Spring 2015

**CSCI 599: Digital Geometry Processing** 

# 10.1 Surface Deformation I



## Acknowledgement

#### Images and Slides are courtesy of

- Prof. Mario Botsch, Bielefeld University
- Prof. Olga Sorkine, ETH Zurich





# **Shapes & Deformation**

#### Why deformations?

- Sculpting, customization
- Character posing, animation





#### **Criteria?**

- Intuitive behavior and interface
- semantics
- Interactivity



## **Shapes & Deformation**

- Manually modeled and scanned shape data
- Continuous and discrete shape representations











## Goals

#### State of research in shape editing

#### **Discuss practical considerations**

- Flexibility
- Numerical issues
- Admissible interfaces

#### **Comparison, tradeoffs**

| Approach                                           | Pare Translation | 129° head | 135° twist | 74° bend |
|----------------------------------------------------|------------------|-----------|------------|----------|
| Original model                                     | 14 4 A           |           |            | Y        |
| Non-linear<br>prism-based<br>modeling [12]         | 3                | 1         |            | F        |
| Thin shells [10] +<br>deformation<br>transfer [14] |                  | 1         | Ĩ          | 4        |
| Gendient-based<br>editing [68]                     | New a            | 1         |            | Þ        |
| Implicit<br>Laplaciun-tused<br>editing [54]        | - CAR            | 1         |            | Y        |
| Rotation invariant<br>coordinates [40]             | The second       | 1         |            | Þ        |

# **Continuous/Analytical Surfaces**

- Tensor product surfaces (e.g. Bézier, B-Spline, NURBS)
- Subdivision Surfaces
- Editability is inherent to the representation









## **Spline Surfaces**

#### **Tensor product surfaces ("curves of curves")**

Rectangular grid of control points

$$\mathbf{p}(u,v) = \sum_{i=0}^{k} \sum_{j=0}^{l} \mathbf{p}_{ij} N_i^n(u) N_j^n(v)$$



## **Spline Surfaces**

#### **Tensor product surfaces ("curves of curves")**

- Rectangular grid of control points
- Rectangular surface patch



# **Spline Surfaces**

#### **Tensor product surfaces ("curves of curves")**

- Rectangular grid of control points
- Rectangular surface patch



#### **Problems:**

- Many patches for complex models
- Smoothness across patch boundaries
- Trimming for non-rectangular patches

## **Subdivision Surfaces**

#### **Generalization of spline curves/surfaces**

- Arbitrary control meshes
- Successive refinement (subdivision)
- Converges to smooth limit surface
- Connection between splines and meshes



# **Spline & Subdivision Surfaces**

#### **Basis functions are smooth bumps**

- Fixed support
- Fixed control grid

#### **Bound to control points**

- Initial patch layout is crucial
- Requires experts!

#### **De-couple deformation from surface representation!**







# **Discrete Surfaces: Point Sets, Meshes**

- Flexible
- Suitable for highly detailed scanned data
- No analytic surface
- No inherent "editability"







## Demo



# Outline

- Surface-Based Deformation
  - Linear Methods
  - Non-Linear Methods
- Spatial Deformation

## **Mesh Deformation**



## **Mesh Deformation**



## **Linear Surface-Based Deformation**

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

## **Modeling Metaphor**



# **Modeling Metaphor**

- Mesh deformation by displacement function d
  - Interpolate prescribed constraints
  - Smooth, intuitive deformation
  - Physically-based principles

$$\mathbf{d}: \mathcal{S} \to \mathbb{R}^3$$
$$\mathbf{p} \mapsto \mathbf{p} + \mathbf{d}(\mathbf{p})$$

 $\mathbf{d}\left(\mathbf{p}_{i}\right)=\mathbf{d}_{i}$ 

# **Shell Deformation Energy**

### Stretching

- Change of local distances
- Captured by 1<sup>st</sup> fundamental form



 $\mathbf{I} = \begin{bmatrix} \mathbf{x}_u^T \mathbf{x}_u & \mathbf{x}_u^T \mathbf{x}_v \\ \mathbf{x}_v^T \mathbf{x}_u & \mathbf{x}_v^T \mathbf{x}_v \end{bmatrix}$ 

## Bending

- Change of local curvature
- Captured by 2<sup>nd</sup> fundamental form
- Stretching & bending is sufficient
  - Differential geometry: "1<sup>st</sup> and 2<sup>nd</sup> fundamental forms determine a surface up to rigid motion."



