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Modeling
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Modeling
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Viewpaint
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The creation of a 3D assets surface, including
that surface’s color, texture, opacity, and

reflectivity (or specularity).



Viewpaint
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Rango: Creating
creature scale textures
in ZBrush...



Viewpaint
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(Wrinkle Pass)



Color Maps
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Wet Maps
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bump Maps
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Motivation
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Texture Mapping

Levy et al.: Least squares conformal maps for automatic texture atlas 
generation, SIGGRAPH 2002.



Motivation
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Normal Mapping



Motivation

12



Motivation
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Motivation
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Mesh Parameterization
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Find a 1-to-1 mapping between given surface 
mesh and 2D parameter domain



Unfolding Earth
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Spherical Coordinates
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Desirable Properties
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Low distortion

Bijective mapping



Cartography
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orthographic stereographic LambertMercator

preserves angles!
= conformal

preserves area!
= equiareal

Floater, Hormann: Surface Parameterization: A Tutorial and Survey, 
Advances in Multiresolution for Geometric Modeling, 2005



More Maps
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Demo: Parameterization
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Recall: Differential Geometry
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Parametric surface representation

p

xu xv

x : � � IR2 ⇥ S � IR3

(u, v) ⇤⇥

�

⇤
x(u, v)
y(u, v)
z(u, v)

⇥

⌅

Regular if!
• Coordinate functions x,y,z are smooth 

• Tangents are linearly independent

xu � xv ⇥= 0



Definitions
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A regular parameterization                   is!
• Conformal (angle preserving), if the angle of every pair of 

intersecting curves on     is the same as that of the 
corresponding pre-images in     . 

• Equiareal (area preserving) if every part of      is mapped 
onto a part of     with the same area 

• Isometric (length preserving), if the length of any arc on     
is the same as that of its pre-image in     .

x : ⌦ ! S

S
⌦

⌦
S

S
⌦



Distortion Analysis
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u = (u, v) x = (x, y, z)

x : IR2 � IR3

J =

�

⇤
xu xv

yu yv

zu zv

⇥

⌅dx = Jdu

�dx�2 = (du)T JT J du = (du)T Idu

Jacobian transforms infinitesimal vectors



First Fundamental Form
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Characterizes the surface locally

I =
�
xT

u xu xT
u xv

xT
u xv xT

v xv

⇥

Allows to measure on the surface!
• Angles 

• Length 

• Area

cos � =
�
duT

1 Idu2

⇥
/ (⇥du1⇥ ·⇥ du2⇥)

ds2 = duT Idu

dA = det(I) du dv



Isometric Maps
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A regular parameterization              is isometric, iff 
its first fundamental form is the identity:

x(u, v)

I(u, v) =
�

1 0
0 1

⇥

A surface has an isometric parameterization iff it 
has zero Gaussian curvature



Cylinder
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Conformal Maps (A-Similar-AP)
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A regular parameterization              is conformal, iff 
its first fundamental form is a scalar multiple of 
the identity:

I(u, v) = s(u, v) ·
�

1 0
0 1

⇥

f

x(u, v)



Conformal Flow

29Crane et al. Spin Transformations of Discrete Surfaces, ACM Siggraph 2011



Equiareal Maps
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A regular parameterization              is equiareal, iff 
the determinant of its first fundamental form is 1:

det(I(u, v)) = 1

x(u, v)



Relationships
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An isometric parameterization is conformal and 
equiareal, and vice versa:

isometric ⇔ conformal + equiareal

Isometric is ideal, but rare. In practice, people try to 
compute:!

• Conformal 

• Equiareal 

• Some balance between the two



Harmonic Maps
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• A regular parameterization             is harmonic, iff it 
satisfies

• isometric ⇒ conformal ⇒ harmonic 

• Easier to compute than conformal, but does not 
preserve angles

On the downside, harmonic maps are not in general conformal and do not preserve angles. For
example, it is easy to verify from the Cauchy-Riemann and Laplace equations that the bilinear mapping
f : [0, 1]2 → R2 defined by

u = x(1 + y), v = y,

is harmonic but not conformal. Indeed the figure below clearly shows that this harmonic map does not
preserve angles.

f

Figure 4: A harmonic mapping which is not conformal.

Another weakness of harmonic mappings is their “one-sidedness”. The inverse of a harmonic mapping
is not necessarily harmonic. Again, the bilinear example above provides an example of this. It is easy
to check that the inverse mapping x = u/(1 + v), y = v is not harmonic as the function x(u, v) does
not satisfy the Laplace equation.

Despite these drawbacks, harmonic mappings do at least minimize deformation in the sense that
they minimize the Dirichlet energy

ED(f) =
1

2

∫

S

∥gradf∥2 =
1

2

∫

S

(

∥∇u∥2 + ∥∇v∥2).

This property combined with their ease of computation explains their popularity.
When we consider mappings from a general surface S ⊂ R3 to the plane, we find that all the above

properties of conformal and harmonic mappings are essentially the same. The equations just become
more complicated. Any mapping f from a given surface S to the plane defines coordinates of S, say
(u1, u2). By Theorem 2, if f is conformal then there is some scalar function η ̸= 0 such that

ds2 = η(u1, u2)
(

(du1)
2

+ (du2)
2)

.

Suppose that S has given coordinates (ũ1, ũ2). After some analysis (see Chap. VI of Kreyszig), one can
show that the above equation implies the two equations

∂u1

∂ũ1
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g̃11√
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∂u2
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∂ũ2
, (4)

which are a generalization of the Cauchy-Riemann equations (3). Indeed, in the special case that S is
planar, we can take

g̃11 = g̃22 = 1, g̃12 = 0, (5)

and we get simply
∂u1

∂ũ1
=
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∂ũ2
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∂u1

∂ũ2
= −

∂u2

∂ũ1
.

