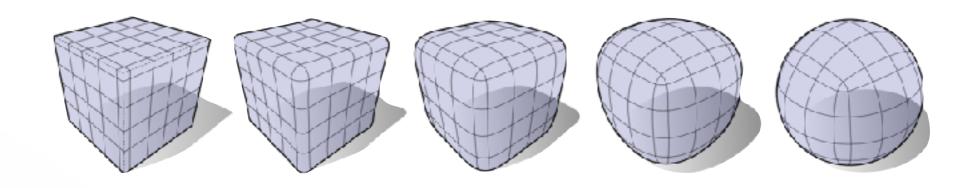
CSCI 621: Digital Geometry Processing

3.2 Classic Differential Geometry 1

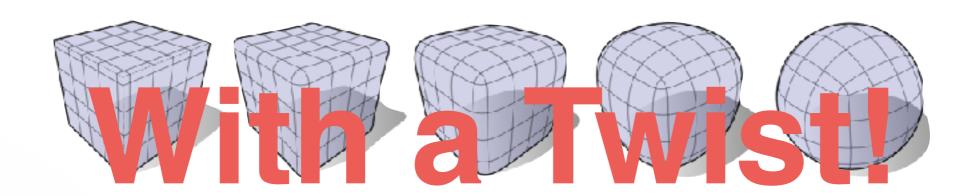


Hao Li

http://cs621.hao-li.com

CSCI 621: Digital Geometry Processing

3.2 Classic Differential Geometry 1

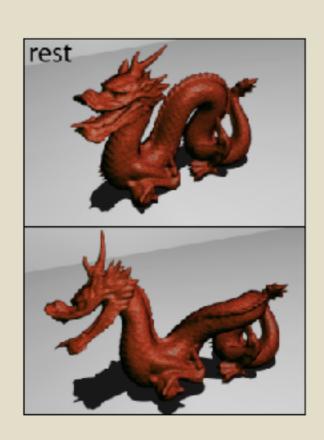


Some Updates: run.usc.edu/vega

Another awesome free library with half-edge data-structure

By Prof. Jernej Barbic

MAIN DOWNLOAD/FAQ SCREENSHOTS ABOUT



JURIJ VEGA (1754-1802)

VEGA FEM LIBRARY

NEW: Vega FEM 2.0 released on Oct 8, 2013. New features described below.

Vega is a computationally efficient and stable C/C++ physics library for three-dimensional deformable object simulation. It is designed to model large deformations, including geometric and material nonlinearities, and can also efficiently simulate linear systems. Vega is open-source and free. It is released under the 3-clause BSD license, which means that it can be used freely both in academic research and in commercial applications.

Vega implements several widely used methods for simulation of large deformations of 3D solid deformable objects:

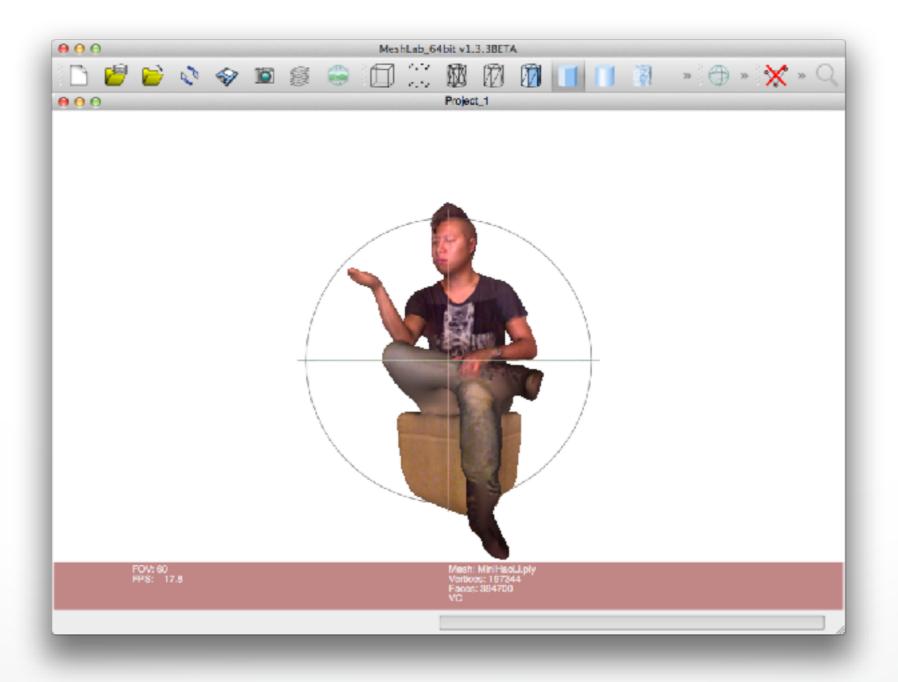
- co-rotational linear FEM elasticity [MG04]; it can also compute the exact tangent stiffness matrix [Bar12] (similar to [CPSS10]),
- linear FEM elasticity [Sha90],
- invertible isotropic nonlinear FEM models [ITF04, TSIF05],

