
Digital Geometry Processing

Exercise 6 - Remeshing

Handout date: 04.11.2017

Submission deadline: 04.25.2017, 11:59 pm

Note

Copying of code (either from other students or from external sources) is strictly prohib-
ited! Any violation of this rule will be reported to USC Office of Student Judicial Affairs
and Community Standards.

What to hand in

A .zip compressed file renamed to ”Exercisen-YourName.zip” where n is the number of
the current exercise sheet. It should contain:

• All the source code necessary to compile your application. All the source code nec-
essary to compile your application. Please, do not hand in libraries, build folders,
binaries. You only need to submit cc and hh files.

• A ”readme.txt” file containing a description on how you solved each exercise (use
the same numbers and titles) and the encountered problems.

• Upload the archive at Blackboard before the deadline.

Remeshing

In this exercise you will implement a surface-based remeshing algorithm. The algorithm
is described in detail in the textbook, pages 100–104. Please read the description.

1



This exercise is a simplified version of the above algorithm and is composed of four main
steps:

• Split long edges

• Collapse short edges

• Flip edges to improve vertex valences

• Tangential smoothing to improve triangle quality

Framework

A new project, Remeshing has been added to the framework from the previous exercise.
It contains one singe file and it compiles to a command line tool that reads a mesh and
outputs a remeshed version of it based on the command line parameters. To load one the
mesh

Set Command Arguments to: 2.00 data\max.off data\output-mesh.off

output-mesh.off is the final remeshed mesh file name and the first number is the edge
length (in this case 2.00).

6.1 Splitting long edges

Implement the split long edges() function so that it splits edges longer than the 4/3
of the edges target length in two halves. In order to compute the target length of an edge
compute the mean of the property vtargetlength of the edge’s two vertices. The loop
tries to split edges until no longer edge is in the mesh, or a maximum threshold of 100
iterations have been executed. Similarly all subsequent tasks will use this limit to make
sure the algorithm finishes and does not run for unreasonable long time.

6.2 Collapsing short edges

Complete the collapse short edges() function. First, you shouldn’t consider edges
connecting a boundary and a non-bounrary vertex for collapse to avoid shrinking around
the boundaries. Then, you should check if the edge is shorter than the 4/5 of the edges
target length, computed as described in 6.1. If so, check if both of the halfedges corre-
sponding to the edge are collapsible. If they are, you should to collapse the lower valence
vertex into the higher one. Otherwise collapse the halfedge which is collapsible, or don’t
collapse at all if both of the tests returned false. Notice that this step is not the same step
which is described in the Siggraph course.

Hint: The is collapse ok() function checks if a halfedge can be collapsed.

2



6.3 Flipping edges to improve valences

Complete the equalize valences() function, so that it flips vertices if it improves
vertex valences in the local neighborhood.

We know that an “ideal” mesh vertex has valence 4 if it lies on the boundary and 6 other-
wise. For an edge e now consider the two endvertices and the two other vertices on the
neighbor triangles to e. For every vertex compute its valence deviation, i.e. the difference
between the current valence and the optimal valence for this vertex. By comparing the
sum of squared valence deviation before and after an eventual edge flip you can decide
if the edge flip will improve the valences locally (smaller valence deviations are better).
If the edge improves on the local valences, flip it.

Don’t forget to use the is flip ok() function in order to make sure an edge can be
flipped before you try to flip it.

6.4 Tangential smoothing

Implement the tangential relaxation() function to improve the triangle shapes by
smoothing vertices in the tangent plane of the mesh.

Similarly to a previous exercise (Smoothing), approximate the mean curvature with the
uniform Laplacian. Now, decompose this vector into two components: one parallel to the
vertex normal and one parallel to the tangent plane in the vertex (perpendicular to the
normal). Use the tangential component to move the vertex and thus improve the triangle
quality. For more details about tangential smoothing consult the lecture notes and the
notes for the previous exercise.

These four remeshing steps should lead to results shown on the Figure 1.

6.5 Adaptive remeshing

Reimplement the calc target length(), which calculates the vertex property
vtargetlength for adaptive remeshing. The general idea is that we encourage splits
on edges where there are high maximal curvatures, but do not split edges with lower
curvature. Given the mean curvature H and the Gaussian curvature K the following
equality states the principal curvatures:

kmax = H +
√

H2 − K
kmin = H −

√
H2 − K

In order to adapt the target length at each vertex, scale it by the inverse of kmax. Since
the curvature estimates are usually noisy, but we aim for a regular meshing, apply a few
iteration of uniform smoothing to the resulting target length property. Finally, scale the
target length property such that it’s mean equals the user specified target length.

This adaptive remeshing should lead to results shown on the Figure 2.

3



(a) Original with smooth shading (b) Remeshed with smooth shading

(c) Triangle qualities of original (d) Triangle qualities of remeshed

Figure 1: Meshes before and after remeshing (using the 06-Remeshing.exe 2.00
max.off max regular.off command)

(a) Original mesh and its valences (b) After adaptive remeshing

Figure 2: The adaptively remeshed max.off and a zoom-in on it’s nose (using the
06-Remeshing.exe 2.00 max.off max regular.off command).

4


