4.2 Discrete Differential Geometry
• **Discrete Differential Operators**

• **Discrete Curvatures**

• **Mesh Quality Measures**
Differential Operators on Polygons

Differential Properties

• Surface is sufficiently differentiable

• Curvatures \rightarrow 2nd derivatives
Differential Operators on Polygons

Differential Properties

• Surface is sufficiently differentiable
• Curvatures \rightarrow 2nd derivatives

Polygonal Meshes

• Piecewise linear approximations of smooth surface
• Focus on Discrete Laplace Beltrami Operator
• Discrete differential properties defined over $\mathcal{N}(x)$
Local Averaging

Local Neighborhood $\mathcal{N}(x)$ of a point x

- often coincides with mesh vertex v_i
- n-ring neighborhood $\mathcal{N}_n(v_i)$ or local geodesic ball
Local Averaging

Local Neighborhood \(\mathcal{N}(x) \) of a point \(x \)

- often coincides with mesh vertex \(v_i \)
- n-ring neighborhood \(\mathcal{N}_n(v_i) \) or local geodesic ball

Neighborhood size

- Large: smoothing is introduced, stable to noise
- Small: fine scale variation, sensitive to noise
Local Averaging: 1-Ring

\[\mathcal{N}(x) \]

Barycentric cell
(barycenters/edgemidpoints)

Voronoi cell
(circumcenters)
tight error bound

Mixed Voronoi cell
(circumcenters/midpoint)
better approximation
Barycentric Cells

Connect edge midpoints and triangle barycenters

- Simple to compute
- Area is 1/3 of triangle areas
- Slightly wrong for obtuse triangles
Connect edge midpoints and

- Circumcenters for non-obtuse triangles
- Midpoint of opposite edge for obtuse triangles
- Better approximation, more complex to compute…
Normal Vectors

Continuous surface

\[\mathbf{x}(u, v) = \left(\begin{array}{c} x(u, v) \\ y(u, v) \\ z(u, v) \end{array} \right) \]

Normal vector

\[\mathbf{n} = \frac{\mathbf{x}_u \times \mathbf{x}_v}{\| \mathbf{x}_u \times \mathbf{x}_v \|} \]

Assume regular parameterization

\[\mathbf{x}_u \times \mathbf{x}_v \neq 0 \quad \text{normal exists} \]
Discrete Normal Vectors

\[n(T) = \frac{(x_j - x_i) \times (x_k - x_i)}{\| (x_j - x_i) \times (x_k - x_i) \|} \]

\[T = (x_i, x_j, x_j) \]
Discrete Normal Vectors

\[n(T) = \frac{(x_j - x_i) \times (x_k - x_i)}{\left\| (x_j - x_i) \times (x_k - x_i) \right\|} \]

\[T = (x_i, x_j, x_k) \]

\[n(v) = \frac{\sum_{T \in N_1(v)} \alpha_T n(T)}{\left\| \sum_{T \in N_1(v)} \alpha_T n(T) \right\|} \]
Discrete Normal Vectors

\[\mathbf{n}(v) \]

\[\mathbf{n}(T) \]

\[\mathbf{x}_i \]

\[\mathbf{x}_j \]

\[\mathbf{x}_k \]

\[\theta_T \]

\[\mathbf{n}(T) = \frac{(\mathbf{x}_j - \mathbf{x}_i) \times (\mathbf{x}_k - \mathbf{x}_i)}{\| (\mathbf{x}_j - \mathbf{x}_i) \times (\mathbf{x}_k - \mathbf{x}_i) \|} \]

\[T = (\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_j) \]

\[\mathbf{n}(v) = \frac{\sum_{T \in \mathcal{N}_1(v)} \alpha_T \mathbf{n}(T)}{\| \sum_{T \in \mathcal{N}_1(v)} \alpha_T \mathbf{n}(T) \|} \]

\[\alpha_T = 1 \]

\[\alpha_T = |T| \]

\[\alpha_T = \theta_T \]
Discrete Normal Vectors

tessellated cylinder

\[\alpha_T = 1 \]
\[\alpha_T = |T| \]
\[\alpha_T = \theta_T \]
Simple Curvature Discretization

Laplace-Beltrami

$$\Delta_S \mathbf{x} = \text{div}_S \nabla_S \mathbf{x} = -2H \mathbf{n}$$

mean curvature
Simple Curvature Discretization

Laplace-Beltrami:
\[\Delta_S x = \text{div}_S \nabla_S x = -2H \mathbf{n} \]

How to discretize?
Extend finite differences to meshes?

- What weights per vertex/edge?
Uniform Laplace

Uniform discretization

• What weights per vertex/edge?

