Spring 2015

1

CSCI 599: Digital Geometry Processing

1.2 Surface Representation & Data Structures

Administrative

- No class next Tuesday, due to Siggraph deadline
- Introduction to first programming exercise next Thursday

Siggraph Deadline 2013@ILM, Ewww!

After Siggraph Deadline @ILM

Last Time

Geometric Representations

implicit surfaces / particles

volumetric

tetrahedrons

Geometric Representations

implicit surfaces / particles

volumetric

tetrahedrons

High Resolution

Large scenes

1771-10

APP COUNTRA

a system

Outline

Parametric Approximations

- Polygonal Meshes
- Data Structures

Parametric Representation

Surface is the range of a function

$$\mathbf{f}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^3, \quad \mathcal{S}_\Omega = \mathbf{f}(\Omega)$$

2D example: A Circle $\mathbf{f} : [0, 2\pi] \to \mathrm{IR}^2$ $\mathbf{f}(t) = \begin{pmatrix} r \cos(t) \\ r \sin(t) \end{pmatrix}$

Parametric Representation

Surface is the range of a function

$$\mathbf{f}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^3, \quad \mathcal{S}_\Omega = \mathbf{f}(\Omega)$$

2D example: Island coast line

$$\mathbf{f}:[0,2\pi]\to\mathrm{I\!R}^2$$

$$\mathbf{f}(t) = \begin{pmatrix} \mathbf{?} \\ \mathbf{?} \end{pmatrix}$$

Piecewise Approximation

Surface is the range of a function

$$\mathbf{f}: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^3, \quad \mathcal{S}_\Omega = \mathbf{f}(\Omega)$$

2D example: Island coast line

$$\mathbf{f}:[0,2\pi]\to\mathrm{IR}^2$$

$$\mathbf{f}(t) = \begin{pmatrix} \mathbf{?} \\ \mathbf{?} \end{pmatrix}$$

Polynomial Approximation

Polynomials are computable functions

$$f(t) = \sum_{i=0}^{p} c_i t^i = \sum_{i=0}^{p} \tilde{c}_i \phi_i(t)$$

Taylor expansion up to degree p

$$g(h) = \sum_{i=0}^{p} \frac{1}{i!} g^{(i)}(0) h^{i} + O(h^{p+1})$$

Error for approximation g by polynomial f

$$f(t_i) = g(t_i), \quad 0 \le t_0 < \dots < t_p \le h$$
$$|f(t) - g(t)| \le \frac{1}{(p+1)!} \max f^{(p+1)} \prod_{i=0}^p (t - t_i) = O(h^{(p+1)})$$

Polynomial Approximation

Approximation error is $O(h^{p+1})$

Improve approximation quality by

- increasing p_{\dots} higher order polynomials
- decreasing *h* ... shorter / more segments

Issues

- smoothness of the target data ($\max_{r} f^{(p+1)}(t)$)
- smothness condition between segments

Polygonal meshes are a good compromise

• Piecewise linear approximation \rightarrow error is $O(h^2)$

25%

6.5%

1.7%

- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces

- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces

- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces

- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling

- Piecewise linear approximation \rightarrow error is $O(h^2)$
- Error inversely proportional to #faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling
- Efficient GPU-based rendering/processing

Outline

- Parametric Approximations
- Polygonal Meshes
- Data Structures

• Graph {*V*,*E*}

- Graph {*V*,*E*}
- Vertices *V* = {A,B,C,...,K}

- Graph {*V*,*E*}
- Vertices $V = \{A, B, C, \dots, K\}$
- Edges $E = \{(AB), (AE), (CD), \dots\}$

- Graph {*V*,*E*}
- Vertices $V = \{A, B, C, \dots, K\}$
- Edges $E = \{(AB), (AE), (CD), ...\}$
- Faces $F = \{(ABE), (EBF), (EFIH), ...\}$

Vertex degree or valence: number of incident edges

- deg(A) = 4
- deg(E) = 5

Connected:

Path of edges connecting every two vertices

Connected:

Path of edges connecting every two vertices

Subgraph:

Graph {*V'*,*E'*} is a subgraph of graph

 $\{V,E\}$ if V' is a subset of V and E' is a subset of E incident on V'.

Connected:

Path of edges connecting every two vertices

Subgraph:

Graph {*V'*,*E'*} is a subgraph of graph

 $\{V,E\}$ if V' is a subset of V and E' is a subset of E incident on V'.

Connected:

Path of edges connecting every two vertices

Subgraph:

Graph {*V'*,*E'*} is a subgraph of graph

 $\{V,E\}$ if V' is a subset of V and E' is a subset of E incident on V'.

Connected Components:

Maximally connected subgraph

Connected:

Path of edges connecting every two vertices

Subgraph:

Graph {*V'*,*E'*} is a subgraph of graph

 $\{V,E\}$ if V' is a subset of V and E' is a subset of E incident on V'.

