Spring 2017

CSCI 621: Digital Geometry Processing

6.1 Shape Matching

Acknowledgement

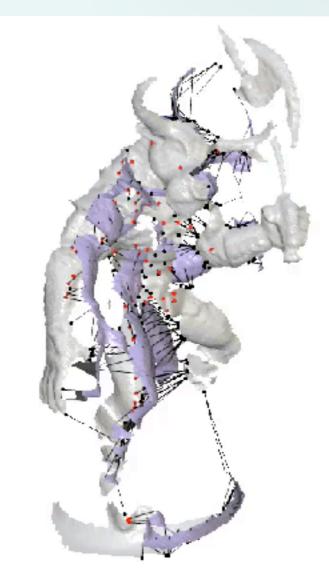
Images and Slides are courtesy of

- Prof. Michael Kazhdan, Johns Hopkins University
- ICCV Course 2005: <u>http://www.cis.upenn.edu/~bjbrown/</u> <u>iccv05_course/</u>

Last Time

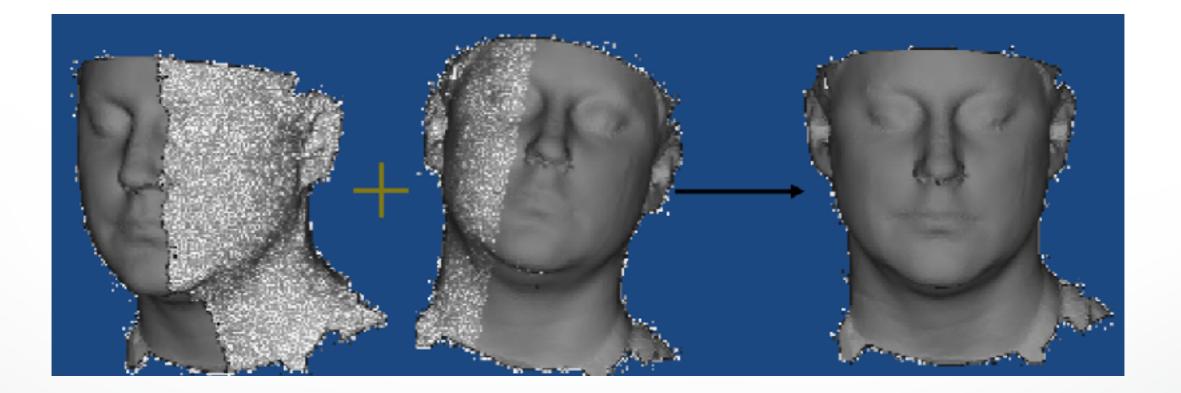
Surface Registration

- Pairwise ICP & Variants
- Point-to-point/plane metric
- BSP closes point search
- Stability Analysis
- Global Registration



Goal

- Given two partially overlapping scans, compute transformation that aligns the two.
- No assumption about rough initial alignment

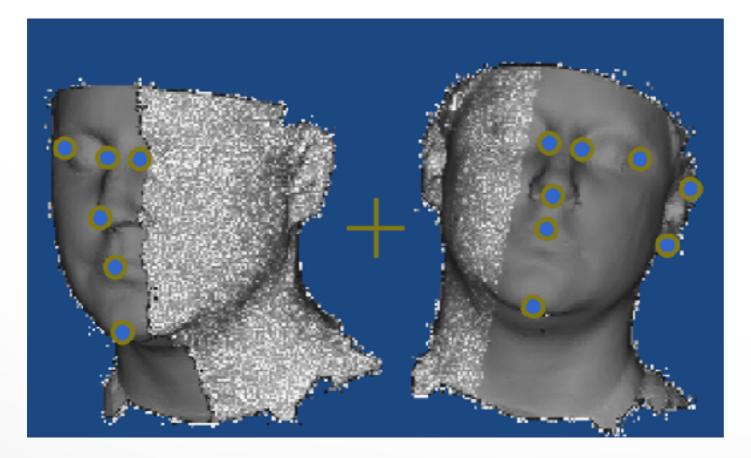


Partially Overlapping Scans

Aligned Scans

Approach

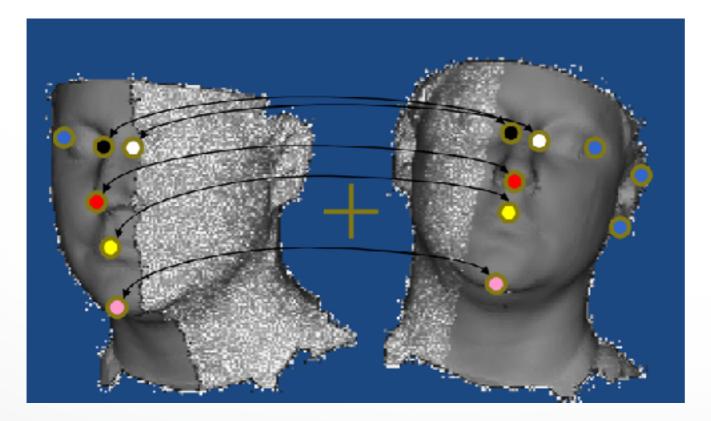
• Find feature points on the two scans



Partially Overlapping Scans

Approach

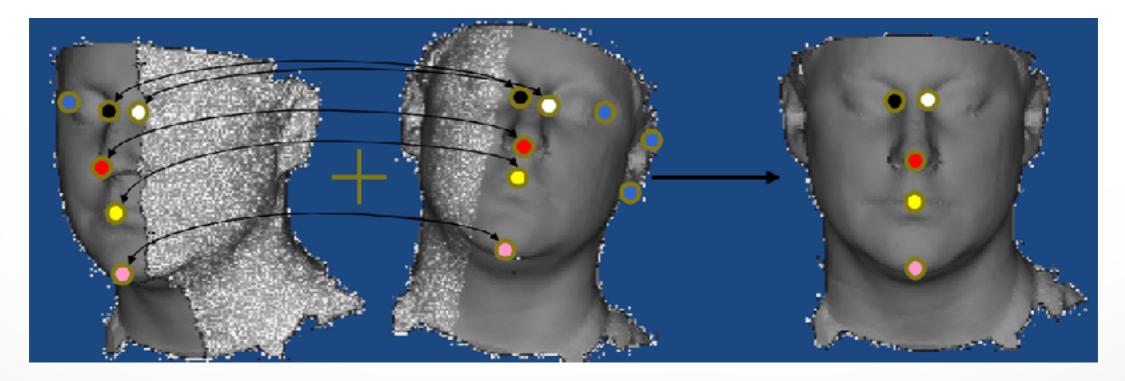
- Find feature points on the two scans
- Establish correspondences



Partially Overlapping Scans

Approach

- Find feature points on the two scans
- Establish correspondences
- Compute the alignment



Partially Overlapping Scans

Aligned Scans

Outline

Global Shape Correspondence

- Shape Descriptors
- Alignment

Partial Shape Correspondence

- From Global to Local
- Pose Normalization
- Partial Shape Descriptors

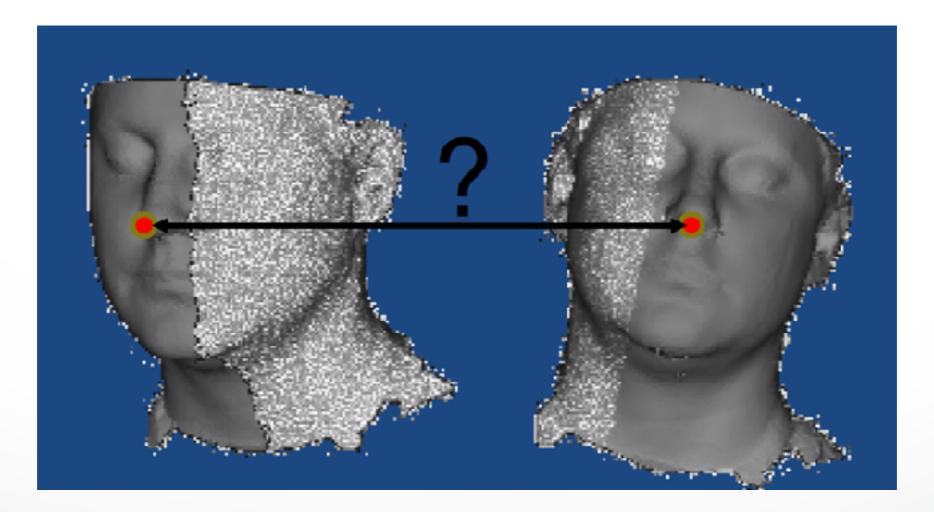
Registration

- Closed Form Solutions
- Branch & Bound
- Random Sample Consensus (RANSAC)

Correspondence

Goal

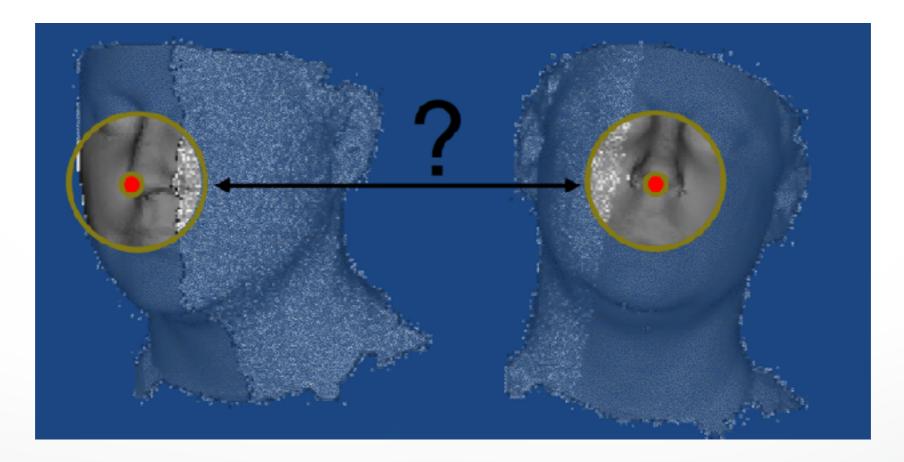
Identify when two points on different scans represent the same feature



Local Correspondence

Goal

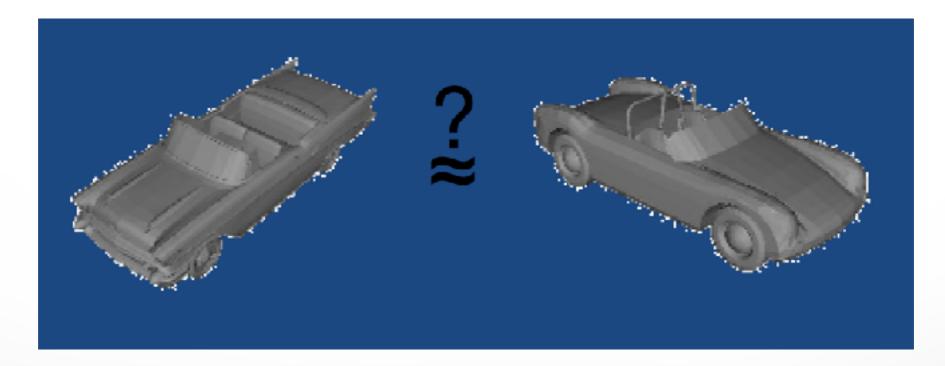
- Identify when two points on different scans represent the same feature
 - Are the surrounding regions similar?



Global Correspondence

More Generally:

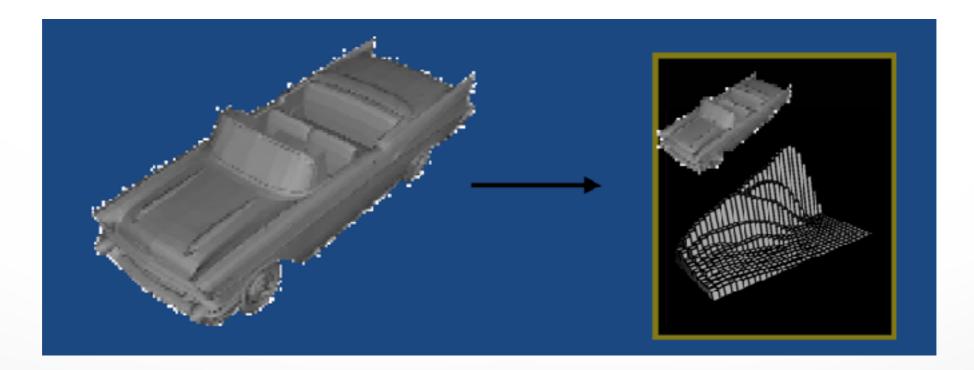
- Given two models, determine if they represent the same/ similar shapes
 - models can have different representations, tesselations, topologies, etc.