Properties

• depends only on connectivity
• simple and efficient
Uniform Laplace

Uniform discretization

\[
\Delta_{\text{uni}} x_i := \frac{1}{|N_1(v_i)|} \sum_{v_j \in N_1(v_i)} (x_j - x_i) \approx -2H n
\]

Properties

- depends only on connectivity
- simple and efficient
- bad approximation for irregular triangulations
 - can give non-zero \(H \) for planar meshes
 - tangential drift for mesh smoothing
Discrete Gradient of a Function

- Defined on piecewise linear triangle
- Important for parameterization and deformation

Laplace-Beltrami: $$\Delta_S x = \text{div}_S \nabla_S x = -2H n$$
Gradients

piecewise linear function

\[f(u) = f_i B_i(u) + f_j B_j(u) + f_k B_k(u) \]

\[u = (u, v) \]

\[f_i = f(x_i) \]

linear basis functions for barycentric interpolation on a triangle
piecewise linear function

\[f(u) = f_i B_i(u) + f_j B_j(u) + f_k B_k(u) \]

\[u = (u, v) \]
Gradients

piecewise linear function \[f(\mathbf{u}) = f_i B_i(\mathbf{u}) + f_j B_j(\mathbf{u}) + f_k B_k(\mathbf{u}) \]

gradient of linear function \[\nabla f(\mathbf{u}) = f_i \nabla B_i(\mathbf{u}) + f_j \nabla B_j(\mathbf{u}) + f_k \nabla B_k(\mathbf{u}) \]
Gradients

piecewise linear function

\[f(\mathbf{u}) = f_i B_i(\mathbf{u}) + f_j B_j(\mathbf{u}) + f_k B_k(\mathbf{u}) \quad \mathbf{u} = (u, v) \]

gradient of linear function

\[\nabla f(\mathbf{u}) = f_i \nabla B_i(\mathbf{u}) + f_j \nabla B_j(\mathbf{u}) + f_k \nabla B_k(\mathbf{u}) \]

partition of unity

\[B_i(\mathbf{u}) + B_j(\mathbf{u}) + B_k(\mathbf{u}) = 1 \]

gradients of basis

\[\nabla B_i(\mathbf{u}) + \nabla B_j(\mathbf{u}) + \nabla B_k(\mathbf{u}) = 0 \]
Gradients

piecewise linear function

$$f(u) = f_i B_i(u) + f_j B_j(u) + f_k B_k(u) \quad u = (u, v)$$

gradient of linear function

$$\nabla f(u) = f_i \nabla B_i(u) + f_j \nabla B_j(u) + f_k \nabla B_k(u)$$

partition of unity

$$B_i(u) + B_j(u) + B_k(u) = 1$$

gradients of basis

$$\nabla B_i(u) + \nabla B_j(u) + \nabla B_k(u) = 0$$

gradient of linear function

$$\nabla f(u) = (f_j - f_i) \nabla B_j(u) + (f_k - f_i) \nabla B_k(u)$$
Gradients

gradient of linear function

\[\nabla f(u) = (f_j - f_i)\nabla B_j(u) + (f_k - f_i)\nabla B_k(u) \]
Gradients

gradient of linear function

$$\nabla f(u) = (f_j - f_i)\nabla B_j(u) + (f_k - f_i)\nabla B_k(u)$$

with appropriate normalization:

$$\nabla B_i(u) = \frac{(x_k - x_j)^\perp}{2\, A_T}$$
Gradients

gradient of linear function

\[\nabla f(u) = (f_j - f_i) \nabla B_j(u) + (f_k - f_i) \nabla B_k(u) \]

with appropriate normalization:

\[\nabla B_i(u) = \frac{(x_k - x_j)^\perp}{2A_T} \]

\[\nabla f(u) = (f_j - f_i) \frac{(x_i - x_k)^\perp}{2A_T} + (f_k - f_i) \frac{(x_j - x_i)^\perp}{2A_T} \]

\[f_i = f(x_i) \]

discrete gradient of a piecewise linear function within \(T \)
Discrete Laplace-Beltrami

$\Delta_S x = \text{div}_S \nabla_S x = -2H n$

Laplace-Beltrami

gradient operator

mean curvature
Discrete Laplace-Beltrami

Laplace-Beltrami

\[\Delta_S \mathbf{x} = \text{div}_S \nabla_S \mathbf{x} = -2H \mathbf{n} \]

divergence theorem

\[\int_{A_i} \text{div} \mathbf{F}(\mathbf{u}) \, dA = \int_{\partial A_i} \mathbf{F}(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \, ds \]
Discrete Laplace-Beltrami

\[\Delta_S x = \text{div}_S \nabla_S x = -2H n \]