3

FYI

MeshLab

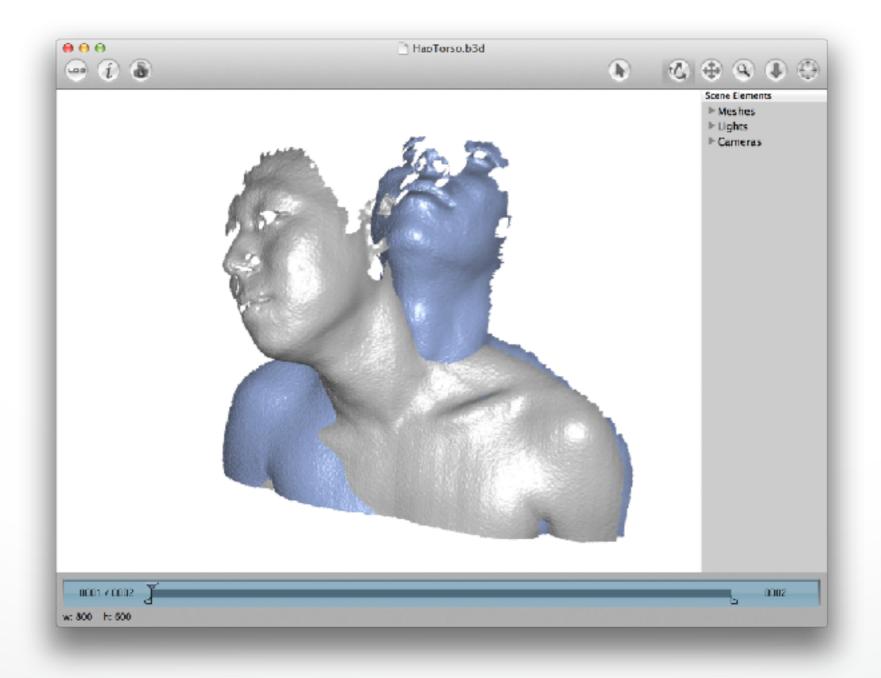
Popular Mesh Processing Software (meshlab.sourceforge.net)



FYI

BeNTO3D

Mesh Processing Framework for Mac (www.bento3d.com)



Last Time

Discrete Representations

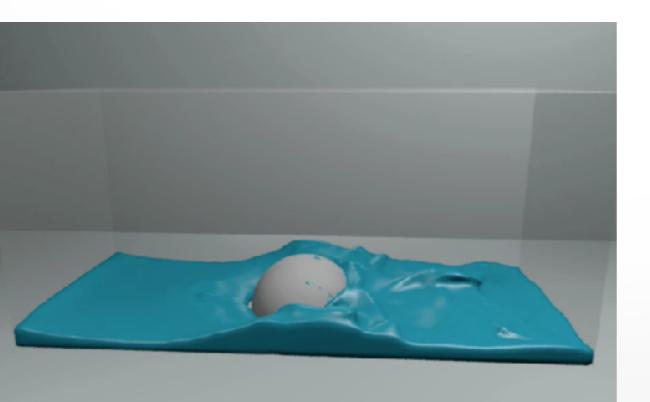
Explicit (parametric, polygonal meshes)

Geometry

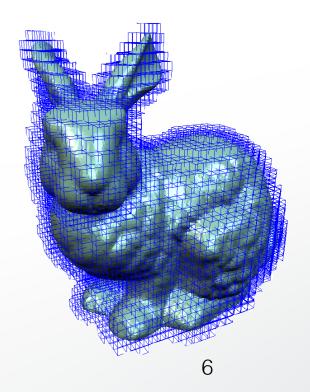
Implicit Surfaces (SDF, grid representation)

Topology

- Conversions
 - E→I: Closest Point, SDF, Fast Marching
 - I→E: Marching Cubes Algorithm



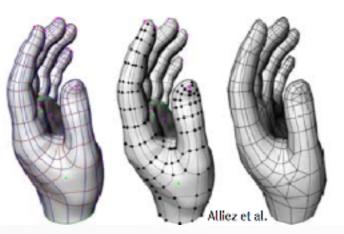


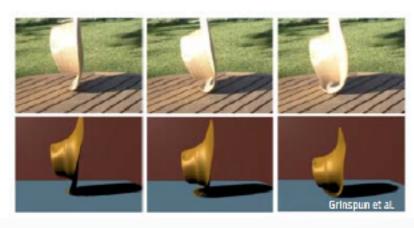


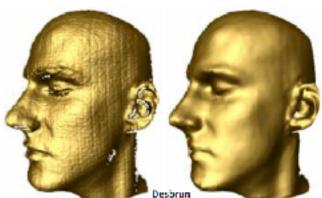
Differential Geometry

Why do we care?

- Geometry of surfaces
- Mothertongue of physical theories
- Computation: processing / simulation