Global Correspondence

Approach:

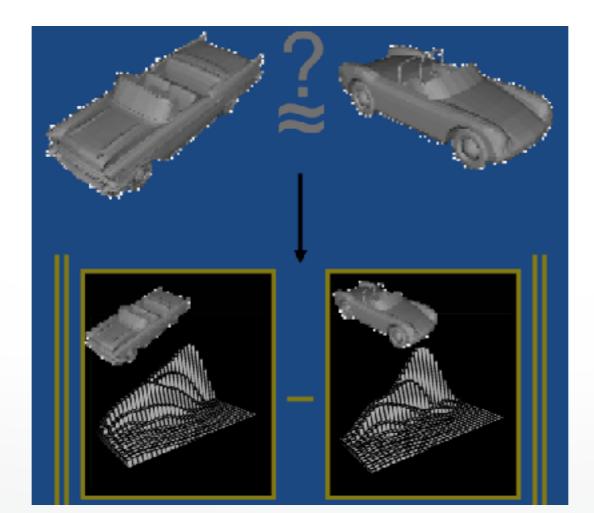
- Represent each model by a shape descriptor:
 - A structured abstraction of a 3D model
 - that captures **salient** shape information



Global Correspondence

Approach:

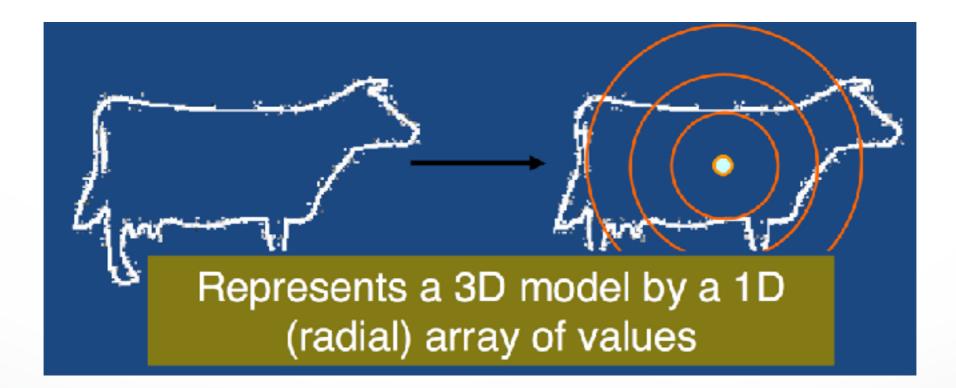
- Represent each model by a shape descriptor:
- Compare shapes by comparing their shape descriptors



Shape Descriptors: Examples

Shape Histograms

 Shape descriptor stores a histogram of how much surface area resides within different concentric shells in space

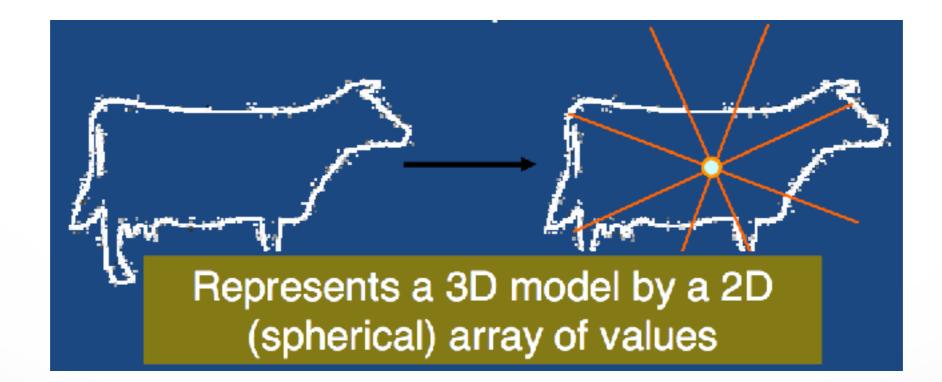


[Ankerst et al. 1999]

Shape Descriptors: Examples

Shape Histograms

 Shape descriptor stores a histogram of how much surface area resides within different sectors in space

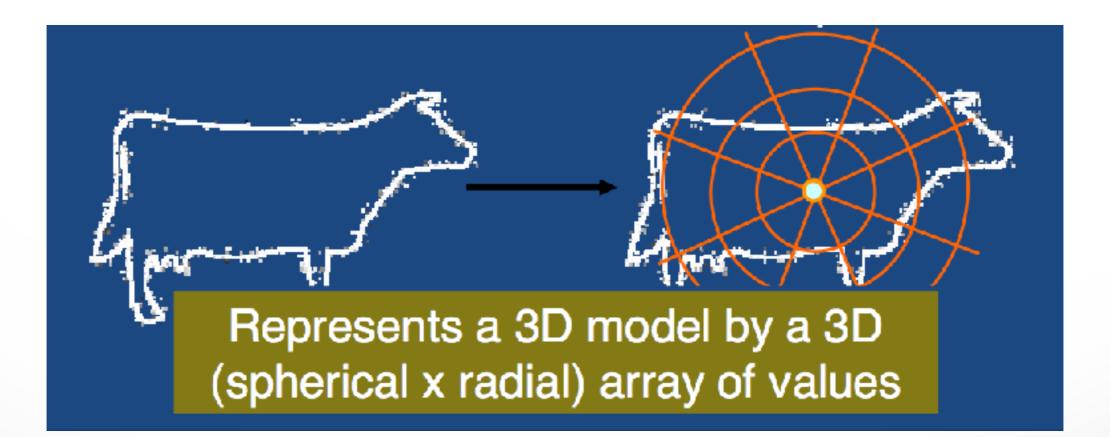


[Ankerst et al. 1999]

Shape Descriptors: Examples

Shape Histograms

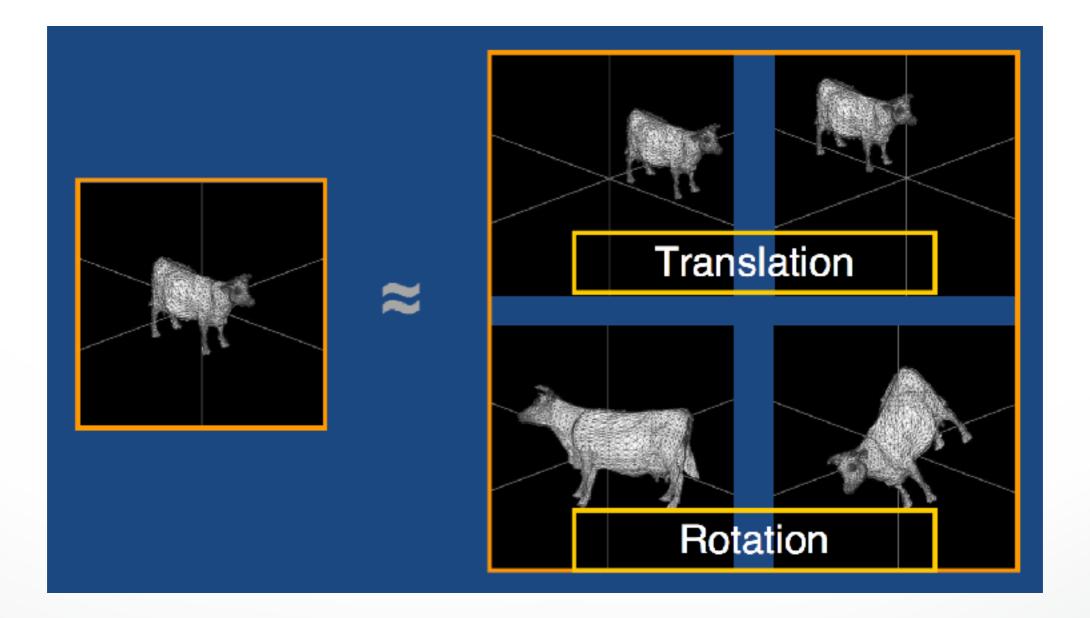
 Shape descriptor stores a histogram of how much surface area resides within different shells and sectors in space



[Ankerst et al. 1999]

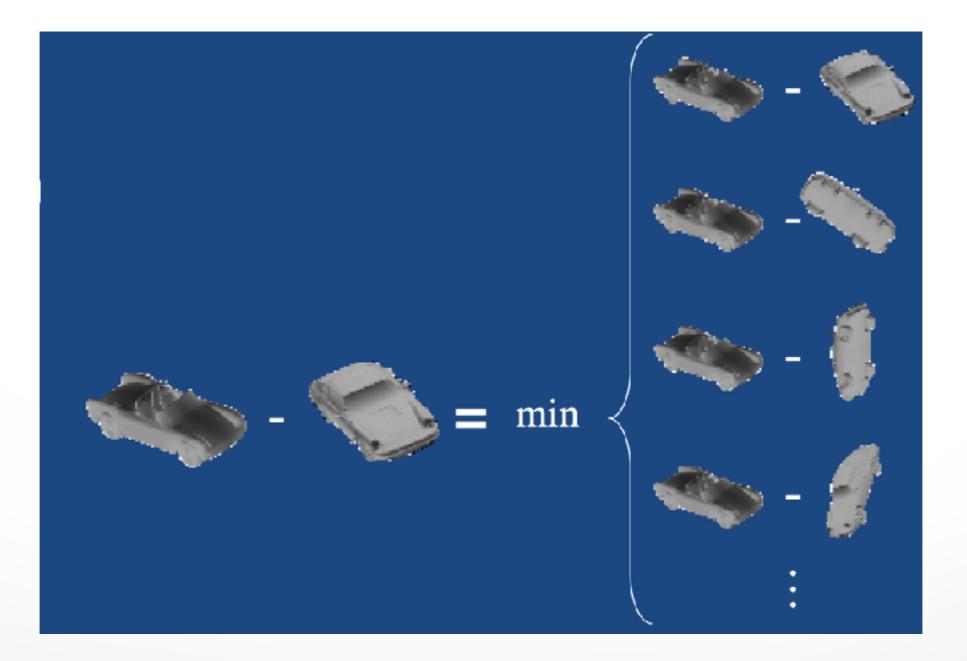
Shape Descriptors: Challenge

• The **shape** of a model does not change when a rigid body transformation is applied to the model.



