewise Approximation

Surface is the range of a function

\[f : \Omega \subset \mathbb{R}^2 \rightarrow \mathbb{R}^3, \quad \mathcal{S}_\Omega = f(\Omega) \]

2D example: Island coast line

\[f : [0, 2\pi] \rightarrow \mathbb{R}^2 \]

\[f(t) = \left(\quad ? \quad \right) \]
Polynomial Approximation

Polynomials are computable functions

\[f(t) = \sum_{i=0}^{p} c_i t^i = \sum_{i=0}^{p} \tilde{c}_i \phi_i(t) \]

Taylor expansion up to degree \(p \)

\[g(h) = \sum_{i=0}^{p} \frac{1}{i!} g^{(i)}(0) h^i + O(h^{p+1}) \]

Error for approximation \(g \) by polynomial \(f \)

\[f(t_i) = g(t_i), \quad 0 \leq t_0 < \cdots < t_p \leq h \]

\[|f(t) - g(t)| \leq \frac{1}{(p+1)!} \max f^{(p+1)} \prod_{i=0}^{p} (t - t_i) = O(h^{p+1}) \]
Polynomial Approximation

Approximation error is \(O(h^{p+1}) \)

Improve approximation quality by

- increasing \(p \) ... higher order polynomials
- decreasing \(h \) ... shorter / more segments

Issues

- smoothness of the target data (\(\max_t f^{(p+1)}(t) \))
- smoothness condition between segments
Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O(h^2)$

<table>
<thead>
<tr>
<th>Meshes</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>25%</td>
</tr>
<tr>
<td>6</td>
<td>6.5%</td>
</tr>
<tr>
<td>12</td>
<td>1.7%</td>
</tr>
<tr>
<td>24</td>
<td>0.4%</td>
</tr>
</tbody>
</table>
Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces
Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces
Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces
Polygonal meshes are a good compromise

- Piecewise linear approximation → error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling
Polygonal meshes are a good compromise

- Piecewise linear approximation → error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling
- Efficient GPU-based rendering/processing
Outline

• Parametric Approximations

• Polygonal Meshes

• Data Structures
Graph Definitions

• Graph \(\{V,E\} \)
Graph Definitions

- Graph \{V,E\}
- Vertices \(V = \{A,B,C,\ldots,K\}\)
Graph Definitions

- Graph \(\{ V, E \} \)
- Vertices \(V = \{ A, B, C, \ldots, K \} \)
- Edges \(E = \{(AB),(AE),(CD),\ldots\} \)
Graph Definitions

- Graph \{V,E\}
- Vertices \(V = \{A,B,C,\ldots,K\} \)
- Edges \(E = \{(AB),(AE),(CD),\ldots\} \)
- Faces \(F = \{(ABE),(EBF),(EFIH),\ldots\} \)
Graph Definitions

Vertex degree or valence: number of incident edges

- \(\text{deg}(A) = 4 \)
- \(\text{deg}(E) = 5 \)
Connectivity

Connected:
Path of edges connecting every two vertices
Connectivity

Connected:
Path of edges connecting every two vertices

Subgraph:
Graph \{V',E'\} is a subgraph of graph \{V,E\} if \(V'\) is a subset of \(V\) and \(E'\) is a subset of \(E\) incident on \(V'\).
Connectivity

Connected:
Path of edges connecting every two vertices

Subgraph:
Graph $\{V', E'\}$ is a subgraph of graph $\{V, E\}$ if V' is a subset of V and E' is a subset of E incident on V'.
Connectivity

Connected:
Path of edges connecting every two vertices

Subgraph:
Graph \(\{V',E'\} \) is a subgraph of graph \(\{V,E\} \) if \(V' \) is a subset of \(V \) and \(E' \) is a subset of \(E \) incident on \(V' \).

Connected Components:
Maximally connected subgraph
Connectivity

Connected:
Path of edges connecting every two vertices

Subgraph:
Graph \(\{V',E'\} \) is a subgraph of graph \(\{V,E\} \) if \(V' \) is a subset of \(V \) and \(E' \) is a subset of \(E \) incident on \(V' \).

Connected Components:
Maximally connected subgraph
Embedding: Graph is embedded in \mathbb{R}^d, if each vertex is assigned a position in \mathbb{R}^d.

- Embedding in \mathbb{R}^2
- Embedding in \mathbb{R}^3
Embedding: Graph is **embedded** in \mathbb{R}^d, if each vertex is assigned a position in \mathbb{R}^d.