- gradient operator
- mean curvature

Laplace-Beltrami

Divergence Theorem

\[\int_{A_i} \text{div} \mathbf{F}(\mathbf{u}) \, dA = \int_{\partial A_i} \mathbf{F}(\mathbf{u}) \cdot \mathbf{n}(\mathbf{u}) \, ds \]

- vector-valued function \(\mathbf{F} \)
- local averaging domain \(A_i = A(v_i) \)
- boundary \(\partial A_i \)
Discrete Laplace-Beltrami

\[\Delta_S x = \text{div}_S \nabla_S x = -2H \mathbf{n} \]

Laplace-Beltrami

gradient operator

mean curvature

divergence theorem

\[\int_{A_i} \text{div} F(u) \, dA = \int_{\partial A_i} F(u) \cdot n(u) \, ds \]

\[\int_{A_i} \Delta f(u) \, dA = \int_{A_i} \text{div} \nabla f(u) \, dA = \int_{\partial A_i} \nabla f(u) \cdot n(u) \, ds \]
average Laplace-Beltrami

\[\int_{A_i} \Delta f(u) \, dA = \int_{A_i} \text{div} \nabla f(u) \, dA = \int_{\partial A_i} \nabla f(u) \cdot n(u) \, ds \]
average Laplace-Beltrami

\[\int_{A_i} \Delta f(u) \, dA = \int_{A_i} \text{div} \nabla f(u) \, dA = \int_{\partial A_i} \nabla f(u) \cdot n(u) \, ds \]

gradient is constant and local Voronoi passes through a,b:

\[\int_{\partial A_i \cap T} \nabla f(u) \cdot n(u) \, ds = \nabla f(u) \cdot (a - b)^\perp \]

over triangle

\[= \frac{1}{2} \nabla f(u) \cdot (x_j - x_k)^\perp \]
Discrete Laplace-Beltrami

average Laplace-Beltrami

\[\int_{A_i} \Delta f(u) \, dA = \int_{A_i} \text{div} \nabla f(u) \, dA = \int_{\partial A_i} \nabla f(u) \cdot n(u) \, ds \]

gradient is constant and local Voronoi passes through a,b:

\[\int_{\partial A_i \cap T} \nabla f(u) \cdot n(u) \, ds = \nabla f(u) \cdot (a - b) \perp \]

\[= \frac{1}{2} \nabla f(u) \cdot (x_j - x_k) \perp \]

over triangle

discrete gradient

\[\nabla f(u) = (f_j - f_i) \frac{(x_i - x_k) \perp}{2A_T} + (f_k - f_i) \frac{(x_j - x_i) \perp}{2A_T} \]
average Laplace-Beltrami within a triangle

\[
\int_{\partial A_i \cap T} \nabla f(u) \cdot n(u) ds = (f_j - f_i) \frac{(x_i - x_k) \perp \cdot (x_j - x_k) \perp}{4A_T}
+ (f_k - f_i) \frac{(x_j - x_i) \perp \cdot (x_j - x_k) \perp}{4A_T}
\]
Discrete Laplace-Beltrami

average Laplace-Beltrami within a triangle

\[
\int_{\partial A_i \cap T} \nabla f(u) \cdot n(u) \, ds = (f_j - f_i) \frac{(x_i - x_k)^\perp \cdot (x_j - x_k)^\perp}{4A_T} + (f_k - f_i) \frac{(x_j - x_i)^\perp \cdot (x_j - x_k)^\perp}{4A_T}
\]

\[
\int_{\partial A_i \cap T} \nabla f(u) \cdot n(u) \, ds = \frac{1}{2} \left(\cot \gamma_k (f_j - f_i) + \cot \gamma_j (f_k - f_i) \right)
\]
average Laplace-Beltrami over averaging region

\[\int_{A_i} \Delta f(u) dA = \frac{1}{2} \sum_{v_j \in \mathcal{N}_1(v_i)} (\cot \alpha_{i,j} + \cot \beta_{i,j})(f_j - f_i) \]
Discrete Laplace-Beltrami

average Laplace-Beltrami over averaging region

\[\int_{A_i} \Delta f(u) \, dA = \frac{1}{2} \sum_{v_j \in N_1(v_i)} \left(\cot \alpha_{i,j} + \cot \beta_{i,j} \right) (f_j - f_i) \]

discrete Laplace-Beltrami

\[\Delta f(v_i) := \frac{1}{2A_i} \sum_{v_j \in N_1(v_i)} \left(\cot \alpha_{i,j} + \cot \beta_{i,j} \right) (f_j - f_i) \]
Cotangent discretization

\[\Delta_S f(v_i) := \frac{1}{2A(v_i)} \sum_{v_j \in \mathcal{N}_1(v_i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (f(v_j) - f(v_i)) \]

for full derivation, check out: http://brickisland.net/cs177/
Cotangent discretization

\[
\Delta_S f(v) := \frac{1}{2A(v)} \sum_{v_i \in \mathcal{N}_1(v)} (\cot \alpha_i + \cot \beta_i) (f(v_i) - f(v))
\]