Shape Descriptors: Challenge

• To compare two models, we need them at their optimal alignment

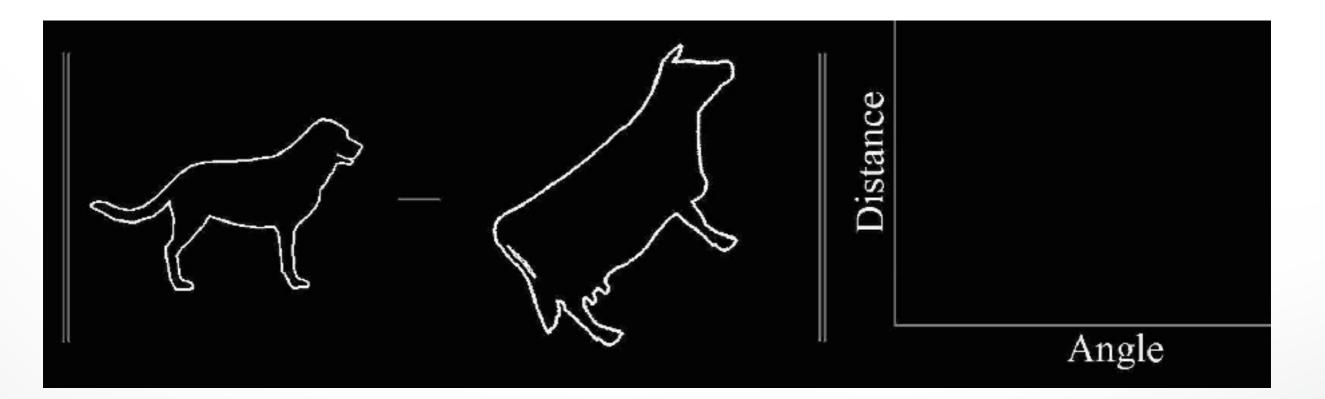


Three general methods:

- Exhaustive Search
- Normalization
- Invariance

Exhaustive Search:

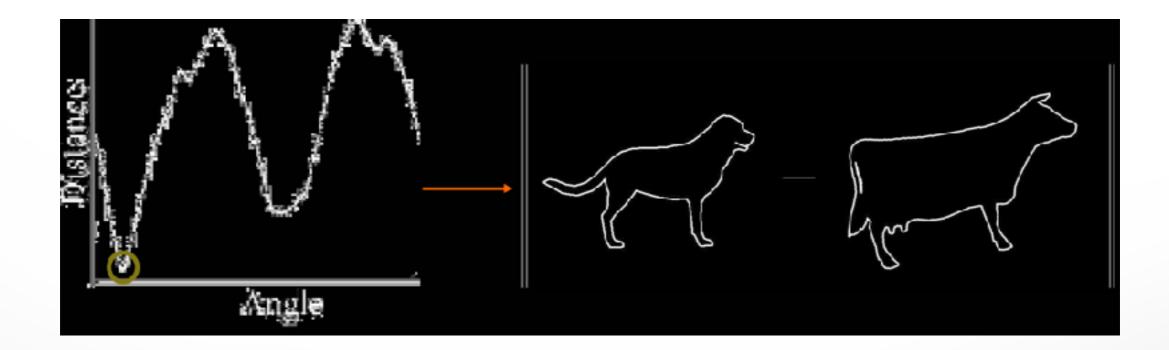
• Compare at all alignments



Exhaustive search for optimal rotation

Exhaustive Search:

- Compare at all alignments
- Correspondence is determined by the alignment at which the models are closest



Exhaustive search for optimal rotation

Exhaustive Search:

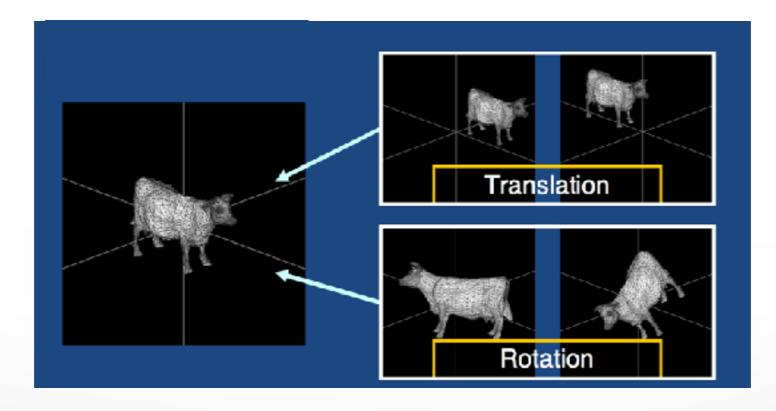
- Compare at all alignments
- Correspondence is determined by the alignment at which the models are closest

Properties:

- Gives the correct answer (w.r.t. the metric)
- While slow on a single processor, it can be parallelized (Clusters? Multi-Threading? GPU?)

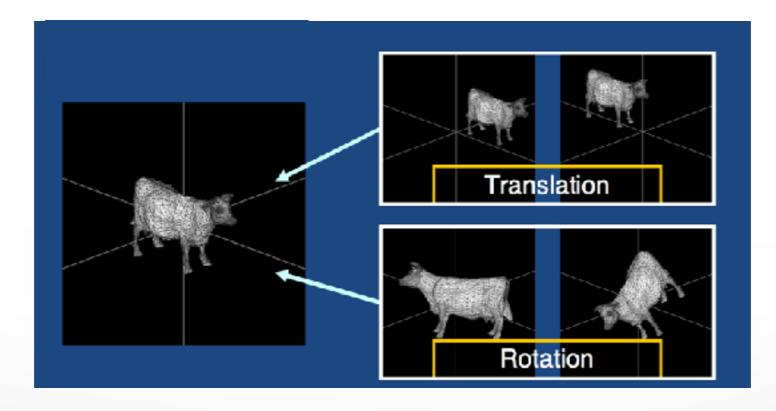
Normalization:

- Put each model into a canonical frame:
 - Translation
 - Rotation



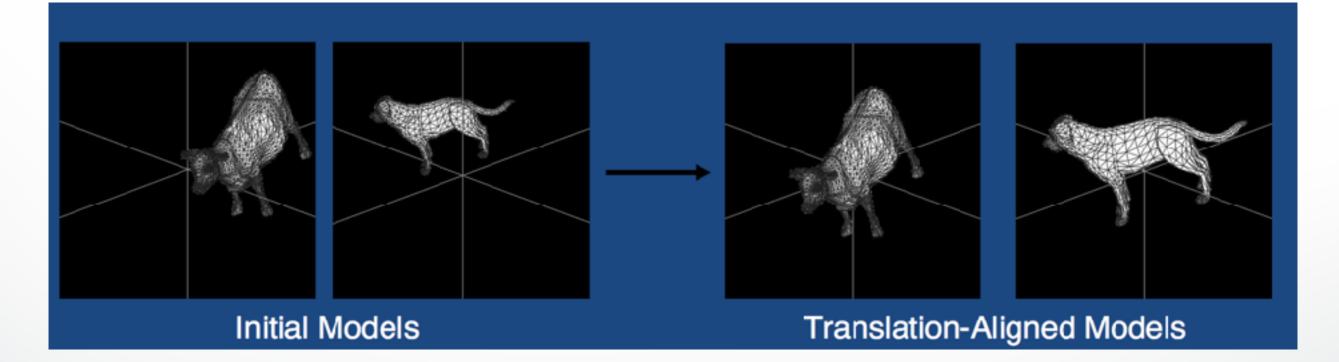
Normalization:

- Put each model into a canonical frame:
 - Translation: Center of Mass
 - Rotation



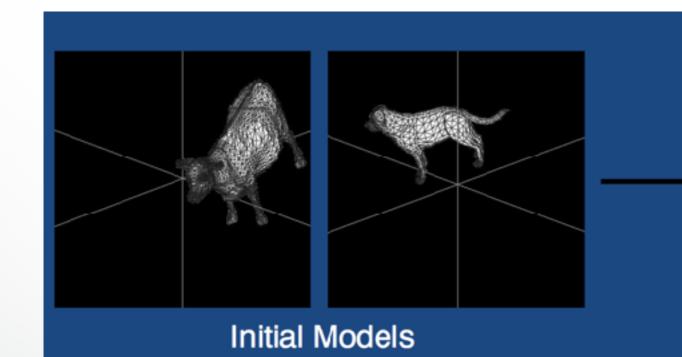
Normalization:

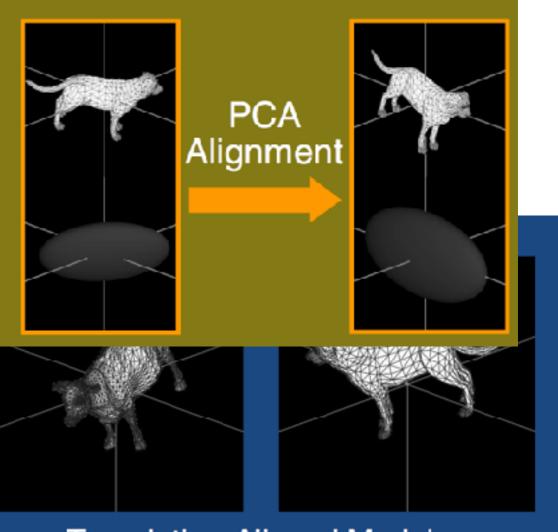
- Put each model into a canonical frame:
 - Translation: Center of Mass
 - Rotation



Normalization:

- Put each model into a canonical frame:
 - Translation: Center of Mass
 - Rotation: PCA alignment





Translation-Aligned Models

Normalization:

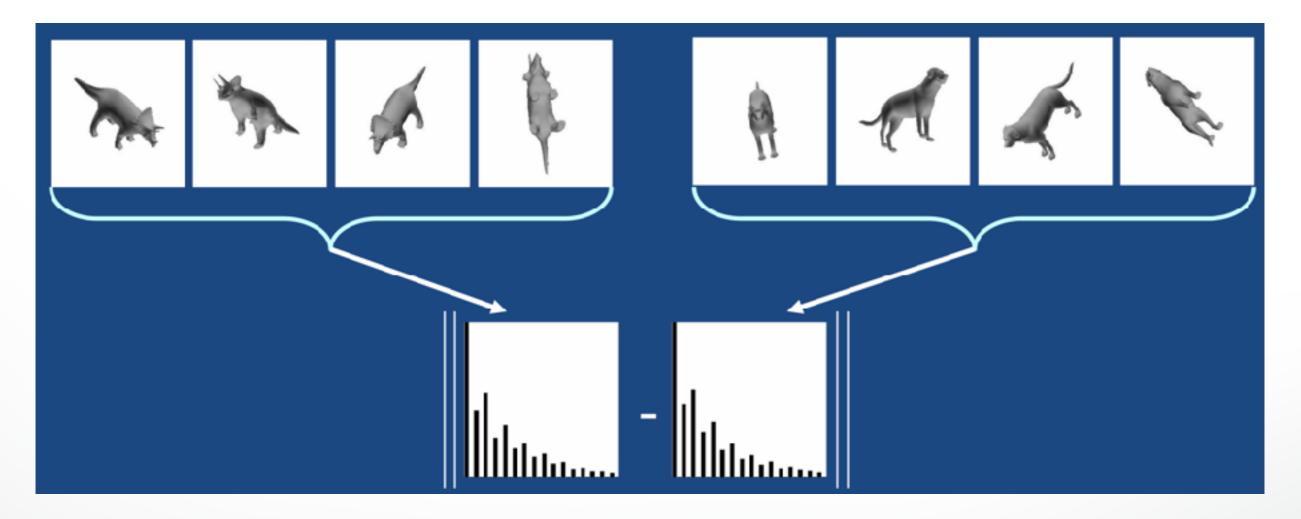
- Put each model into a canonical frame:
 - Translation: Center of Mass
 - Rotation: PCA alignment

Properties:

- Efficient
- Not always robust
- Not suitable for local feature matching

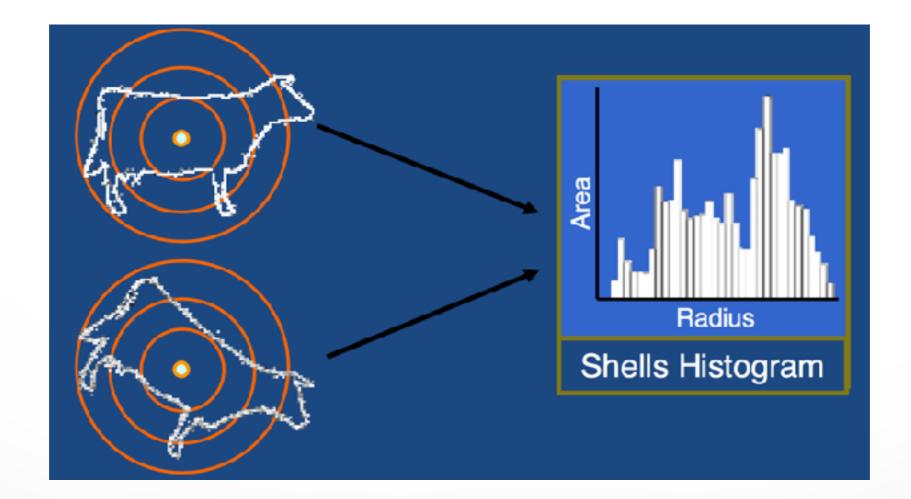
Invariance:

• Represent a model by a shape descriptor that is independent of the pose.