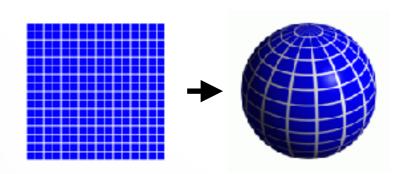


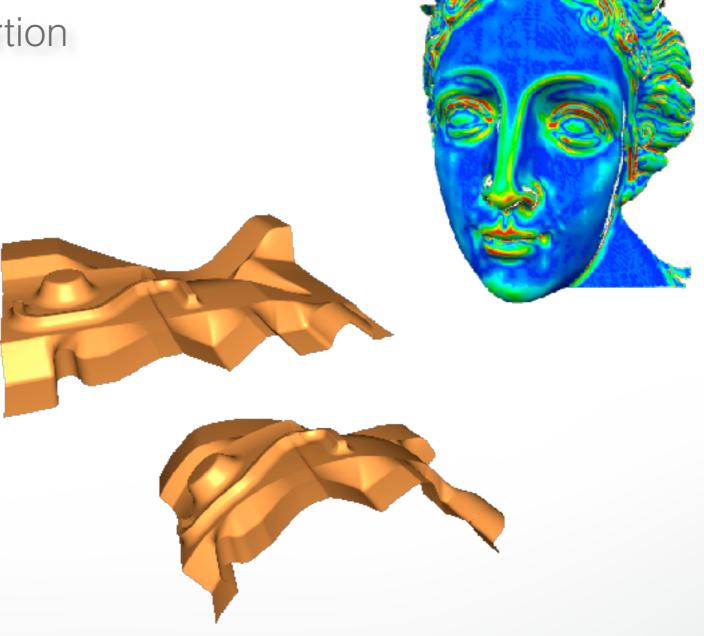


Motivation

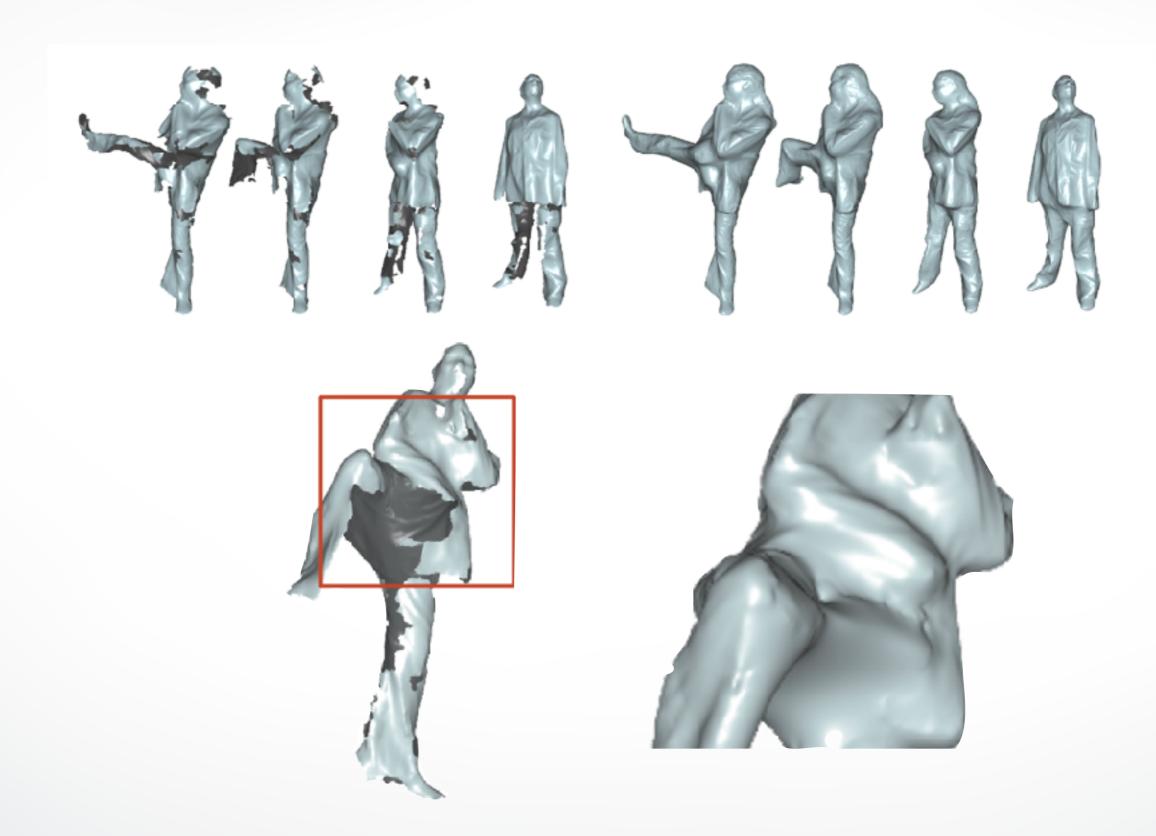
We need differential geometry to compute

