CSCI 621: Digital Geometry Processing

Exercise 2. Registration

Shunsuke Saito

Rigid Registration

- Selecting source points
- Matching points to the target mesh
- Weighting the correspondences
- Rejecting bad pairs
- Compute error metric
- Minimize error metric

Exercise 2

 Perform rigid registration between 10 scans of the Stanford bunny

Exercise 2

- Demo
 - 'SHIFT' + mouse controls: manual alignment for an initial transformation
 - 'r': perform single registration step with point to point distance minimization
 - 'SPACE': perform single registration step with point to plane distance minimization
 - 'n': load next scan

Exercise 2

- Getting it compiled
- Subsampling
- Bad pairs rejection
- Point to point optimization
- Point to plane optimization

Getting It Compiled

- CMake, OpenGL, OpenMesh
- ANN (Approximate Nearest Neighbor)
 - efficient closest point lookup using kd-tree

Subsampling

• Uniform subsampling within a given radius subsampleRadius

• RegistrationViewer::subsample() in

RegistrationViewer.cc

Bad Pairs Rejection

- Closest points are computed using ANN
- Prune correspondences based on
 - distance threshold
 - normal compatibility
- RegistrationViewer::calculate_correspon dences() in RegistrationViewer.cc

Point to Point Optimization

- Minimize $E = \sum_{i=1}^{N} \|\mathbf{R}\mathbf{p}_i + \mathbf{t} \mathbf{q}_i\|_2^2$ by solving a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Registration::register_point2point() in Registration.cc

Euler Angles

Three elemental rotations:

$$\mathbf{R}_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \mathbf{R}_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \mathbf{R}_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 Any rotation matrix can be decomposed as a product of elemental three rotation matrix

$$\mathbf{R} = \mathbf{R}_{z}(\gamma)\mathbf{R}_{y}(\beta)\mathbf{R}_{x}(\alpha) = \begin{bmatrix} c_{\gamma}c_{\beta} & -c_{\alpha}s_{\gamma} + c_{\gamma}s_{\beta}s_{\alpha} & s_{\gamma}s_{\alpha} + c_{\gamma}c_{\alpha}s_{\beta} \\ c_{\beta}s_{\gamma} & c_{\gamma}c_{\alpha} + s_{\gamma}s_{\beta}s_{\alpha} & c_{\alpha}s_{\gamma}s_{\beta} - c_{\gamma}s_{\alpha} \\ -s_{\beta} & c_{\beta}s_{\alpha} & c_{\beta}c_{\alpha} \end{bmatrix}$$
$$c_{\alpha} = \cos \alpha \quad s_{\alpha} = \sin \alpha$$

Linearized Transformation

Linearized Euler angle

(assuming small rotation: $\cos \alpha = 1 \sin \alpha = \alpha$)

$$\mathbf{R} = \begin{bmatrix} c_{\gamma}c_{\beta} & -c_{\alpha}s_{\gamma} + c_{\gamma}s_{\beta}s_{\alpha} & s_{\gamma}s_{\alpha} + c_{\gamma}c_{\alpha}s_{\beta} \\ c_{\beta}s_{\gamma} & c_{\gamma}c_{\alpha} + s_{\gamma}s_{\beta}s_{\alpha} & c_{\alpha}s_{\gamma}s_{\beta} - c_{\gamma}s_{\alpha} \\ -s_{\beta} & c_{\beta}s_{\alpha} & c_{\beta}c_{\alpha} \end{bmatrix} = \begin{bmatrix} 1 & -\gamma & \beta \\ \gamma & 1 & -\alpha \\ -\beta & \alpha & 1 \end{bmatrix}$$

Linearized transformation

$$\mathbf{x} = \begin{bmatrix} \alpha & \beta & \gamma & \mathbf{t}_x & \mathbf{t}_y & \mathbf{t}_z \end{bmatrix}^{\top}$$

Point to Plane Optimization

- Minimize $E = \sum_{i=1}^{N} \|\mathbf{n}_i^\top (\mathbf{R}\mathbf{p}_i + \mathbf{t} \mathbf{q}_i)\|_2^2$ by solving a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$
- Registration::register_point2surface() in Registration.cc

Results

Submission

- Deadline: Feb 21, 2017 11:59pm
- Upload a .zip compressed file named "Exercise2-YourName.zip" to
 - Blackboard
- Include a "read.txt" file describing how you solve each exercise and the encountered problems

Contact

- Office Hours: Tuesday 15:00 16:00 PHE 108
- email: saitos@usc.edu

Thanks!