Embedding in \mathbb{R}^3
Planar Graph

Graph whose vertices and edges can be embedded in \mathbb{R}^2 such that its edges do not intersect.
Triangulation:

* Straight line plane* graph where every face is a triangle

Why?

- simple homogenous data structure
- efficient rendering
- simplifies algorithms
- by definition, triangle is planar
- any polygon can be triangulated
Mesh

- **Mesh**: straight-line graph embedded in \mathbb{R}^3

- **Boundary edge**: adjacent to exactly 1 face

- **Regular edge**: adjacent to exactly 2 faces

- **Singular edge**: adjacent to more than 2 faces

- **Closed mesh**: mesh with no boundary edges
A geometric graph \(Q = (V, E) \) with
\[V = \{p_0, p_1, \ldots, p_{n-1}\} \] in \(\mathbb{R}^d, d \geq 2 \) and
\[E = \{(p_0, p_1) \ldots (p_{n-2}, p_{n-1})\} \] is called a **polygon**.

A polygon is called
- **flat**, if all edges are on a plane
- **closed**, if \(p_0 = p_{n-1} \)
While digital artists call it **Wireframe**, ...
A set M of finite number of closed polygons Q_i if:

- Intersection of inner polygonal areas is empty
- Intersection of 2 polygons from M is either empty, a point or an edge $e \in E$
- Every edge $e \in E$ belongs to at least one polygon
- The set of all edges which belong only to one polygon are called edges of the polygonal mesh and are either empty or form a single closed polygon
\[\mathcal{M} = (\{v_i\}, \{e_j\}, \{f_k\}) \]

geometry \(v_i \in \mathbb{R}^3 \)
Polygonal Mesh Notation

\[\mathcal{M} = (\{v_i\}, \{e_j\}, \{f_k\}) \]

- **Geometry**: \(v_i \in \mathbb{R}^3 \)
- **Topology**: \(e_i, f_i \subset \mathbb{R}^3 \)
Global Topology: **Genus**

- **Genus**: Maximal number of closed simple cutting curves that do not disconnect the graph into multiple components.
- Or half the maximal number of closed paths that do not disconnect the mesh.
- Informally, the number of **holes** or **handles**

![Genus 0](image1) ![Genus 1](image2) ![Genus 2](image3) ![Genus 3](image4)
• For a closed polygonal mesh of \textbf{genus} \(g \), the relation of the number \(V \) of vertices, \(E \) of edges, and \(F \) of faces is given by \textbf{Euler’s formula}:

\[
V - E + F = 2(1 - g)
\]

• The term \(2(1 - g) \) is called the \textbf{Euler characteristic} \(\chi \)
Euler Poincaré Formula

\[V - E + F = 2(1 - g) \]

\[4 - 6 + 4 = 2(1 - 0) \]
Euler Poincaré Formula

\[V - E + F = 2(1 - g) \]

\[16 - 32 + 16 = 2(1 - 1) \]
Theorem: Average vertex degree in a closed manifold triangle mesh is \(\sim 6 \)

Proof: Each face has 3 edges and each edge is counted twice: \(3F = 2E \)

by Euler’s formula: \(V+F-E = V+2E/3-E = 2-2g \)

Thus \(E = 3(V-2+2g) \)

So average degree = \(2E/V = 6(V-2+2g)/V \sim 6 \) for large \(V \)
Euler Consequences

Triangle mesh statistics

- \(F \approx 2V \)
- \(E \approx 3V \)
- Average valence = 6

Quad mesh statistics

- \(F \approx V \)
- \(E \approx 2V \)
- Average valence = 4
Euler Characteristic

Sphere: \(\chi = 2 \)
Torus: \(\chi = 0 \)
Moebius Strip: \(\chi = 0 \)
Klein Bottle: \(\chi = 0 \)
How many pentagons?
Any **closed surface** of genus 0 consisting only of **hexagons** and **pentagons** and where every **vertex** has **valence 3** must have exactly **12 pentagons**
Two-Manifold Surfaces

Local neighborhoods are disk-shaped

\[f(D_\epsilon[u, v]) = D_\delta[f(u, v)] \]

Guarantees meaningful neighbor enumeration

- required by most algorithms

Non-manifold Examples:
Outline

• Parametric Approximations
• Polygonal Meshes
• Data Structures
Mesh Data Structures

• How to store geometry & connectivity?
• compact storage and file formats
• Efficient algorithms on meshes
 • Time-critical operations
 • All vertices/edges of a face
 • All incident vertices/edges/faces of a vertex
What should be stored?