- surface curvature
- paramaterization distortion
- deformation energies

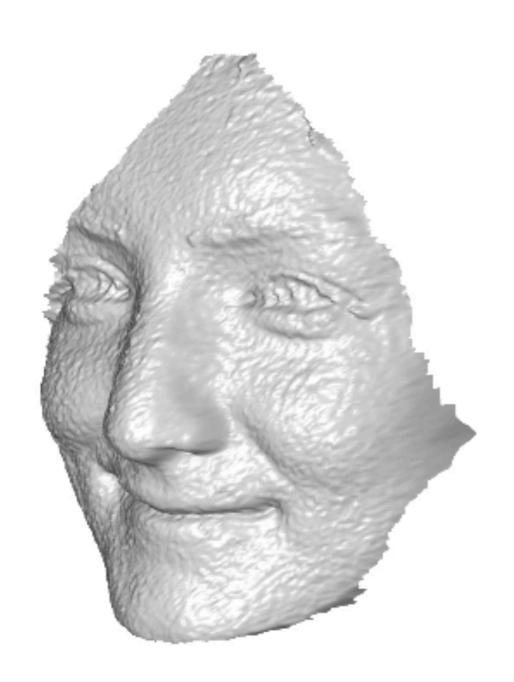




Applications: 3D Reconstruction



Applications: Head Modeling

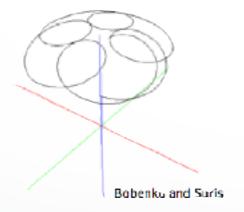


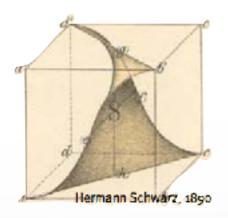
Applications: Facial Animation

Motivation

Geometry is the key

- studied for centuries (Cartan, Poincaré, Lie, Hodge, de Rham, Gauss, Noether...)
- mostly differential geometry
 - differential and integral calculus
- invariants and symmetries





Getting Started

How to apply DiffGeo ideas?

- surfaces as a collection of samples
 - and topology (connectivity)
- apply continuous ideas
 - BUT: setting is discrete
- what is the right way?
 - discrete vs. discretized

Let's look at that first

Getting Started

What characterizes structure(s)?

- What is shape?
 - Euclidean Invariance
- What is physics?
 - Conservation/Balance Laws

- What can we measure?
 - area, curvature, mass, flux, circulation

Getting Started

Invariant descriptors

quantities invariant under a set of transformations

Intrinsic descriptor

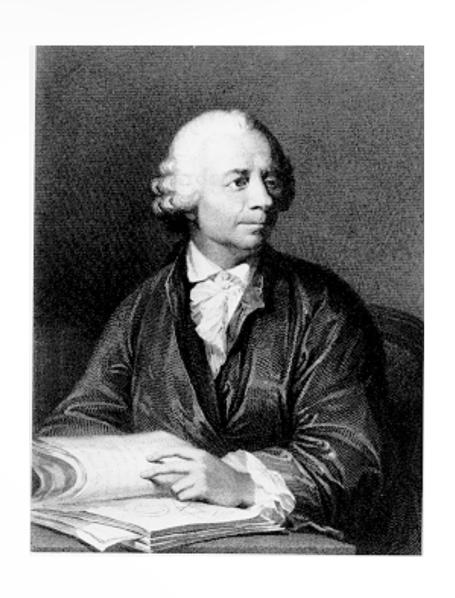
quantities which do not depend on a coordinate frame

Outline

- Parametric Curves
- Parametric Surfaces

Formalism & Intuition

Differential Geometry



Leonard Euler (1707-1783) Carl Friedrich Gauss (1777-1855)

Parametric Curves

$$\mathbf{x}:[a,b] \subset \mathbb{R} \to \mathbb{R}^3$$

$$\mathbf{x}(b)$$

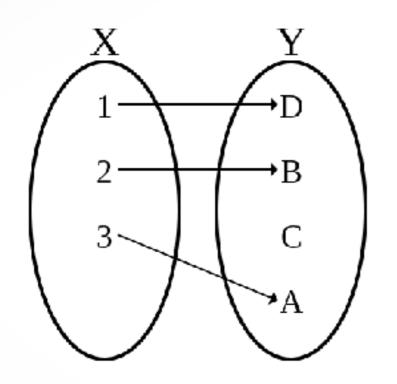
$$\mathbf{x}(t)$$

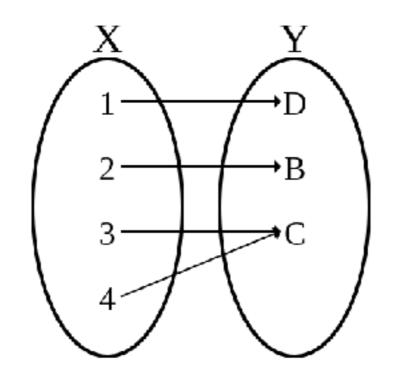
$$\mathbf{x}(t)$$

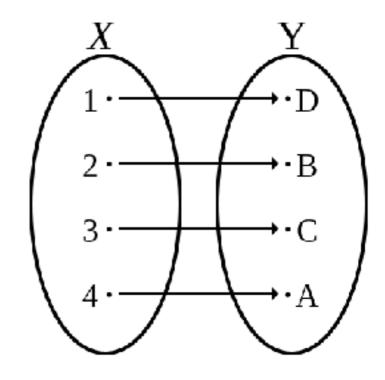
$$\mathbf{x}(a)$$

$$\mathbf{x}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} \qquad \mathbf{x}_t(t) := \frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \begin{pmatrix} \frac{\mathrm{d}x(t)}{\mathrm{d}t} \\ \frac{\mathrm{d}y(t)}{\mathrm{d}t} \end{pmatrix}$$