### **Physically-Based Deformation**

Nonlinear stretching & bending energies

$$\int_{\Omega} k_s \left\| \mathbf{I} - \mathbf{I}' \right\|^2 + k_b \left\| \mathbf{I} - \mathbf{I}' \right\|^2 \, \mathrm{d}u \mathrm{d}v$$
  
stretching bending

• Linearize terms  $\rightarrow$  Quadratic energy

$$\int_{\Omega} k_s \underbrace{\left( \|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right)}_{\text{stretching}} + k_b \underbrace{\left( \|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right)}_{\text{bending}} \mathrm{d}u \mathrm{d}v$$

## **Physically-Based Deformation**

Minimize linearized bending energy

$$E(\mathbf{d}) = \int_{\mathcal{S}} \|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \,\mathrm{d}u \,\mathrm{d}v \to \min_{f(x) \to \min} f(x)$$

• Variational calculus  $\rightarrow$  Euler-Lagrange PDE

$$\Delta^2 \mathbf{d} := \mathbf{d}_{uuuu} + 2\mathbf{d}_{uuvv} + \mathbf{d}_{vvvv} = 0$$

$$f'(x) = 0$$

"Best" deformation that satisfies constraints

# **Deformation Energies**



## **PDE Discretization**

• Euler-Lagrange PDE



Laplace discretization

$$\Delta \mathbf{d}_{i} = \frac{1}{2A_{i}} \sum_{j \in \mathcal{N}_{i}} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{d}_{j} - \mathbf{d}_{i})$$
$$\Delta^{2} \mathbf{d}_{i} = \Delta(\Delta \mathbf{d}_{i})$$
$$\mathbf{x}_{j} = \Delta(\Delta \mathbf{d}_{i})$$

## **Linear System**

Sparse linear system (19 nz/row)

$$\begin{pmatrix} \Delta^2 \\ \mathbf{0} \ \mathbf{I} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{I} \end{pmatrix} \begin{pmatrix} \vdots \\ \mathbf{d}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \delta \mathbf{h}_i \end{pmatrix}$$

- Turn into symmetric positive definite system
- Solve this system each frame
  - Use efficient linear solvers !!!
  - Sparse Cholesky factorization
  - See book for details

## **Derivation Steps**



## **CAD-Like Deformation**



#### [Botsch & Kobbelt, SIGGRAPH 04]

## **Facial Animation**



## **Linear Surface-Based Deformation**

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

# **Multiresolution Modeling**

- Even pure translations induce local rotations!
  - Inherently non-linear coupling
- Alternative approach
  - Linear deformation + multi-scale decomposition...



## **Multiresolution Editing**

# 

Frequency decomposition

Change low frequencies

Add high frequency details, stored in local frames

## **Multiresolution Editing**



# **Normal Displacements**



- Neighboring displacements are not coupled
  - Surface bending changes their angle
  - Leads to volume changes or self-intersections



- Neighboring displacements are not coupled
  - Surface bending changes their angle
  - Leads to volume changes or self-intersections



- Neighboring displacements are not coupled
  - Surface bending changes their angle
  - Leads to volume changes or self-intersections
- Multiresolution hierarchy difficult to compute
  - Complex topology
  - Complex geometry
  - Might require more hierarchy levels

## **Linear Surface-Based Deformation**

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates

- Manipulate <u>differential coordinates</u> instead of spatial coordinates
  - Gradients, Laplacians, local frames
  - Intuition: Close connection to surface normal
- 2. Find mesh with desired differential coords
  - Cannot be solved exactly
  - Formulate as energy minimization



## • Which differential coordinate $\delta_i$ ?

- Gradients
- Laplacians

- How to get local transformations  $T_i(\boldsymbol{\delta}_i)$ ?
  - Smooth propagation
  - Implicit optimization

Manipulate gradient of a function (e.g. a surface)

$$\mathbf{g} = \nabla \mathbf{f} \qquad \mathbf{g} \mapsto \mathbf{T}(\mathbf{g})$$

Find function f' whose gradient is (close to) g'=T(g)

$$\mathbf{f}' = \underset{\mathbf{f}}{\operatorname{argmin}} \int_{\Omega} \|\nabla \mathbf{f} - \mathbf{T}(\mathbf{g})\|^2 \, \mathrm{d}u \mathrm{d}v$$

• Variational calculus  $\rightarrow$  Euler-Lagrange PDE

$$\Delta \mathbf{f'} = \operatorname{div} \mathbf{T}(\mathbf{g})$$

Consider piecewise linear coordinate function

$$\mathbf{p}(u,v) = \sum_{v_i} \mathbf{p}_i \cdot \phi_i(u,v)$$

• Its gradient is

$$\nabla \mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \nabla \phi_i(u, v)$$