Problems

- weights can become negative
- depends on triangulation

Still the most widely used discretization
Outline

• Discrete Differential Operators
• Discrete Curvatures
• Mesh Quality Measures
Discrete Curvatures

How to discretize curvature on a mesh?

- Zero curvature within triangles
- Infinite curvature at edges / vertices
- Point-wise definition doesn’t make sense

Approximate differential properties at point x as average over local neighborhood $A(x)$

- x is a mesh vertex
- $A(x)$ within one-ring neighborhood
Discrete Curvatures

How to discretize curvature on a mesh?

• Zero curvature within triangles
• Infinite curvature at edges / vertices
• Point-wise definition doesn’t make sense

Approximate differential properties at point \mathbf{x} as average over local neighborhood $A(\mathbf{x})$

$$K(v) \approx \frac{1}{A(v)} \int_{A(v)} K(\mathbf{x}) \, dA$$
Which curvatures to discretize?

- Discretize Laplace-Beltrami operator
- Laplace-Beltrami gives us mean curvature H
- Discretize Gaussian curvature K
- From H and K we can compute κ_1 and κ_2

Laplace-Beltrami:

\[\Delta_S x = \text{div}_S \nabla_S x = -2H \mathbf{n} \]
Discrete Gaussian Curvature

Gauss-Bonnet

\[
\int K = 2\pi \chi \quad \chi = 2 - 2g
\]

Discrete Gauss Curvature

\[
K = \left(2\pi - \sum_j \theta_j \right)/A
\]

Verify via Euler-Poincaré

\[
V - E + F = 2(1 - g)
\]
Mean curvature (absolute value)

\[H = \frac{1}{2} \| \Delta_S \mathbf{x} \| \]

Gaussian curvature

\[K = (2\pi - \sum_j \theta_j)/A \]

Principal curvatures

\[\kappa_1 = H + \sqrt{H^2 - K} \quad \kappa_2 = H - \sqrt{H^2 - K} \]
• Discrete Differential Operators
• Discrete Curvatures
• Mesh Quality Measures
Mesh Quality

Visual inspection of “sensitive” attributes

- Specular shading
Mesh Quality

Visual inspection of “sensitive” attributes

- Specular shading
- Reflection lines
Visual inspection of “sensitive” attributes

- Specular shading
- Reflection lines
 - differentiability one order lower than surface
 - can be efficiently computed using GPU

C^0, C^1, C^2
Visual inspection of “sensitive” attributes

- Specular shading
- Reflection lines
- Curvature
 - Mean curvature
Visual inspection of “sensitive” attributes

- Specular shading
- Reflection lines
- Curvature
 - Gauss curvature
Mesh Quality Criteria

Smoothness

- Low geometric noise
Mesh Quality Criteria

Smoothness

• Low geometric noise

Fairness

• Simplest shape
Mesh Quality Criteria

Smoothness

- Low geometric noise

Fairness

- Simplest shape

Adaptive tessellation

- Low complexity
Mesh Quality Criteria

Smoothness
- Low geometric noise

Fairness
- Simplest shape

Adaptive tessellation
- Low complexity

Triangle shape
- Numerical Robustness
Mesh Optimization

Smoothness
- Smoothing

Fairness
- Fairing

Adaptive tessellation
- Decimation

Triangle shape
- Remeshing
Invariants as overarching theme

- shape does not depend on Euclidean motions (no stretch)
 - **metric & curvatures**
- smooth continuous notions to discrete notions
 - generally only as **averages**
- different ways to derive same equations
 - DEC: discrete exterior calculus, FEM, abstract measure theory.
• Book: Chapter 3

• Taubin: A signal processing approach to fair surface design, SIGGRAPH 1996

• Desbrun et al.: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, SIGGRAPH 1999

• Meyer et al.: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, VisMath 2002

• Wardetzky et al.: Discrete Laplace Operators: No free lunch, SGP 2007
Next Time

3D Scanning
http://cs621.hao-li.com

Thanks!