Recall: Mappings







Injective

Surjective

Bijective

NO SELF-INTERSECTIONS

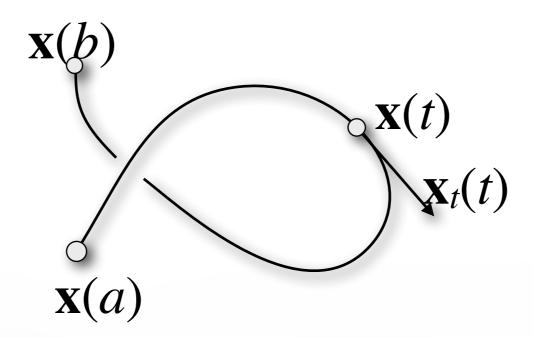
SELF-INTERSECTIONS

AMBIGUOUS PARAMETERIZATION

Parametric Curves

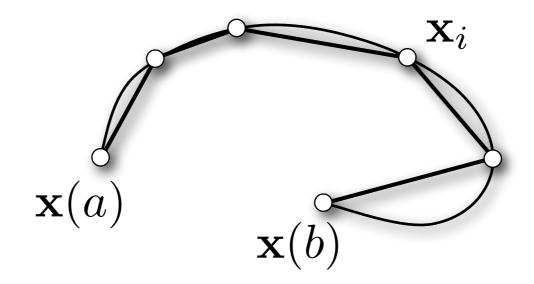
A parametric curve $\mathbf{x}(t)$ is

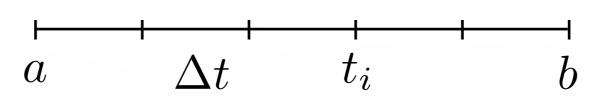
- simple: $\mathbf{x}(t)$ is injective (no self-intersections)
- differentiable: $\mathbf{x}_t(t)$ is defined for all $t \in [a,b]$
- regular: $\mathbf{x}_t(t) \neq 0$ for all $t \in [a,b]$



Length of a Curve

Let
$$t_i = a + i\Delta t$$
 and $\mathbf{x}_i = \mathbf{x}(t_i)$





Length of a Curve

Polyline chord length

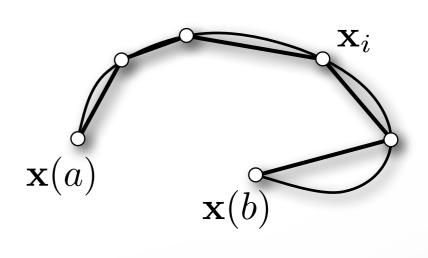
$$S \ = \ \sum_{i} \|\Delta \mathbf{x}_i\| \ = \ \sum_{i} \left\|\frac{\Delta \mathbf{x}_i}{\Delta t}\right\| \Delta t \,, \quad \Delta \mathbf{x}_i := \|\mathbf{x}_{i+1} - \mathbf{x}_i\|$$

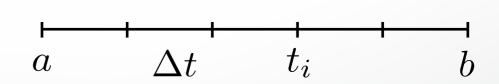
Curve arc length ($\Delta t \rightarrow 0$)

$$s = s(t) = \int_a^t \|\mathbf{x}_t\| \, \mathrm{d}t$$

length =

integration of infinitesimal change × norm of speed





Re-Parameterization

Mapping of parameter domain

$$u:[a,b] \rightarrow [c,d]$$

Re-parameterization w.r.t. u(t)

$$[c,d] \to \mathbb{R}^3, \quad t \mapsto \mathbf{x}(u(t))$$

Derivative (chain rule)

$$\frac{\mathrm{d}\mathbf{x}(u(t))}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}t} = \mathbf{x}_u(u(t)) \ u_t(t)$$

Re-Parameterization

Example

$$\mathbf{f}: \left[0, \frac{1}{2}\right] \to \mathbb{R}^2 \quad , \quad t \mapsto (4t, 2t)$$

$$\phi: \left[0, \frac{1}{2}\right] \to [0, 1] \quad , \quad t \mapsto 2t$$

$$\mathbf{g}: [0, 1] \to \mathbb{R}^2 \quad , \quad t \mapsto (2t, t)$$

$$\Rightarrow \quad \mathbf{g}(\phi(t)) = \mathbf{f}(t)$$

Arc Length Parameterization

Mapping of parameter domain:

$$t \mapsto s(t) = \int_a^t \|\mathbf{x}_t\| \, \mathrm{d}t$$

Parameter s for $\mathbf{x}(s)$ equals length from $\mathbf{x}(a)$ to $\mathbf{x}(s)$

$$\mathbf{x}(s) = \mathbf{x}(s(t)) \qquad ds = \|\mathbf{x}_t\| dt$$

same infinitesimal change

Special properties of resulting curve

$$\|\mathbf{x}_s(s)\| = 1$$
, $\mathbf{x}_s(s) \cdot \mathbf{x}_{ss}(s) = 0$

The Frenet Frame

Taylor expansion

$$\mathbf{x}(t+h) = \mathbf{x}(t) + \mathbf{x}_t(t)h + \frac{1}{2}\mathbf{x}_{tt}(t)h^2 + \frac{1}{6}\mathbf{x}_{tt}(t)h^3 + \dots$$

for convergence analysis and approximations

Define local frame (t, n, b) (Frenet frame)

$$\mathbf{t} = \frac{\mathbf{x}_t}{\|\mathbf{x}_t\|}$$
 $\mathbf{n} = \mathbf{b} \times \mathbf{t}$ $\mathbf{b} = \frac{\mathbf{x}_t \times \mathbf{x}_{tt}}{\|\mathbf{x}_t \times \mathbf{x}_{tt}\|}$