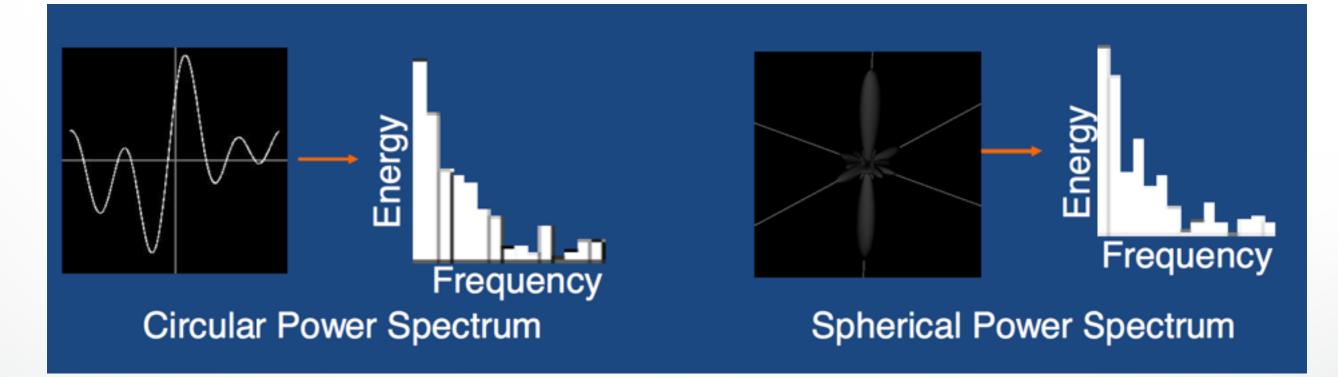
Example: Ankerst's Shells

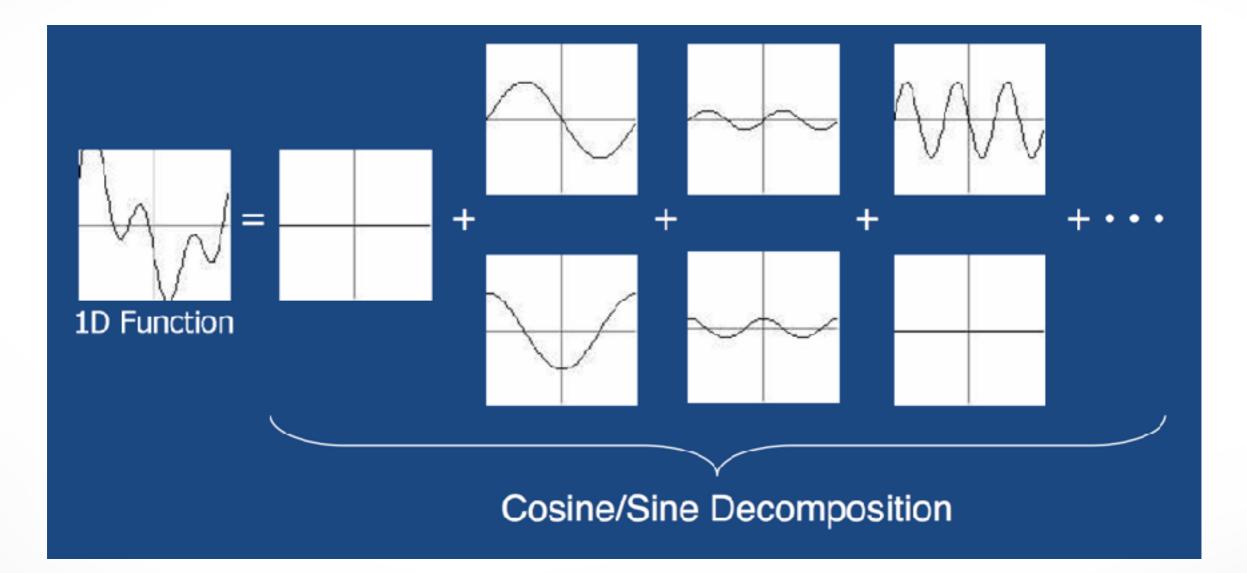
• A histogram of the radial distribution of surface area

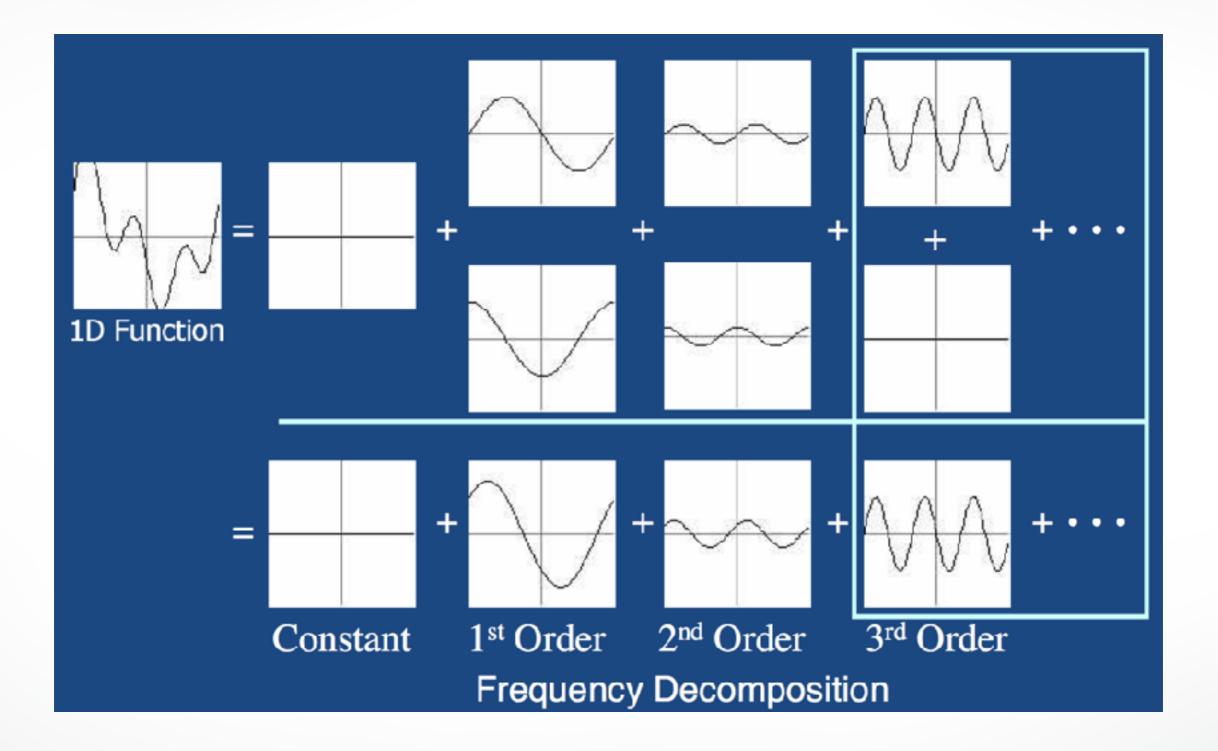


Invariance

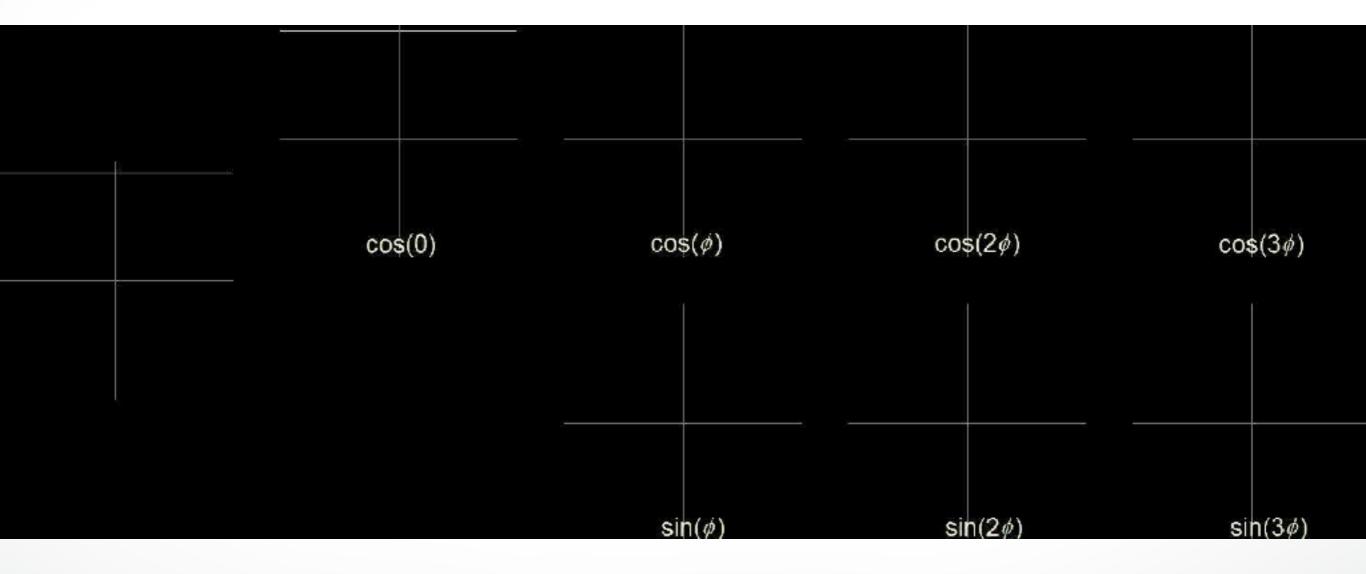
- Power spectrum representation
 - Fourier transform for translations
 - Spherical harmonic transform for rotations



