Spring 2018
CSCI 621: Advanced Digital Geometry Processing

Introduction to OpenMesh
(and Exercise 1)

~=<S | =

S~
SN j
-—4)=

P B Y O g

E S

X117, Tianye LI

Exercise 1

e Introduction to working with OpenMesh
« Code provided to load/render mesh

* You will modify it to calculate/visualize valence
of mesh vertices

e Can use Windows, Linux or OS X

e 3 parts:
* 1.1 Installation and getting started
* 1.2 Vertex valence of a triangle mesh
» 1.3 Color visualization

1.1 Installation and getting started

* |Install dependencies:
 GLUT: http://freeglut.sourceforge.net/
« CMake: http://www.cmake.org/download/
* OpenMesh: http://www.openmesh.org/download/

 Download/Unpack Exercisel.zip and handout
(Exercisel.pdf) from Blackboard

1.1 Installation and getting started

* Handout contains instructions for building starter
code on each platform

* Must build OpenMesh from source on Linux / OS X

* Use CMake as described in handout for building
exercise code (followed by “sudo make install”)

1.1 Installation and getting started

e Pass model to load on command line

e e.9.: ./exercisel1 bunny.off

* Become familiar with project file organization and
classes “GLUTViewer,” “MeshViewer” and
“ValenceViewer”

* Learn how to use OpenMesh by reading first 4
sections of online OpenMesh tutorial

1.2 Vertex valence of a triangle mesh

* Review: The valence v(x) of a vertex x in a triangle
mesh is the number of vertices in its one-ring
neighborhood

e Each vertex in neighborhood is connected by an
edge to x

1.2 Vertex valence of a triangle mesh

» ValenceViewer::calc_valences() called once before
render loop starts

* Add code to this method to compute valence of
each vertex in mesh "mesh_" (member of superclass

“MeshViewer”)
« Store valences in custom attribute you must define
for each vertex

1.3 Color visualization

< Velwec Vewe :id |~ Yawece Viewe: :_iu
o - ~ ¢ N

* Define function mapping of each valence number to
RGB value used as vertex color

 Implement mapping in ValenceViewer::color_coding()
(called right after calc_valences())

e Describe your mapping in readme.txt submitted with
assignment

» Use predefined attributes for color (don’t define your
own)

OpenMesh

 From ACG at RWTH Aachen

* C++ library

* Implements half-edge data structure

* Integrated basic geometric operations
* 3-D model file reader/writer

Why OpenMesh ?

Flexible

 Random access to vertices, edges, and faces
* Arbitrary scalar types
* Arrays or lists as underlying kernels

Efficient in space and time

* Dynamic memory management for array-based meshes
(not in CGAL)

* Extendable to specialized kernels for non-manifold meshes
(not in CGAL)

Integrated geometric operations

OpenMesh::Vec3f x,y,n,crossproductXY;

I= (x-y).length();

n = x.normalize();
scalarProductXY = (x | y);
crossProductXY = x % v;

Mesh definition

#include <OpenMesh/Core/IO/MeshlO.hh>
#include <OpenMesh/Core/Mesh/Types/TriMesh_ArrayKernelT.nh>

typedef Openmeshi: TriMesh_ArrayKernelT<> Mesh;

Name Space mesh type:
— triangle mesh
— array kernel
— default traits

Loading and writing a mesh

reader/writer settings:
— enable vertex normals/colors / texture coordinates?
— enable face normals/colors?

Adding attributes

Mesh * myMesh;

OpenMesh::10::0Options readOptions;

OpenMesh::IO::read _mesh(*myMesh,”/path/to/bunny.off’ readOptions)

Iterating over vertices

typedef Openmesh:: TriMesh ArrayKernelT<> Mesh;
Mesh * myMesh;

Mesh::Vertexlter v_It,v_Begin,v_End;

v_Begin = myMesh->vertices_begin();
v_End = myMesh->vertices _end();

for(v_It = vBegin ; v_It!= vEnd; ++y_|t)

{
doSomethingWithVertex(v_It.handle());

} \
mesh processing

Iterating over faces

Mesh::Vertexlter = Mesh::Facelter
vertices_begin() — faces_begin()

vertices_end() — faces_end()

Circulating over faces around a vertex

Mesh::Vertexlter v_It,v_Begin,v_End;

v_Begin = myMesh->vertices_begin();
v_End = myMesh->vertices_end();

for(v_It=v Begin;v It!=v _End; ++vit)
{
Mesh::VertexFacelter vf_It,vf Begin;

vi_Begin = myMesh->vfiter(vlit);

for(vf_It = vf Begin ; vf It ; ++vf_It)

{
doSomethingfVithFace(vf _It.handle());

}
)

returns false after a complete circulation round

void analyzeTriangle(OpenMesh::FaceHandle & fh)
{
OpenMesh::Vec3f pointA,pointB,pointC;
Mesh::ConstFaceVertexlter cfv_It;

cfv_It = myMesh->cfv_iter(_fh);

pointA = myMesh->point(cfv_It.handle());
pointB = myMesh->point((++cfv_It).handle());
pointC = myMesh->point((++cfv_It).handle());

perimeter(pointA,pointB,pointC);
area(pointA,pointB,pointC)

mesh topology
involved

Neighborhood access in O(1)

startHEH

endVH

OpenMesh::VertexHandle endVH;
OpenMesh::HalfEdgeHandle startHEH,oppositeHEH,nextHEH,;

startHEH = hehlt.handle();
oppositeHEH = myMesh->opposite_halfedge_handle(startHEH);

nextHEH = myMesh->next_halfedge handle(oppositeHEH);
endVH = myMesh->to vertex_handle(nextHEH);

Modifying the geometry

for(vit = vBegin ; vit I= vEnd; ++vlt)

{
scale(vlt.handle(),2.0);

}

Changing the topology

currentHEH edge collapse

>

myMesh->request_vertex_status();
myMesh->request_edge_status();
myMesh->request_face_status();

V.