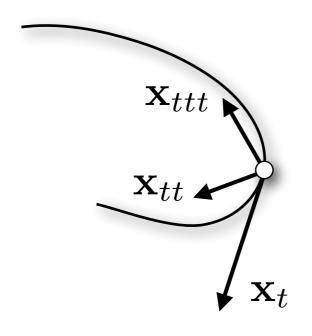
tangent

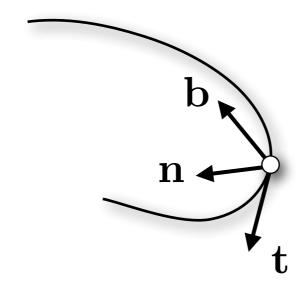
main normal

binormal

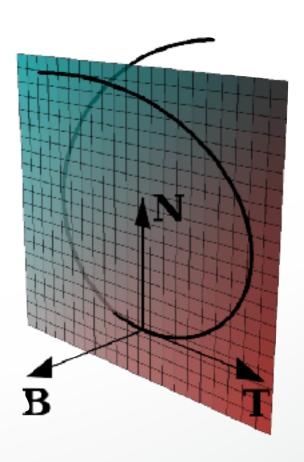
The Frenet Frame

Orthonormalization of local frame





local affine frame Frenet frame



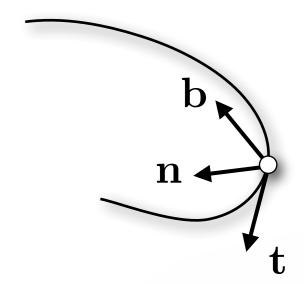
The Frenet Frame

Frenet-Serret: Derivatives w.r.t. arc length s

$$egin{array}{lll} \mathbf{t}_s = & +\kappa \mathbf{n} \ \mathbf{n}_s = & -\kappa \mathbf{t} & + au \mathbf{b} \ \mathbf{b}_s = & - au \mathbf{n} \end{array}$$

Curvature (deviation from straight line)

$$\kappa = \|\mathbf{x}_{ss}\|$$



Torsion (deviation from planarity)

$$\tau = \frac{1}{\kappa^2} \det([\mathbf{x}_s, \mathbf{x}_{ss}, \mathbf{x}_{sss}])$$

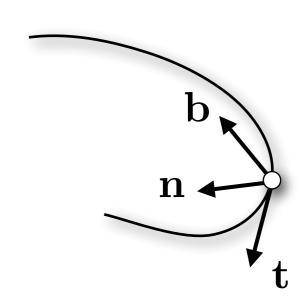
Curvature and Torsion

Planes defined by x and two vectors:

- osculating plane: vectors t and n
- normal plane: vectors n and b
- rectifying plane: vectors t and b

Osculating circle

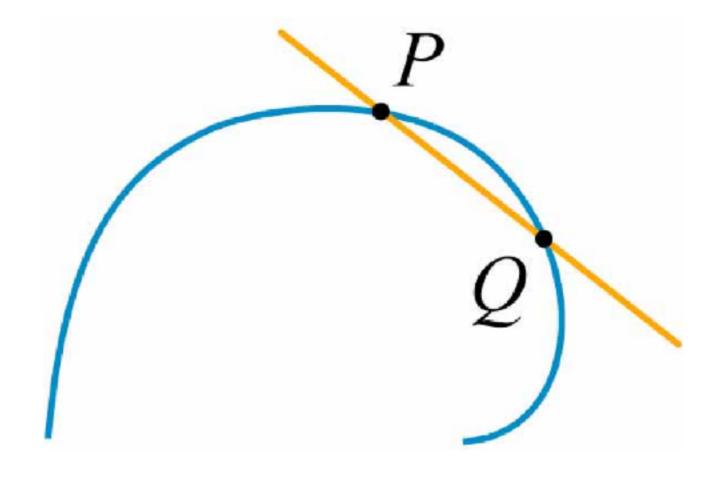
- second order contact with curve
- center $\mathbf{c} = \mathbf{x} + (1/\kappa)\mathbf{n}$
- radius $1/\kappa$



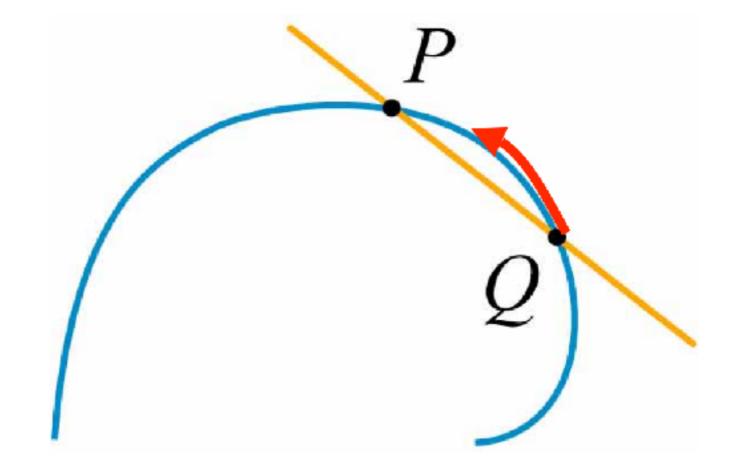
Curvature and Torsion

- Curvature: Deviation from straight line
- Torsion: Deviation from planarity
- Independent of parameterization
 - intrinsic properties of the curve
- Euclidean invariants
 - invariant under rigid motion
- Define curve **uniquely** up to a rigid motion