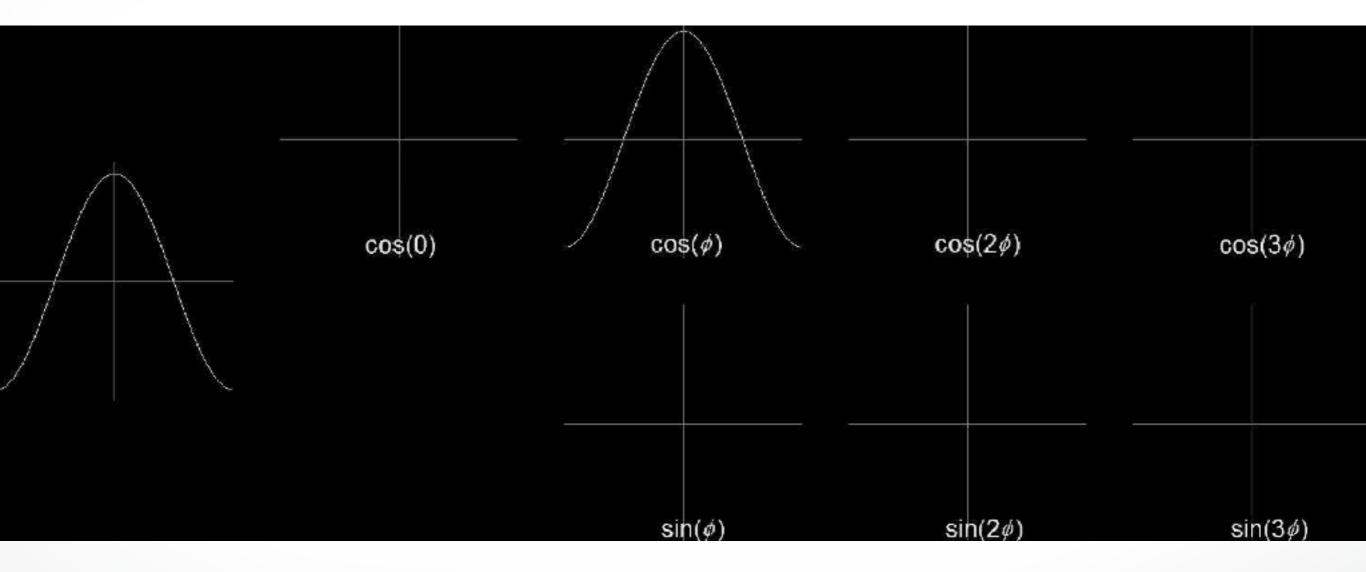




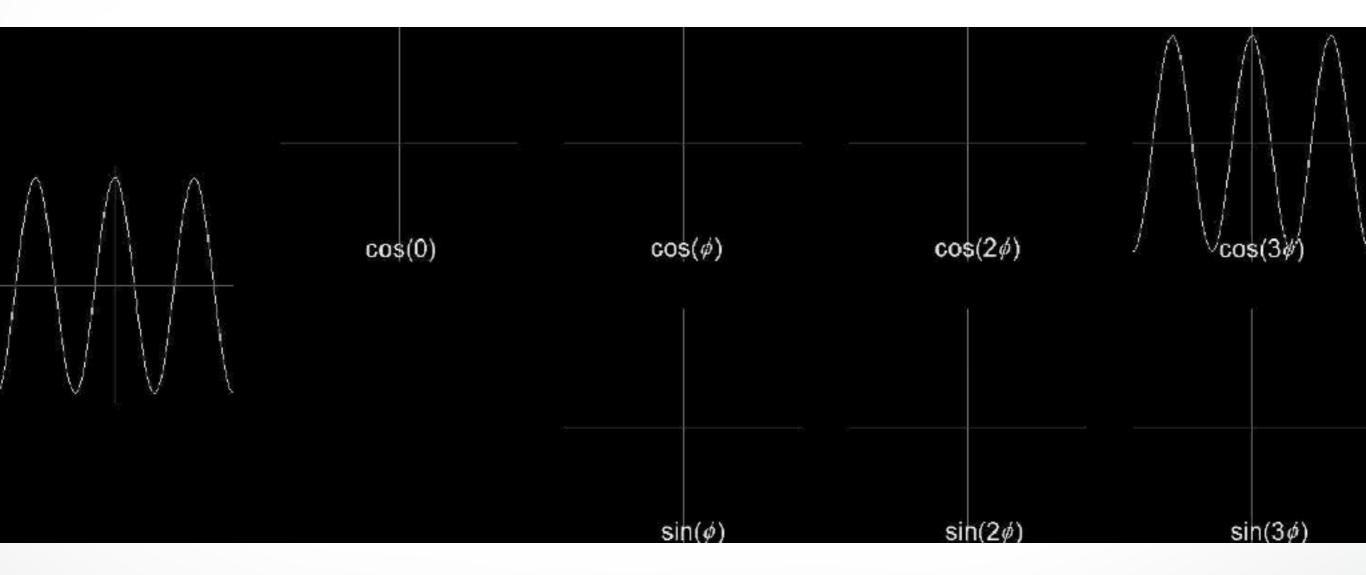
Frequency subspaces are fixed by rotations:

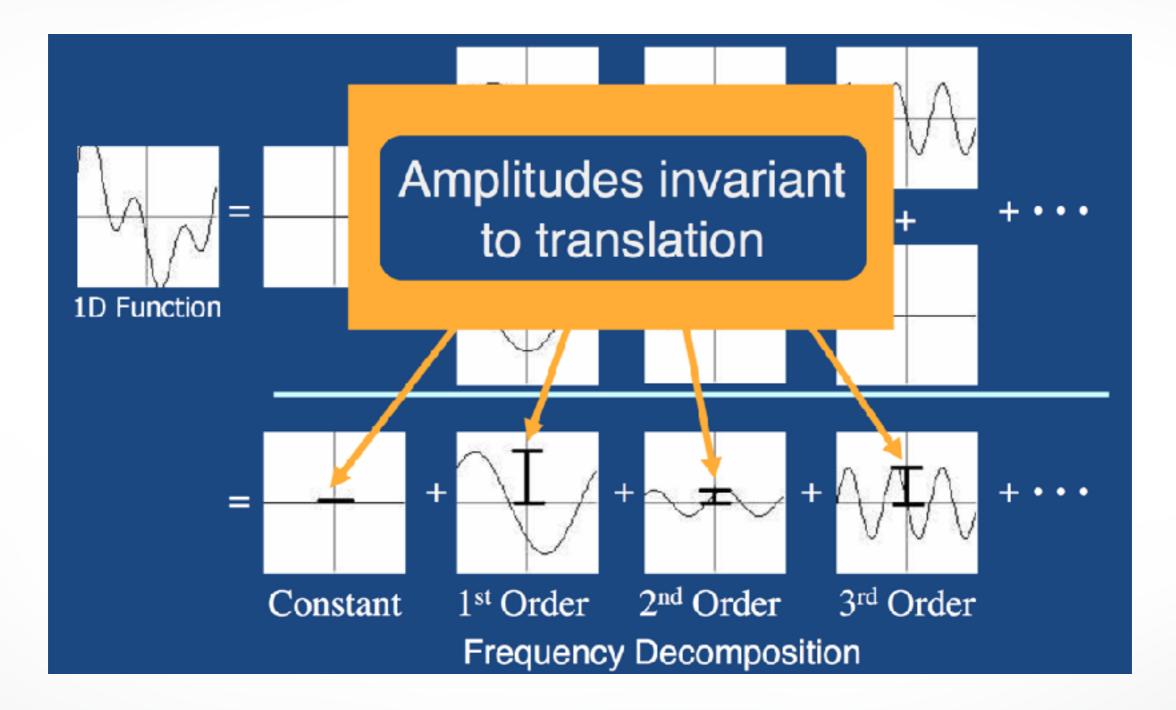


Frequency subspaces are fixed by rotations:

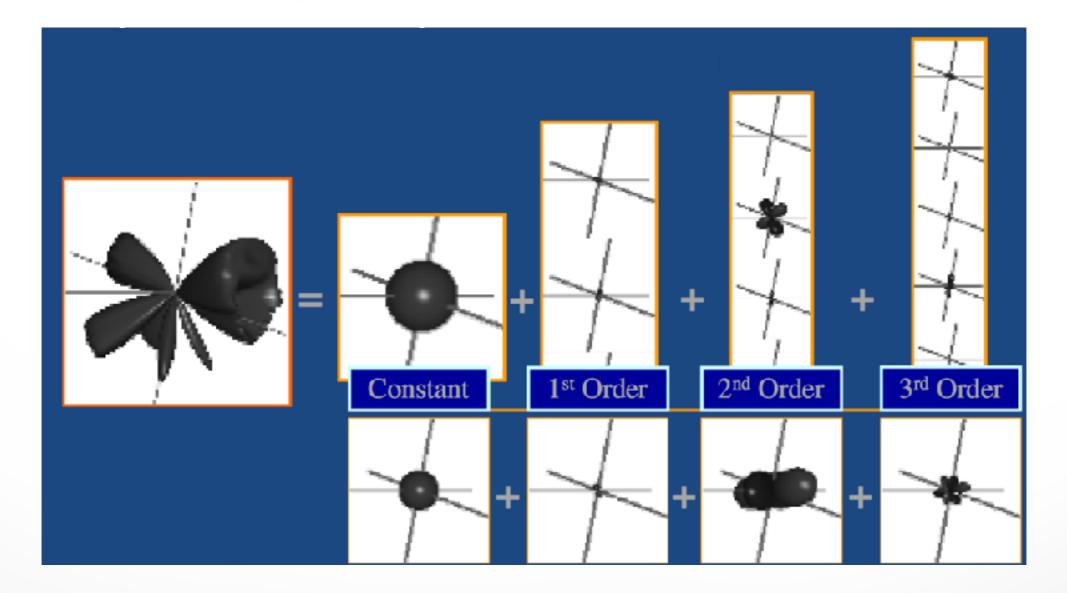


Frequency subspaces are fixed by rotations:

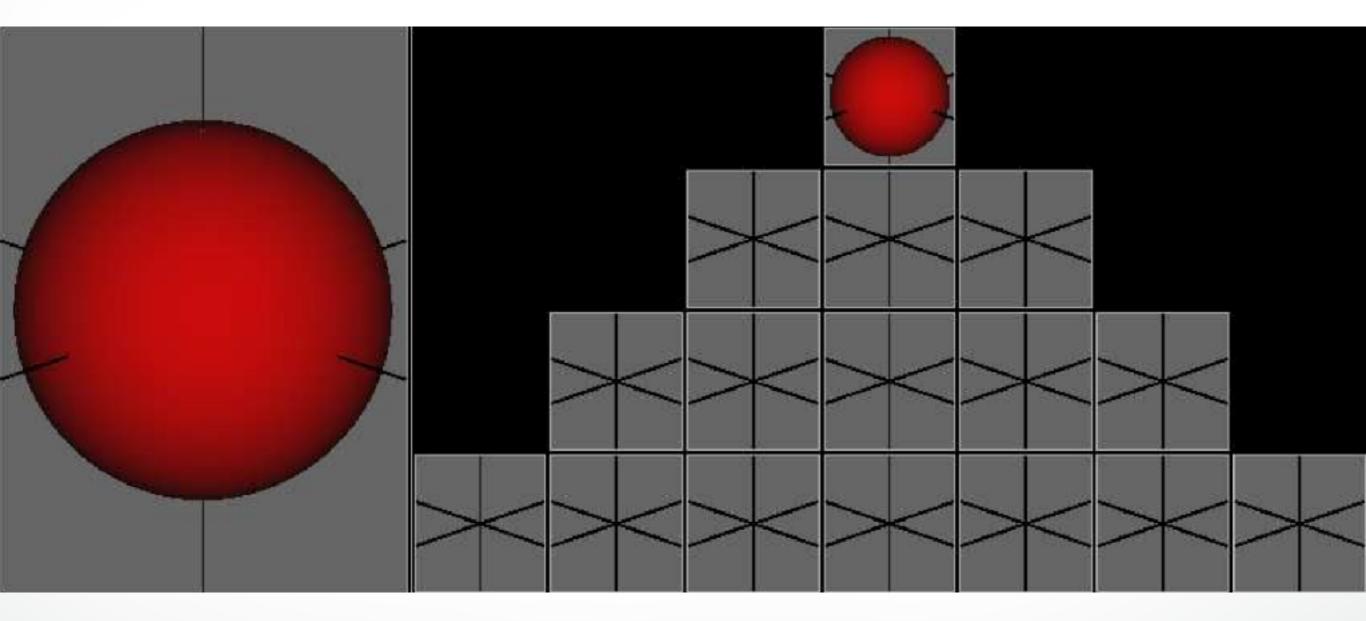




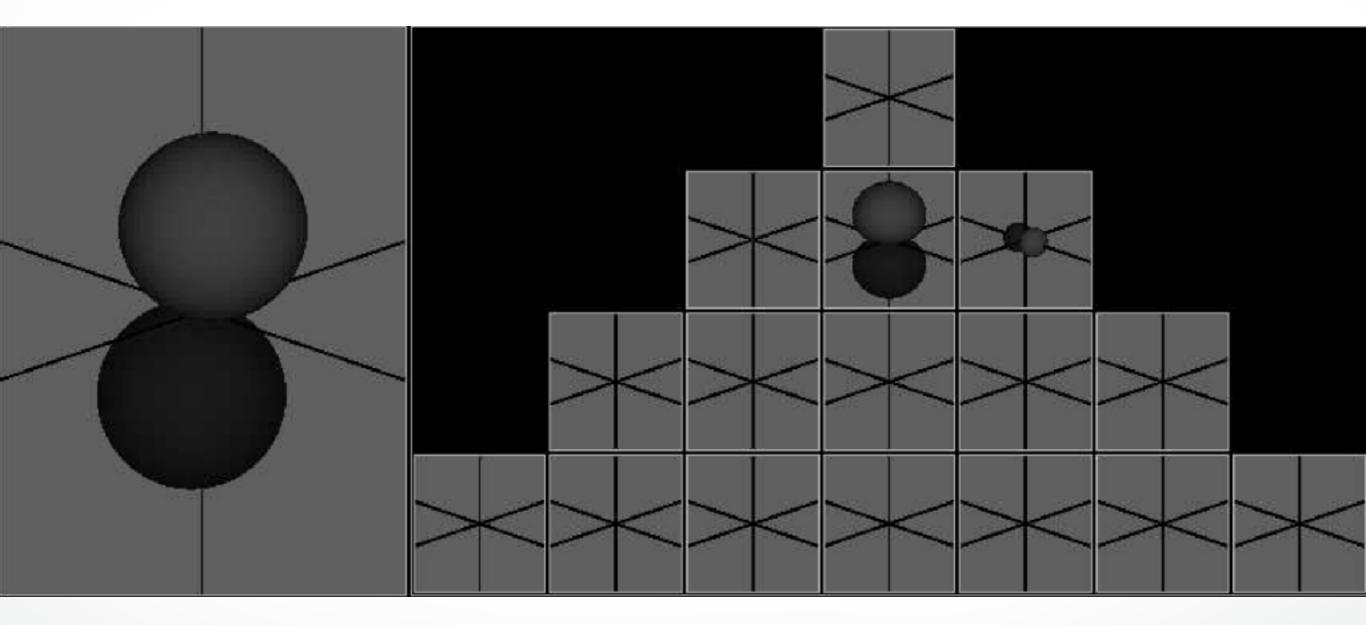
Represent each spherical function as a sum of harmonic frequencies (orders)