OpenMesh::HalfedgeHandle currentHEH = helt.handle();

myMesh->collapse(currentHEH);
myMesh->garbage collection();

* Face type with predefined array kernel

typedef Openmesh:: TriMesh_ArrayKernelT<> Mesh;
typedef Openmesh::PolyMesh_ArrayKernelT<> Mesh;

eTraits

predefined attributes:

— normals / colors

— coordinate types: 2-D, 3-D, ..., nD
— scalar types: float, double, ...

custom attributes: centerOfGravity, ...

http://www.openmesh.org
http://www.openmesh.org

Traits — static customization

#include <OpenMesh/Core/IO/MeshlO.hh>
#include <OpenMesh/Core/Mesh/Types/TriMesh_ArrayKernelT.hh>

typedef Openmesh::TriMesh_ArrayKerneIT—\/lesh;

Dynamic customization of predefined attributes

typedef Openmesh:: TriMesh ArrayKernelT<> Mesh;
Mesh * myMesh;
... I/ load file into myMesh

myMesh->request_vertex normals();

myMesh->request_vertex_colors(); |

myMesh->set_color(currentVH,Mesh::Color(0,0,259));

blueColor = myMesh->color(currentVH);

Dynamic customization of custom attributes

OpenMesh::FPropHandleT<bool> marked;
myMesh->add_property(marked);

for(flt = fBegin; flt |= fEnd; ++flt)

{
if(shouldMark(flt))
myMesh->property(marked,flt) = true;
else
myMesh->property(marked,flt) = false;
}
for(flt = fBegin; flt |= fEnd; ++flt)
{

if(myMesh->property(marked,flt))
doSomething(flt);

Three important links

www.openmesh.org — Overview
www.openmesh.org — Tutorial
www.openmesh.org = Documentation

— (Classes
— Class Members

e add():

e add_binary() :
e add_face() :

e add_priority() :
e add_property() :

http://www.openmesh.org
http://www.openmesh.org
http://www.openmesh.org

Further readings

* Documention: http://www.openmesh.org/

* OpenMesh — a generic and efficient polygon mesh
data structure [Botsch et al. 2002]

http://www.openmesh.org

Exercise 1

e Introduction to working with OpenMesh
« Code provided to load/render mesh

* You will modify it to calculate/visualize valence
of mesh vertices

e Can use Windows, Linux or OS X

e 3 parts:
* 1.1 Installation and getting started
* 1.2 Vertex valence of a triangle mesh
» 1.3 Color visualization

1.1 Installation and getting started

* |Install dependencies:
 GLUT: http://freeglut.sourceforge.net/
« CMake: http://www.cmake.org/download/
* OpenMesh: http://www.openmesh.org/download/

 Download/Unpack Exercisel.zip and handout
(Exercisel.pdf) from Blackboard

1.1 Installation and getting started

* Handout contains instructions for building starter
code on each platform

* Must build OpenMesh from source on Linux / OS X

* Use CMake as described in handout for building
exercise code (followed by “sudo make install”)

1.1 Installation and getting started

e Pass model to load on command line

e e.9.: ./exercisel1 bunny.off

* Become familiar with project file organization and
classes “GLUTViewer,” “MeshViewer” and
“ValenceViewer”

* Learn how to use OpenMesh by reading first 4
sections of online OpenMesh tutorial

1.2 Vertex valence of a triangle mesh

* Review: The valence v(x) of a vertex x in a triangle
mesh is the number of vertices in its one-ring
neighborhood

e Each vertex in neighborhood is connected by an
edge to x

1.2 Vertex valence of a triangle mesh

» ValenceViewer::calc_valences() called once before
render loop starts

* Add code to this method to compute valence of
each vertex in mesh "mesh_" (member of superclass

“MeshViewer”)
« Store valences in custom attribute you must define
for each vertex

1.3 Color visualization

< Velwec Vewe :id |~ Yawece Viewe: :_iu
o - ~ ¢ N

* Define function mapping of each valence number to
RGB value used as vertex color

 Implement mapping in ValenceViewer::color_coding()
(called right after calc_valences())

e Describe your mapping in readme.txt submitted with
assignment

» Use predefined attributes for color (don’t define your
own)

Submission

 Deadline: Mon. Feb. 6, 12:00 PM
 Submit via Blackboard:

 CMake script and ALL source files (even those
you didn’t need to change)

e readme.txt:

* Describe how you solved each exercise, using
same exercise numbers (1.1 - 1.3) and titles as
In handout

» Describe problems you encountered

* Upload file named Exercise1-YourName.zip on
Blackboard (make sure to click “Submit” afterwards)