Similar to the planar case, we can differentiate one equation in (4) with respect to ũ1 and the other
with respect to ũ2, and obtain the two generalizations of Laplace’s equation,

∆Su1 = 0, ∆Su2 = 0, (6)

where ∆S is the Laplace-Beltrami operator

∆S =
1√
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∂
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∂ũ1
−

g̃12√
g̃

∂

∂ũ2
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∂ũ1

))

.

6

�x(u, v) = 0

x(u, v)



Harmonic Maps

33

• A harmonic map minimizes the Dirichlet energy
Z

⌦
krxk2 =

Z

⌦
kxuk2 + kxvk2 du dv

• Variational calculus then tells us that

�x(u, v) = 0

• If                    is harmonic and maps the boundary       of 
a convex region              homeomorphically onto the 
boundary      , then      is one-to-one.

x : ⌦ ! S @⌦
⌦ ⇢ R2

@S x



Parameterization Goal
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• Piecewise linear mapping of a discrete 3D triangle mesh 
onto a planar 2D polygon

• Slightly different situation: Given a 3D mesh, compute 
the inverse parameterization



Floater’s Parameterization
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Floater’s Parameterization

36

• For Quadrilateral Patch 

• Fix the parameters of the boundary vertices on a unit 
square 

• Derive the bijection    for each of the interior vertices    
by solving

u vi



Floater’s Algorithm
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• Compute for each     the  

• Compute a local parameterization for        that 
preserves the aspect ratio of the angle and length 

• Compute                          that satisfies 

!

!

• Solve the sparse equation for

i

v(i)

u(vi), i = 1 . . . n



Discrete Harmonic Maps
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• Map the boundary       homeomorphically to some 
(convex) polygon       in the parameter plane 

@S
@⌦

• Minimize the Dirichlet energy of     by solving the 
corresponding Euler-Lagrange PDE

• Requires discretization of Laplace-Beltrami 

• Compare to surface fairing

�S u = 0

u



Discrete Harmonic Maps
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• System of linear equations

αij

βij

vi

vj

wij = cot�ij + cot⇥ij

⇤vi ⇥ S :
�

vj�N1(vi)

wij (u(vj)� u(vi))

• Properties of system matrix:

• Symmetric + positive definite → unique solution 

• Sparse → efficient solvers



Discrete Harmonic Maps
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• But… 

• Does the same theory hold for discrete harmonic 
maps as for harmonic maps? 

• In other words, is it possible for triangles to flip or 
become degenerate?



Convex Combination Maps
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• If the linear equations are satisfied 

!

!

and if the weights satisfy 

!

!

then we get a convex combination mapping.

�

vj�N1(vi)

wij (u(vj)� u(vi))

wij > 0 �
�

vj�N1(vi)

wij = 1



Convex Combination Maps
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• Each          is a convex combination of u(vi) u(vj)

u(vi) =
�

vj�N1(vi)

wiju(vj)

• If                   is a convex combination map that 
maps the boundary      homeomorphically to the 
boundary       of a convex region             , then                     
is one-to-one.

u : S ! ⌦
@S

@⌦ ⌦ ⇢ R2 u



Convex Combination Maps
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• Uniform barycentric weights

wij = 1/valence(vi)

• Cotangent weights (        if                        )

• Mean value weights

wij = cot(�ij) + cot(⇥ij)

wij =
tan(⇥ij/2) + tan(�ij/2)

⇥pj � pi⇥

αij

βij

vi

vj

> 0 ↵ij + �ij < ⇡

�ij
�ij

(no negative weights, even for obtuse angles)



Convex Combination Maps
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• Comparison

original 
mesh

uniform 
weights

cotan 
weights 

(shape preserving)

mean 
value



Fixing the Boundary
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• Choose a simple convex shape 

• Triangle, square, circle 

• Distribute points on boundary 

• Use chord length parameterization 

Fixed boundary can create high distortion



Open Boundary Mappings
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• Include boundary vertices in the optimization 

• Produces mappings with lower distortion



Open Boundary Mappings
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Need disk-like topology
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• Introduce cuts on the mesh



Naive Cut, Numerical Problems
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Smart Cut, Free Boundary
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Texture Atlas Generation
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• Split model into number of patches (atlas) 

• because higher genus models cannot be mapped onto 
plane and/or 

• because distortion, the number of patches will be too 
high eventually

Levy, Petitjean, Ray, Maillot: Least Squares Conformal Maps for Automatic 
Texture Atlas Generation, SIGGRAPH, 2002



Levy, Petitjean, Ray, Maillot: Least Squares Conformal Maps for Automatic 
Texture Atlas Generation, SIGGRAPH, 2002

Texture Atlas Generation

52

• Split model into number of patches (atlas) 

• because higher genus models cannot be mapped onto 
plane and/or 

• because distortion, the number of patches will be too 
high eventually



Non-Planar Domains
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seamless, continuous parameterization of genus-0 surfaces 



Global Parameterization – Range Images
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Constrained Parameterizations
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Levy: Constraint Texture Mapping, SIGGRAPH 2001.
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• Book, Chapter 5 

• Hormann et al.: Mesh Parameterization, Theory and Practice, 
Siggraph 2007 Course Notes 

• Floater and Hormann: Surface Parameterization: a tutorial and 
survey, advances in multiresolution for geometric modeling, Springer 
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• Hormann, Polthier, and Sheffer, Mesh Parameterization: Theory and 
Practice, SIGGRAPH Asia 2008 Course Notes



Next Time
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Decimation
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Thanks!
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