A line through two points on the curve (Secant)

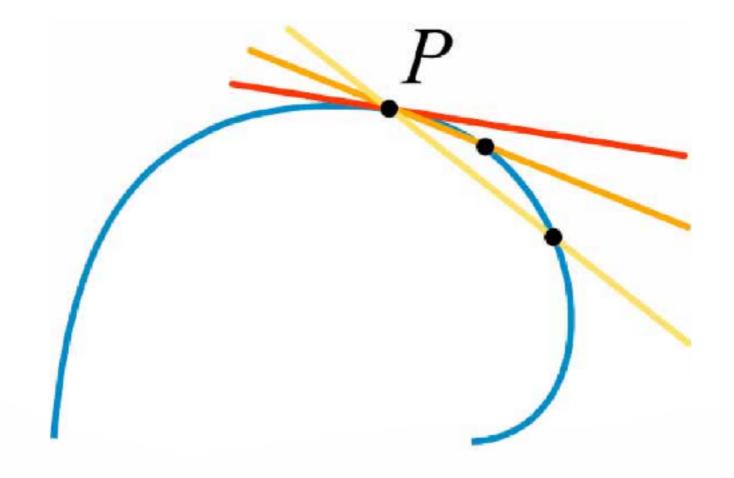


A line through two points on the curve (Secant)



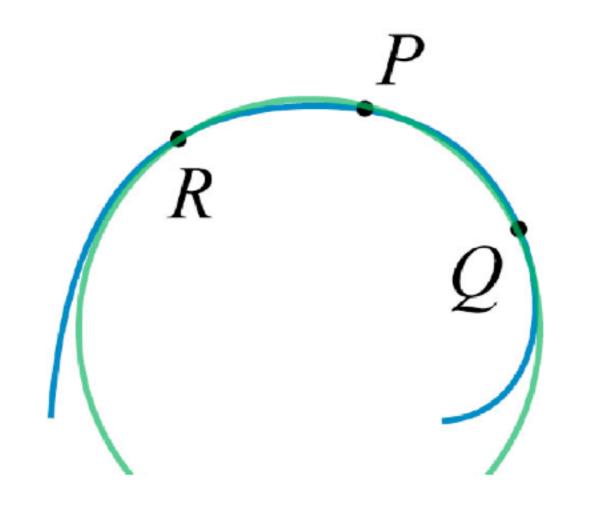
Tangent, the first approximation

limiting secant as the two points come together



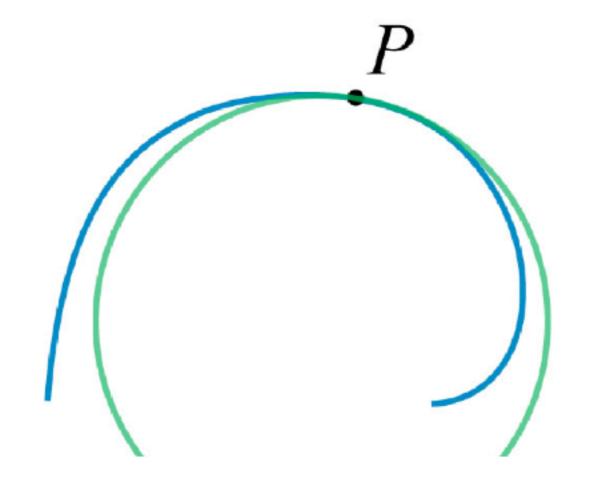
Circle of curvature

Consider the circle passing through 3 pints of the curve

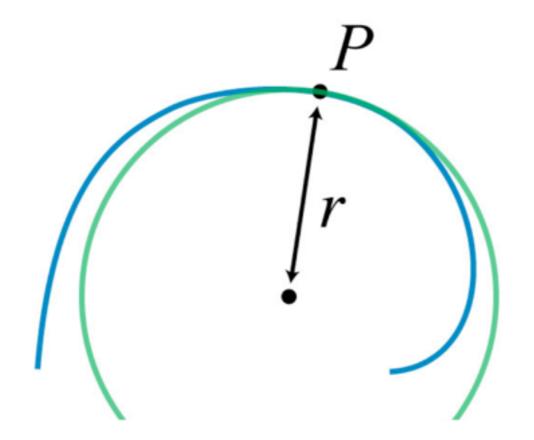


Circle of curvature

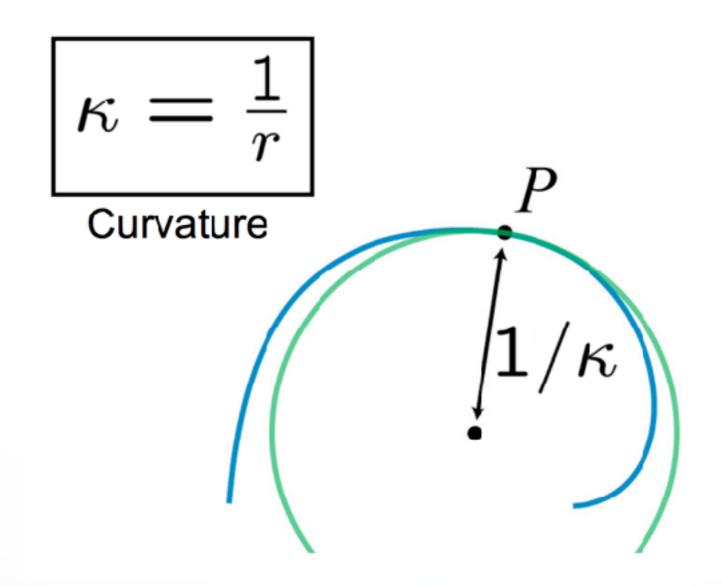
The limiting circle as three points come together