- Geometry: 3D vertex coordinates
- Connectivity: Vertex adjacency
- Attributes:
 - normals, color, texture coordinates, etc.
 - Per Vertex, per face, per edge
What should it support?

- Rendering
- Queries
 - What are the vertices of face #3?
 - Is vertex #6 adjacent to vertex #12?
 - Which faces are adjacent to face #7?
- Modifications
 - Remove/add a vertex/face
 - Vertex split, edge collapse
Different Data Structures:

- Time to construct (preprocessing)
- Time to answer a query
 - Random access to vertices/edges/faces
 - Fast mesh traversal
 - Fast Neighborhood query
- Time to perform an operation
 - split/merge
- Space complexity
- Redundancy
Different Data Structures:

- Different topological data storage
- Most important ones are face and edge-based (since they encode connectivity)
- Design decision ~ memory/speed trade-off
Face:

- 3 vertex positions

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x11</td>
<td>y11</td>
<td>z11</td>
<td>x12</td>
<td>y12</td>
<td>z12</td>
<td>x13</td>
<td>y13</td>
<td>z13</td>
<td></td>
</tr>
<tr>
<td>x21</td>
<td>y21</td>
<td>z21</td>
<td>x22</td>
<td>y22</td>
<td>z22</td>
<td>x23</td>
<td>y23</td>
<td>z23</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>x_{F1}</td>
<td>y_{F1}</td>
<td>z_{F1}</td>
<td>x_{F2}</td>
<td>y_{F2}</td>
<td>z_{F2}</td>
<td>x_{F3}</td>
<td>y_{F3}</td>
<td>z_{F3}</td>
<td></td>
</tr>
</tbody>
</table>

9*4 = 36 B/f (single precision)
72 B/v (Euler Poincaré)

No explicit connectivity
Indexed Face List:

- Vertex: position
- Face: Vertex Indices

<table>
<thead>
<tr>
<th>Vertices</th>
<th>Triangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1 \ y_1 \ z_1$</td>
<td>$i_{11} \ i_{12} \ i_{13}$</td>
</tr>
<tr>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>$x_v \ y_v \ z_v$</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

$12 \ B/v + 12 \ B/f = 36B/v$

No explicit adjacency info
Face-Based Connectivity

Vertex:
- position
- 1 face

Face:
- 3 vertices
- 3 face neighbors

64 B/v

No edges: Special case handling for arbitrary polygons
Edges always have the same topological structure

Efficient handling of polygons with variable valence
(Winged) Edge-Based Connectivity

Vertex:
- position
- 1 edge

Edge:
- 2 vertices
- 2 faces
- 4 edges

Face:
- 1 edges

120 B/v

Edges have no orientation: special case handling for neighbors
Halfedge-Based Connectivity

Vertex:
- position
- 1 halfedge

Edge:
- 1 vertex
- 1 face
- 1, 2, or 3 halfedges

Face:
- 1 halfedge

Edges have orientation: No-runtime overhead due to arbitrary faces

96 to 144 B/v
Arbitrary Faces during Modeling
1. Start at vertex
1. Start at vertex
2. Outgoing halfedge
1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
One-Ring Traversal

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
One-Ring Traversal

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
5. Opposite
One-Ring Traversal

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
5. Opposite
6. Next
7. ...
CGAL

- www.cgal.org
- Computational Geometry
- Free for non-commercial use

OpenMesh

- www.openmesh.org
- Mesh processing
- Free, LGPL license
Why *Open*mesh?*

Flexible / Lightweight
- Random access to vertices/edges/faces
- Arbitrary scalar types
- Arrays or lists as underlying kernels

Efficient in space and time
- Dynamic memory management for array-based meshes (not in CGAL)
- Extendable to specialized kernels for non-manifold meshes (not in CGAL)

Easy to Use
• Textbook: Chapter

• http://www.openmesh.org

• Kettner, Using generic programming for designing a data structure for polyhedral surfaces, Symp. on Comp. Geom., 1998

• Botsch et al., OpenMesh - A generic and efficient polygon mesh data structure, OpenSG Symp. 2002
Learn the **terms** and **notations**
• Explicit & Implicit Surfaces

• Exercise 1: Getting Started with Mesh Processing
http://cs621.hao-li.com

Thanks!