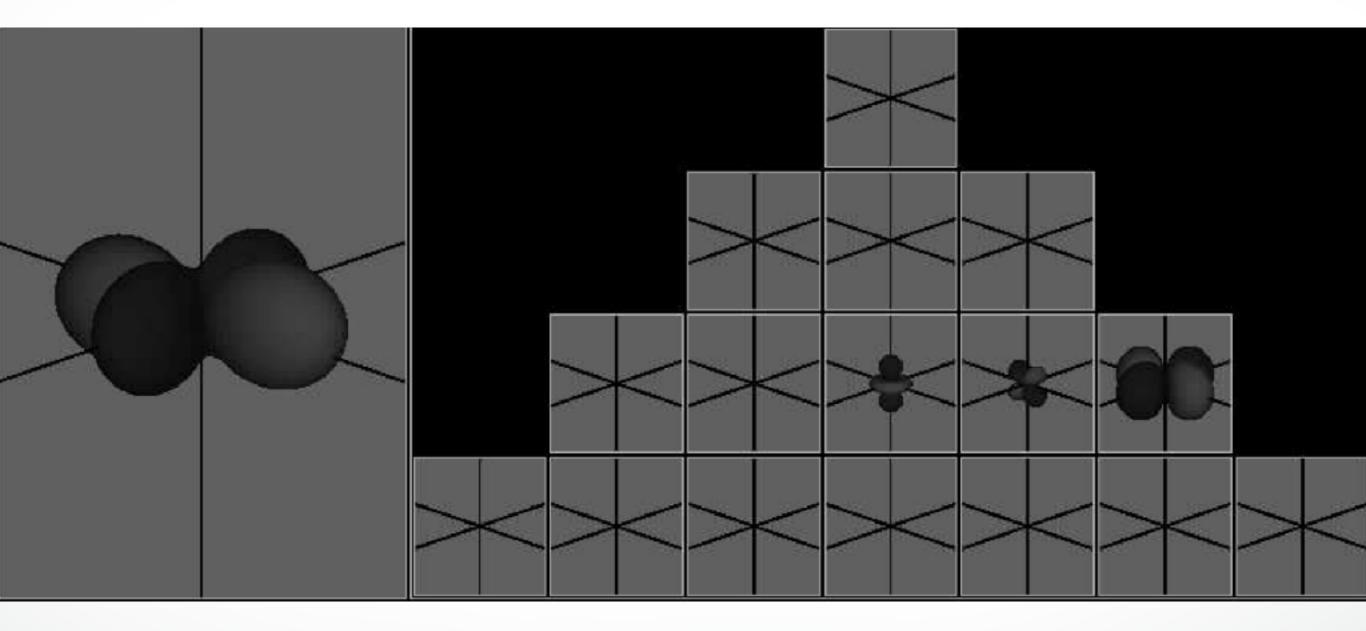
Frequency subspaces are fixed by rotations



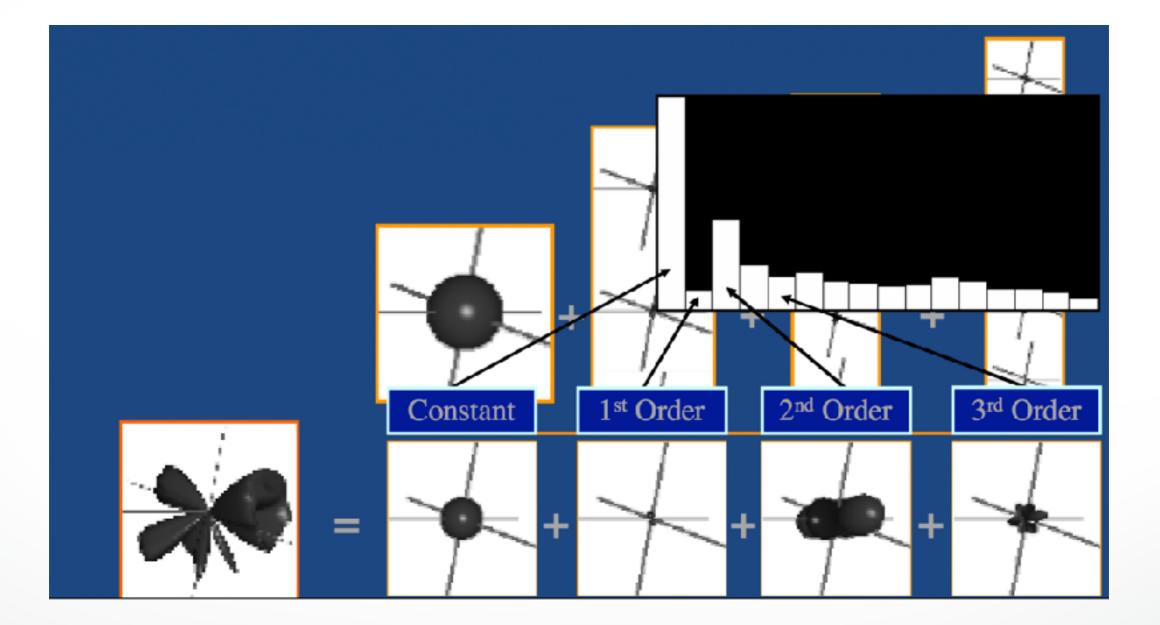
Frequency subspaces are fixed by rotations



Frequency subspaces are fixed by rotations



Store "how much" (L2-norm) of the shape resides in each frequency to get a rotatin invariant representation



Shape Descriptors: Alignment

Invariance:

 Represent a model by a shape descriptor that is independent of the pose

Properties:

- Compact representation
- Not always discriminating

Outline

Global Shape Correspondence

- Shape Descriptors
- Alignment

Partial Shape Correspondence

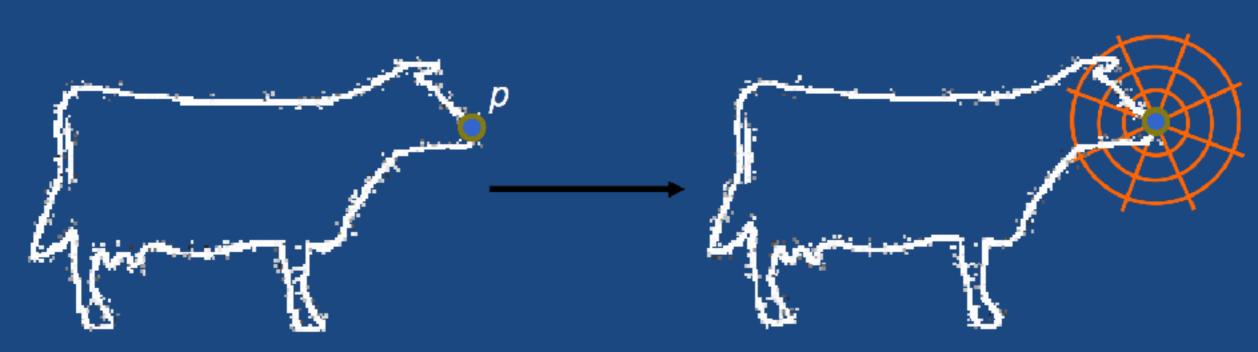
- From Global to Local
- Pose Normalization
- Partial Shape Descriptors

Registration

- Closed Form Solutions
- Branch & Bound
- Random Sample Consensus (RANSAC)

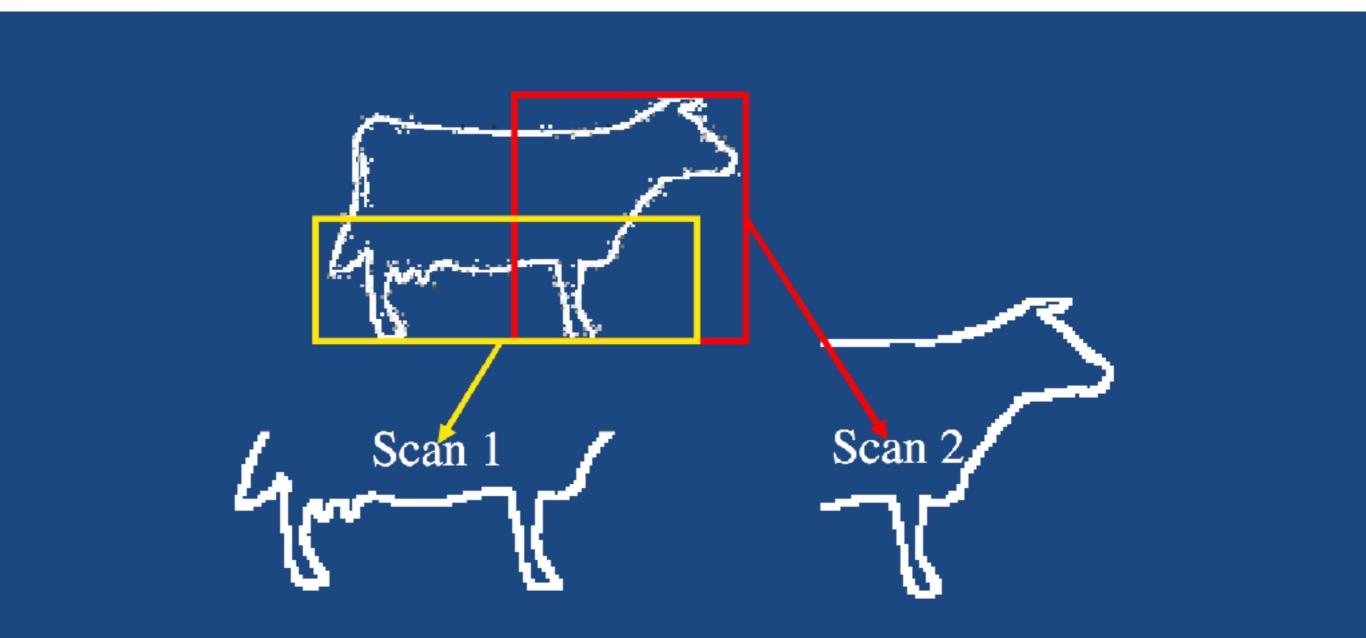
To characterize the surface about a point p, take global descriptor and:

- center it about p (instead of center of mass), and
- restrict the extent to a small region about p