Radius of curvature r

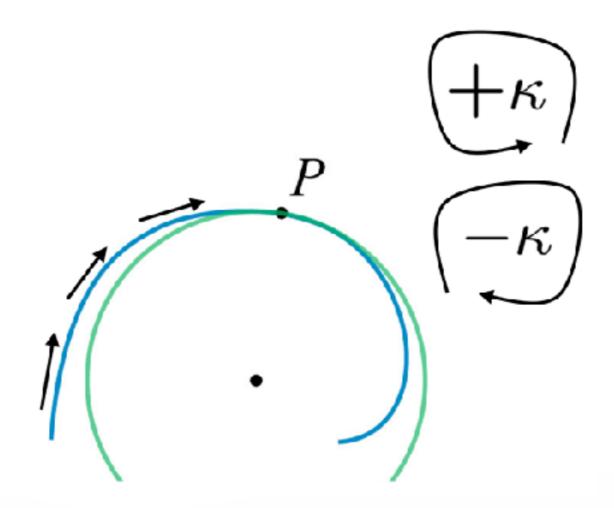


Radius of curvature r



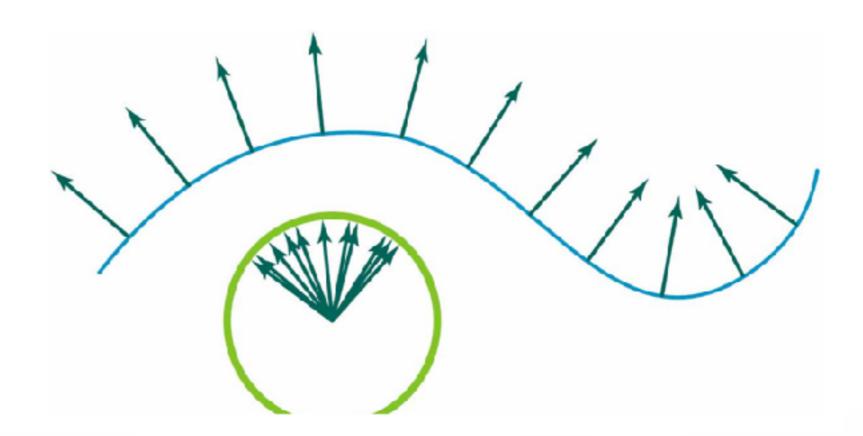
Signed curvature

Sense of traversal along curve



Gauß map $\hat{n}(x)$

Point on curve maps to point on unit circle

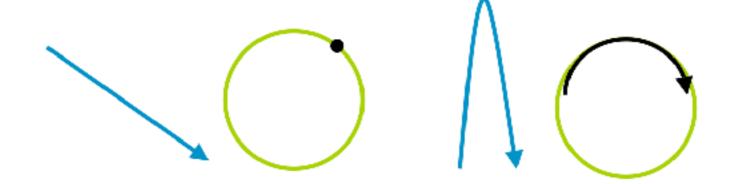


Shape operator (Weingarten map)

Change in normal as we slide along curve

negative directional derivative D of Gauß map

$$\mathbf{S}(\mathbf{v}) = -D_{\mathbf{v}}\hat{\mathbf{n}}$$



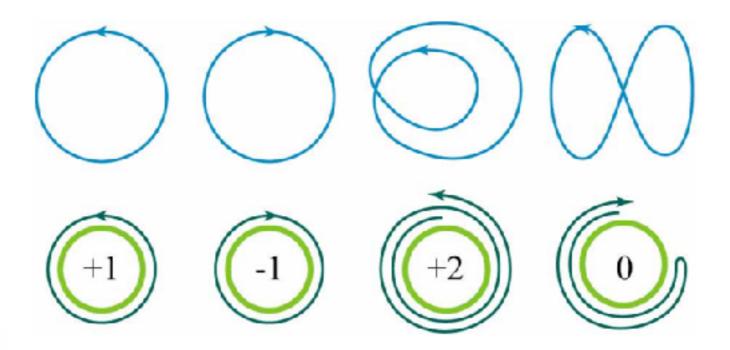
describes directional curvature

using normals as degrees of freedom

→ accuracy/convergence/implementation (discretization)

Turning number, k

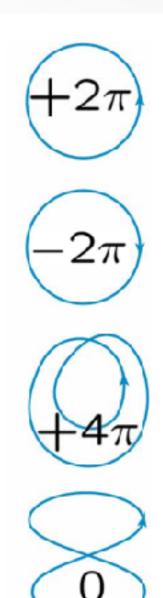
Number of orbits in Gaussian image



Turning number theorem

For a closed curve, the integral of curvature is an integer multiple of 2π

$$\int_{\Omega} \kappa ds = 2\pi k$$



Take Home Message

In the limit of a refinement sequence, discrete measure of length and curvature agree with continuous measures

http://cs621.hao-li.com

Thanks!