Consider piecewise linear coordinate function

$$\mathbf{p}(u,v) = \sum_{v_i} \mathbf{p}_i \cdot \phi_i(u,v)$$

• Its gradient is

$$\nabla \mathbf{p}(u, v) = \sum_{v_i} \mathbf{p}_i \cdot \nabla \phi_i(u, v)$$

It is constant per triangle

$$\nabla \mathbf{p}|_{f_j} =: \mathbf{g}_j \in \mathbb{R}^{3 \times 3}$$

Gradient of coordinate function p

$$\begin{pmatrix} \mathbf{g}_1 \\ \vdots \\ \mathbf{g}_F \end{pmatrix} = \underbrace{\mathbf{G}}_{(3F \times V)} \begin{pmatrix} \mathbf{p}_1^T \\ \vdots \\ \mathbf{p}_V^T \end{pmatrix}$$

Manipulate per-face gradients

$$\mathbf{g}_j \mapsto \mathbf{T}_j(\mathbf{g}_j)$$

- Reconstruct mesh from new gradients
  - Overdetermined  $(3F \times V)$  system
  - Weighted least squares system
  - Linear Poisson system  $\Delta \mathbf{p}' = \operatorname{div} \mathbf{T}(\mathbf{g})$



## **Laplacian-Based Editing**

Manipulate Laplacians field of a surface

$$\mathbf{l} = \Delta(\mathbf{p}) \ , \ \mathbf{l} \mapsto \mathbf{T}(\mathbf{l})$$

• Find surface whose Laplacian is (close to)  $\delta' = T(I)$ 

$$\mathbf{p}' = \underset{\mathbf{p}}{\operatorname{argmin}} \int_{\Omega} \|\Delta \mathbf{p} - \mathbf{T}(\mathbf{l})\|^2 \, \mathrm{d}u \mathrm{d}v$$

Variational calculus yields Euler-Lagrange PDE

$$\Delta^2 \mathbf{p}' = \Delta \mathbf{T}(\mathbf{l})$$

soft constraints

- Which differential coordinate  $\delta_i$  ?
  - Gradients
  - Laplacians

- How to get local transformations  $T_i(\delta_i)$  ?
  - Smooth propagation
  - Implicit optimization

# **Smooth Propagation**

- 1. Compute handle's deformation gradient
- 2. Extract rotation and scale/shear components
- 3. Propagate damped rotations over ROI



## **Deformation Gradient**

Handle has been transformed <u>affinely</u>

$$\mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{t}$$



• Deformation gradient is

 $\nabla \mathbf{T}(\mathbf{x}) = \mathbf{A}$ 

Extract rotation R and scale/shear S

 $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \quad \Rightarrow \quad \mathbf{R} = \mathbf{U} \mathbf{V}^T, \ \mathbf{S} = \mathbf{V} \mathbf{\Sigma} \mathbf{V}^T$ 

# **Smooth Propagation**

- Construct smooth scalar field [0,1]
  - *s*(**x**)=1: Full deformation (handle)
  - $s(\mathbf{x})=0$ : No deformation (fixed part)
  - $s(\mathbf{x}) \in (0,1)$ : Damp handle transformation (in between)



- Differential coordinates work well for rotations
  - Represented by deformation gradient
- Translations don't change deformation gradient
  - Translations don't change differential coordinates
  - "Translation insensitivity"



## **Implicit Optimization**

Optimize for positions p<sub>i</sub>' & transformations T<sub>i</sub>

$$\Delta^{2} \begin{pmatrix} \vdots \\ \mathbf{p}'_{i} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \Delta \mathbf{T}_{i}(\mathbf{l}_{i}) \\ \vdots \end{pmatrix} \longleftrightarrow \mathbf{T}_{i}(\mathbf{p}_{i} - \mathbf{p}_{j}) = \mathbf{p}'_{i} - \mathbf{p}'_{j}$$

• Linearize rotation/scale  $\rightarrow$  one linear system

$$\mathbf{R}\mathbf{x} \approx \mathbf{x} \mathbf{T}_{i} (\mathbf{r} \approx \begin{pmatrix} s & \begin{pmatrix} -\mathbf{n}_{3} & \mathbf{r}_{2}\mathbf{r}_{3} \\ \mathbf{r}_{3} & -\mathbf{n}_{1} \\ \mathbf{r}_{1}\mathbf{r}_{2} & \mathbf{s}_{1} \end{pmatrix} \begin{pmatrix} \mathbf{r}_{2} & \mathbf{r}_{1} \\ \mathbf{r}_{1}\mathbf{r}_{2} & \mathbf{s}_{1} \end{pmatrix} \mathbf{x}$$