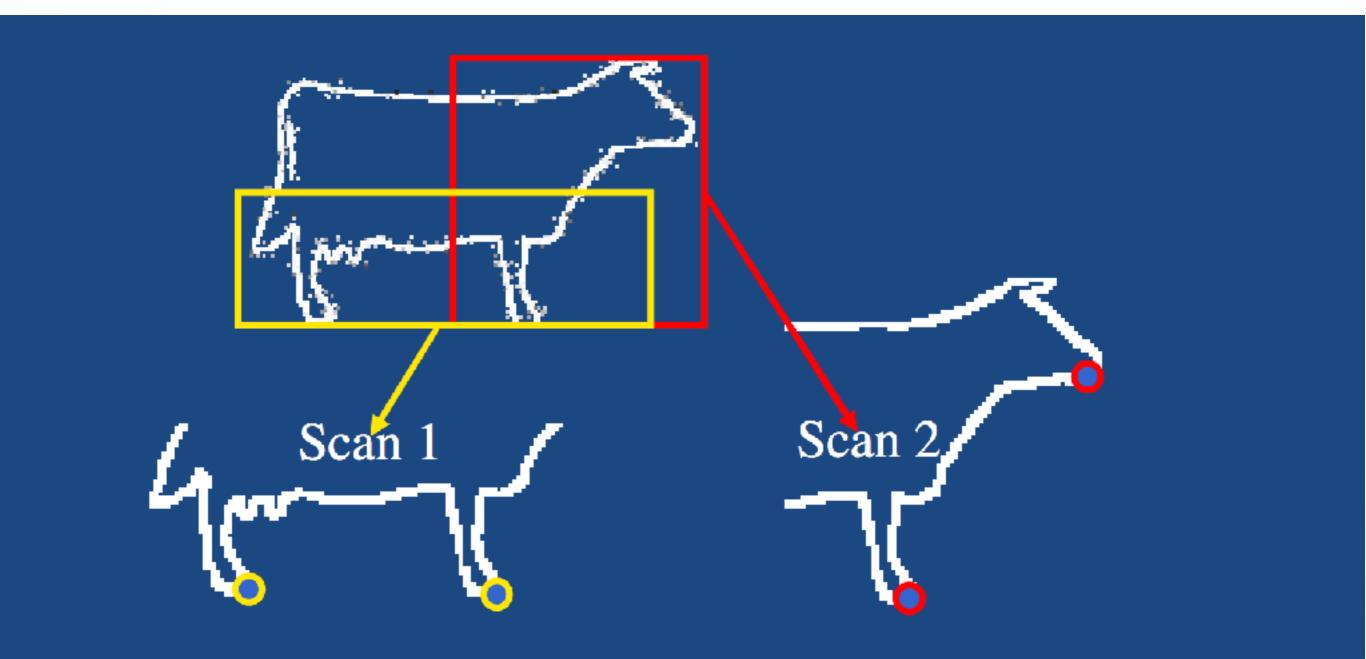


Shape histograms as local shape descriptors

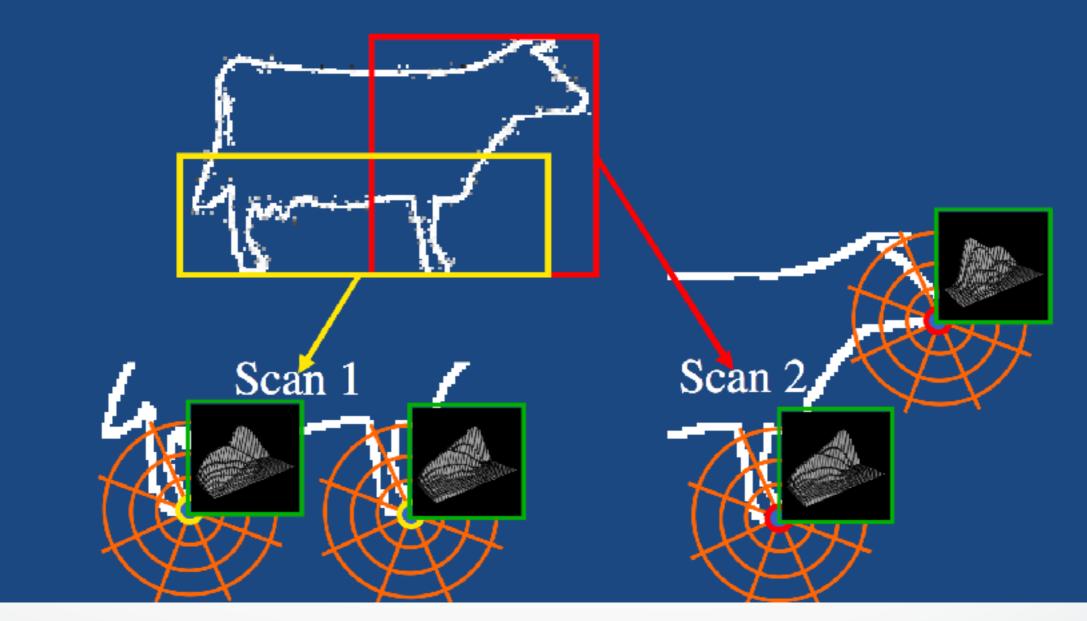
Given scans of a model:



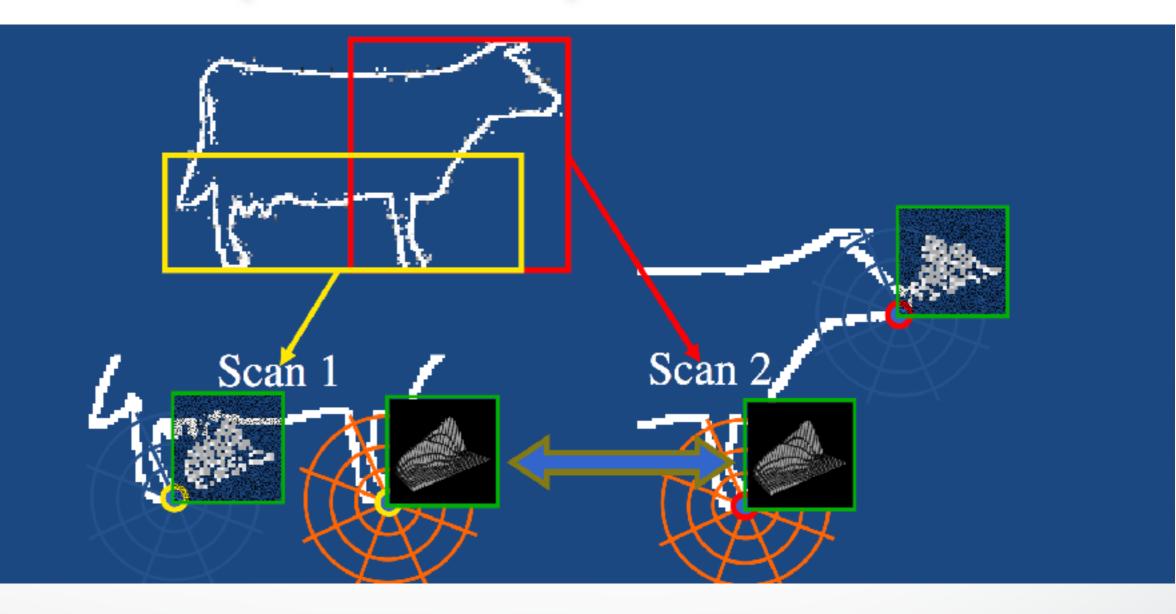
Identify the features



Identify the features Computer a local descriptor for each feature



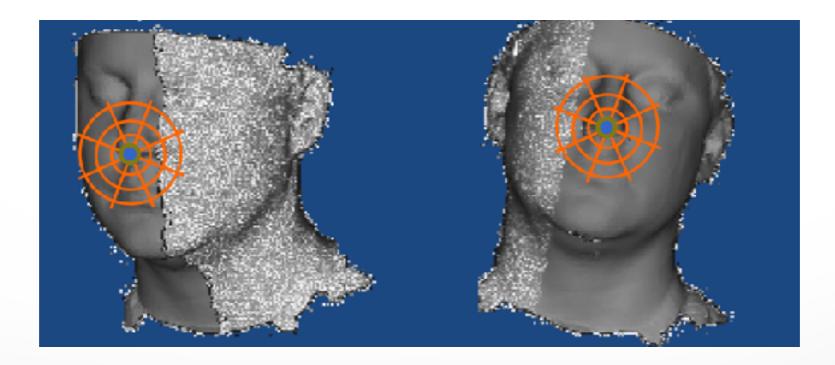
Identify the features Computer a local descriptor for each feature Feature correspond → descriptors are similar



Pose Normalization

From Global to Local

- Translation: Accounted for by centering the descriptor at the point of interest.
- Rotation: We still need to be able to match descriptors across different rotations.



Pose Normalization

Challenge

• Since only parts of the models are given, we cannot use global normalization to align the local descriptors

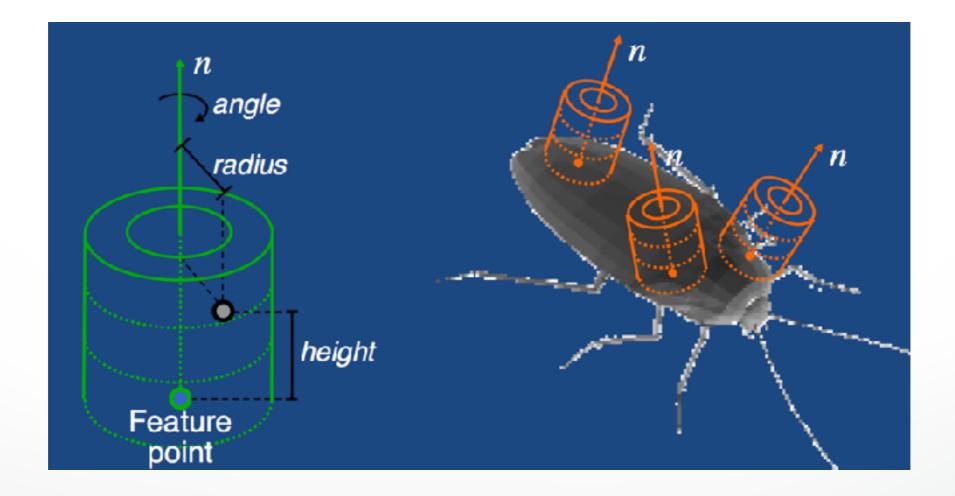
Solutions

• Normalize using **local** information

Local Descriptors: Examples

Variations of Shape Histograms

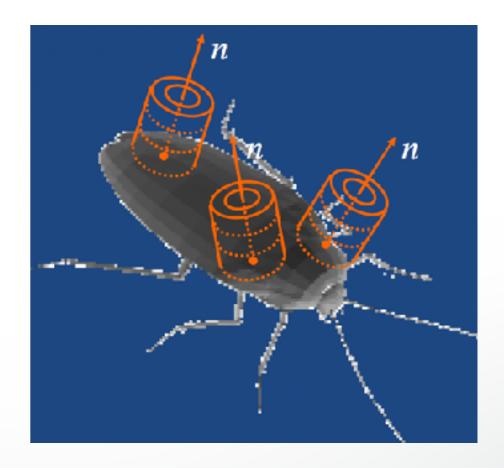
• For each feature, represent its local geometry in cylindrical coordinates about the normal



Local Descriptors: Examples

Variations of Shape Histograms

- For each feature, represent its local geometry in cylindrical coordinates about the normal
 - **Spin Images**: Store energy in each normal ring
 - Harmonic Shape Contexts: Store
 power spectrum of each normal
 ring
 - **3D Shape Contexts**: Search over all rotatinos about the normal for best match



Outline

Global Shape Correspondence

- Shape Descriptors
- Alignment

Partial Shape Correspondence

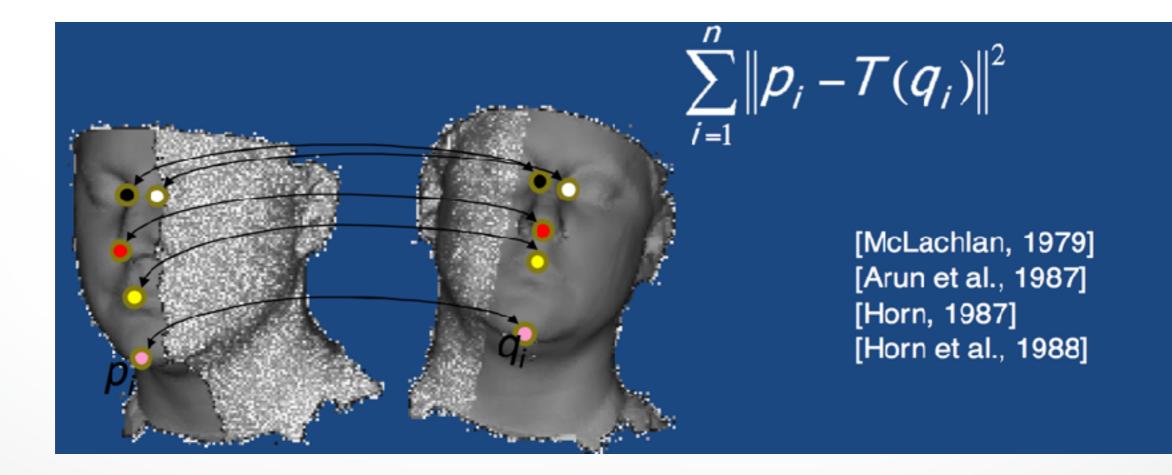
- From Global to Local
- Pose Normalization
- Partial Shape Descriptors

Registration

- Closed Form Solutions
- Branch & Bound
- Random Sample Consensus (RANSAC)

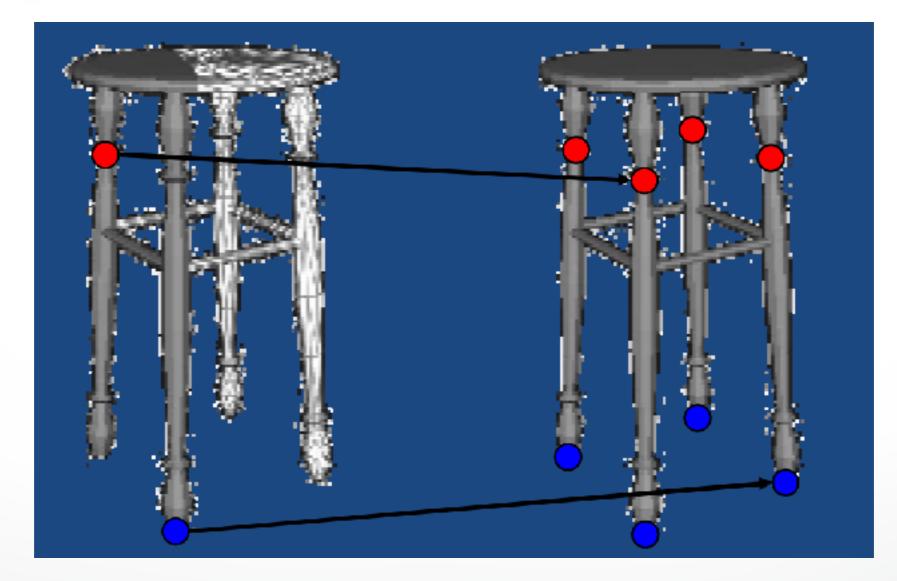
Ideal Case

- Every feature point on one scan has a **single** corresponding feature on the other.
- Solve for optimal transformation T



Challenge:

 Even with good descriptors, symmetries in the model and the locality of descriptors can result in multiple and incorrect correspondences



Exhaustive Search

• Compute alignment error at each permutation of correspondences and use the optimal one

$$\operatorname{Error} = \operatorname{argmin}_{\pi \in \Psi} \left(\operatorname{argmin}_{T \in E^3} \sum_{i=1}^n \| p_i - T(\pi(p_i)) \|^2 \right)$$

 Ψ = Set of possible correspondence E^3 = Group of rigid body transformations

Exhaustive Search

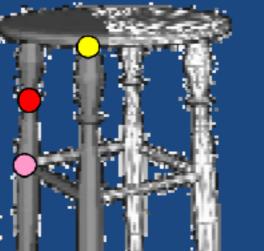
• Compute alignment error at each permutation of correspondences and use the optimal one

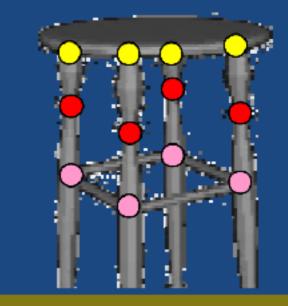
Error = argmin
$$\left(\operatorname{argmin}_{T \in E^3} \sum_{i=1}^n \| p_i - T(\pi(p_i)) \|^2 \right)$$

 Ψ = Set of possible correspondence E^3 = Group of rigid body transformations

Given points $\{p_1, ..., p_n\}$ on the query, if p_i matches m_i different target points:

$$|\Psi| = \prod_{i=1}^{''} m_i$$

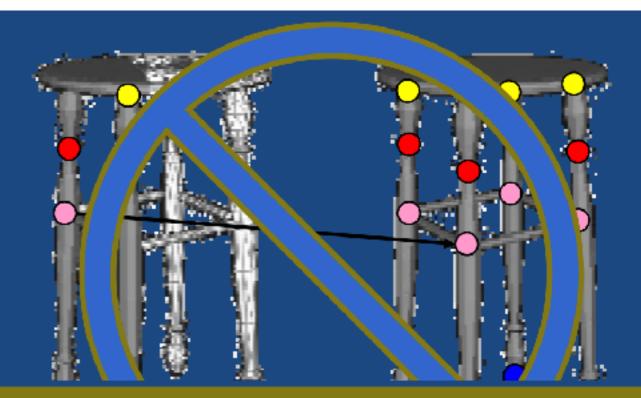




 $|\Psi|=4^4=256$ possible permutations

Branch & Bound (Decision tree)

 Try all permuations but terminate early if the alignment can be predicted to be bad



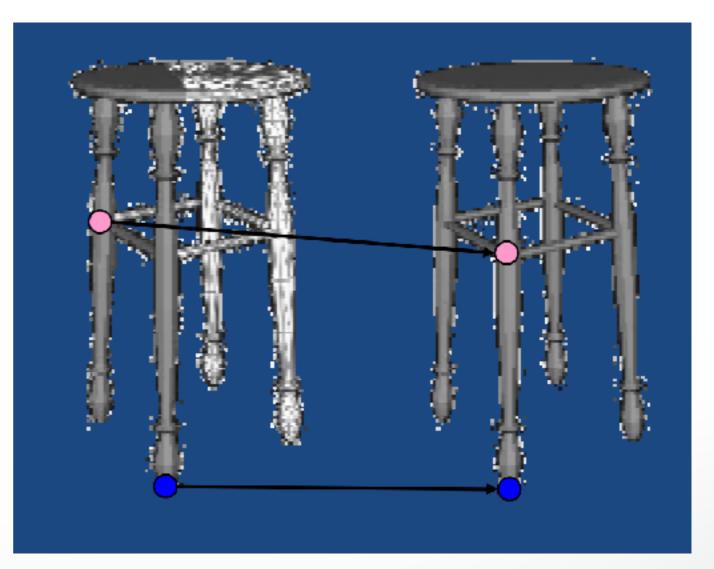
By performing two comparisons, it was possible to eliminate 16 different possibilities

Goal

 Need to be able to determine if the alignment will be good without knowing all of the correspondences

Observation

 Alignment needs to preserve the lengths between points in a single scan

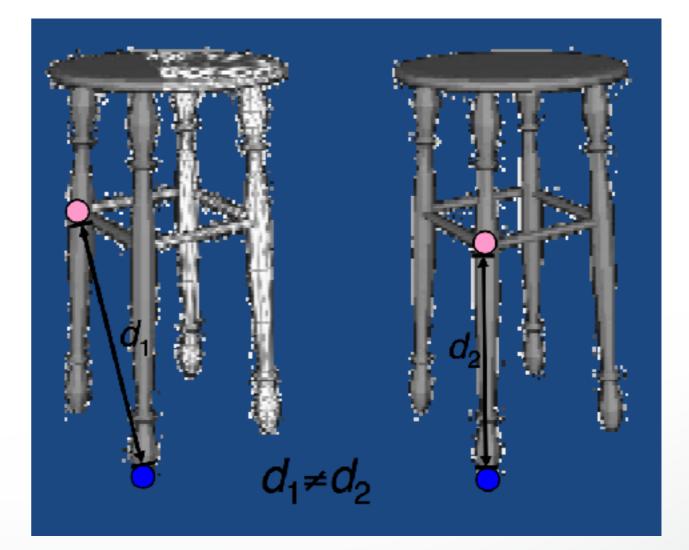


Goal

 Need to be able to determine if the alignment will be good without knowing all of the correspondences

Observation

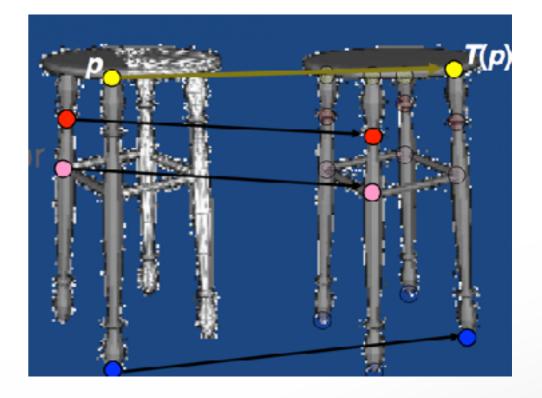
 Alignment needs to preserve the lengths between points in a single scan



RANdom SAmple Consensus

Algorithm (iterate 100 times)

- Randomly choose 3 points on source
- For all possible correspondences on target:
 - Compute T
 - For every other source p:
 - find closest correspondence T(p)
 - Compute alignment error



Summary

Global Shape Correspondences

- Shape Descriptors
 - Shells (1D)
 - Sectors (2D)
 - Sectors & Shells (3D)
- Alignment
 - Exhaustive Search
 - Normalization
 - Invariance

Summary

Partial-Shape/Point Correspondences

- From Global to Local
 - Center at feature
 - Restrict extent
- Pose Normalization
 - Normal-based alignment
- Partial Shape Descriptors
 - Normalization/invariance
 - Normalization/exhaustive-search

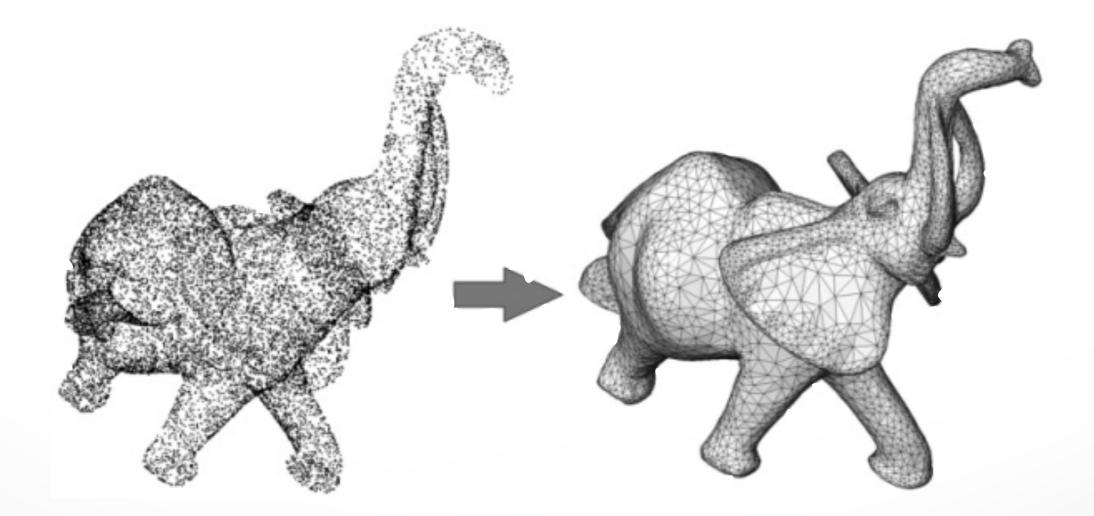
Summary

Registration

- Closed Form Solutions
 - Global symmetry
 - Local self similarity
- Branch & Bound
 - Inter-feature distances for early termination
- RANdom SAmple Consensus
 - Efficient transformation computation

Next Time

Surface Reconstruction



http://cs621.hao-li.com

Thanks!