# **Laplacian Surface Editing**

| Enter filname: feline.ply2 Reload             |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | <ul> <li>info +↓</li> <li>Export files +↓</li> <li>Editing -</li> <li>Edit params<br/>Free ring radius 0.5</li> <li>Fixed ring radius 0.06</li> <li>Handle radius 0.03</li> <li>ROI selection type</li> <li>Euclide an radius</li> <li>Geodesic radius</li> <li>Geodesic radius</li> <li>Store result</li> <li>Save to hov</li> <li>Matrix size: 0</li> <li>Geometry sources and visualization +↓</li> <li>Rendering modes +↓</li> </ul> |
| Blue Light Golden Light White Light Red Light | <u>Lights</u> +<br>Windows +                                                                                                                                                                                                                                                                                                                                                                                                             |

## **Connection to Shells?**

Neglect local transformations T<sub>i</sub> for a moment...

$$\int \left\| \Delta \mathbf{p}' - \mathbf{l} \right\|^2 \longrightarrow \min \longrightarrow \Delta^2 \mathbf{p}' = \Delta \mathbf{l}$$

- Basic formulations equivalent!
- Differ in detail preservation
  - Rotation of Laplacians

J

- Multi-scale decomposition

$$\Delta^2(\mathbf{p} + \mathbf{d}) = \Delta^2 \mathbf{p}$$

$$\int \left\| \mathbf{d}_{uu} \right\|^2 + 2 \left\| \mathbf{d}_{uv} \right\|^2 + \left\| \mathbf{d}_{vv} \right\|^2 \to \min \quad \boldsymbol{\longleftarrow} \quad \Delta^2 \mathbf{d} = 0$$

 $egin{array}{l} \mathbf{p}' = \mathbf{p} + \mathbf{d} \ \mathbf{l} = \Delta \mathbf{p} \end{array}$ 

## **Linear Surface-Based Deformation**

- Shell-Based Deformation
- Multiresolution Deformation
- Differential Coordinates



# Projects

# **Geometry Processing Project**

#### Goal

- Small research project
- 1 week for project proposal, deadline March 31
  - choose between 3 options: A,B, or C
- 1 month for project, **deadline April 24**
- group, size up to 2
- contributes **30%** to the final grade.
- send to <u>olszewsk@usc.edu</u>

# Scope

#### A) For the disciplined

- Deformation Project, we will provide a framework
- You will implement a surface-based linear deformation algorithm (bending minimizing deformation).

#### B) For the creative [+10 points]

- Imagine an interesting topic around geometry processing or related to your PhD research or something you always wanted to do, and write a proposal.
- If it gets approved, you are good to go.

#### C) For the bad ass [+10 points]

- Implement a Siggraph, SGP, SCA, or Eurographics Paper.
- Geometry processing related of course ;-)

# **Project Submission**

#### **Deliverables for A)**

- Source Code, Binary, Data
- Text files describing the project, how to run it.

#### **Deliverables for B) and C)**

- Short Presentation will be held April 22 and 24th (length TBD)
- Video / Figures
- Documentation (pdf, doc, txt file): 2 or more pages, short paper style, be rigorous and organized, must include at least abstract, methodology, and results.

# **Project Proposal**

#### Structure

- Title
- Motivation
- Goal
- Proposed Method
- References

#### Format

- authors' names/student IDs
- 1-2 pages
- .doc, .pdf, .txt
- figures

# **Deformation Framework for A)**

- Inherit from MeshViewer with user interface:
  - 'p': pick a handle
  - 'd': drag a handle (last one with starting code)
  - `m': move the mesh



## **Deformation Framework for A)**

- add handle picking code to
   DeformationViewer::mouse()
- add deformation codes to
   DeformationViewer::deform\_mesh()
- add extra classes and files if needed
- **gmm** is provided to solve linear systems

# Some ideas for B) or C)

- registration: articulated / deformable motions...
- shape matching: RANSAC, spin images, spherical harmonics...
- **Smoothing**: implicit surface fairing...
- parameterization: harmonic/conformal mapping...
- remeshing: anisotropic, quad mesh...

•

• **deformation**: As-rigid-as-possible, gradient-based...

## **Next Time**

#### Non-Linear

## **Surface Deformations**





http://cs599.hao-li.com

# Thanks!