Connected Components:

Maximally connected subgraph

Graph Embedding

Embedding: Graph is **embedded** in \mathbb{R}^d , if each vertex is assigned a position in \mathbb{R}^d .

Graph Embedding

Embedding: Graph is **embedded** in \mathbb{R}^d , if each vertex is assigned a position in \mathbb{R}^d .

Embedding in \mathbb{R}^3

Planar Graph

Planar Graph

Graph whose vertices and edges can be embedded in \mathbb{R}^2 such that its edges do not intersect

Planar Graph

Plane Graph

Straight Line Plane Graph

Triangulation

Triangulation:

Straight line plane graph where every face is a triangle

Why?

- simple homogenous data structure
- efficient rendering
- simplifies algorithms
- by definition, triangle is planar
- any polygon can be triangulated

Mesh

- Mesh: straight-line graph embedded in \mathbb{R}^3
- Boundary edge: adjacent to exactly 1 face
- Regular edge: adjacent to exactly 2 faces
- **Singular edge:** adjacent to more than 2 faces
- Closed mesh: mesh with no boundary edges

Polygon

A polygon is called

- flat, if all edges are on a plane
- closed, if $\mathbf{p}_0 = \mathbf{p}_{n-1}$

While digital artists call it Wireframe, ...

Polygonal Mesh

A set M of finite number of closed polygons Q_i if:

- Intersection of inner polygonal areas is empty
- Intersection of 2 polygons from M is either empty, a point $\ p \in P$ or an edge $e \in E$
- Every edge $e \in E$ belongs to at least one polygon
- The set of all edges which belong only to one polygon are called edges of the polygonal mesh and are either empty or form a single closed polygon

Polygonal Mesh Notation

 $\mathcal{M} = (\{\mathbf{v}_i\}, \{e_j\}, \{f_k\})$

geometry $\mathbf{v}_i \in \mathbb{R}^3$

Polygonal Mesh Notation

geometry $\mathbf{v}_i \in \mathbb{R}^3$ **topology** $e_i, f_i \subset \mathbb{R}^3$

Global Topology: Genus

- **Genus:** Maximal number of closed simple cutting curves that do not disconnect the graph into multiple components.
- Or half the maximal number of closed paths that do no disconnect the mesh
- Informally, the number of **holes** or **handles**

Genus 0 Genus 1 Genus 2

Genus 3

Euler Poincaré Formula

• For a closed polygonal mesh of **genus** *g*, the relation of the number *V* of vertices, *E* of edges, and *F* of faces is given by **Euler's formula**:

$$V - E + F = 2(1 - g)$$

• The term 2(1-g) is called the **Euler characteristic** χ

Euler Poincaré Formula

V - E + F = 2(1 - g)4 - 6 + 4 = 2(1 - 0)

Euler Poincaré Formula

V - E + F = 2(1 - g)16 - 32 + 16 = 2(1 - 1)

Average Valence of Closed Triangle Mesh

Theorem: Average vertex degree in a closed manifold triangle mesh is ~6

Proof: Each face has 3 edges and each edge is counted twice: 3F = 2E

by Euler's formula: V+F-E = V+2E/3-E = 2-2gThus E = 3(V-2+2g)

So average degree = $2E/V = 6(V-2+2g) \sim 6$ for large V

Euler Consequences

Triangle mesh statistics

- $F \approx 2V$
- $E \approx 3V$
- Average valence = 6

Quad mesh statistics

- $F \approx V$
- $E \approx 2V$
- Average valence = 4

Euler Characteristic

How many pentagons?

How many pentagons?

Any closed surface of genus 0 consisting only of hexagons and pentagons and where every vertex has valence 3 must have exactly 12 pentagons

Two-Manifold Surfaces

Local neighborhoods are disk-shaped $\mathbf{f}(D_{\epsilon}[u, v]) = D_{\delta}[\mathbf{f}(u, v)]$

Guarantees meaningful neighbor enumeration

• required by most algorithms

Non-manifold Examples:

Outline

- Parametric Approximations
- Polygonal Meshes
- Data Structures

Mesh Data Structures

- How to store geometry & connectivity?
- compact storage and file formats
- Efficient algorithms on meshes
 - Time-critical operations
 - All vertices/edges of a face
 - All incident vertices/edges/faces of a vertex

What should be stored?

- Geometry: 3D vertex coordinates
- Connectivity: Vertex adjacency
- Attributes:
 - normals, color, texture coordinates, etc.
 - Per Vertex, per face, per edge

What should it support?

- Rendering
- Queries
 - What are the vertices of face #3?
 - Is vertex #6 adjacent to vertex #12?
 - Which faces are adjacent to face #7?
- Modifications
 - Remove/add a vertex/face
 - Vertex split, edge collapse

Different Data Structures:

- Time to construct (preprocessing)
- Time to answer a query
 - Random access to vertices/edges/faces
 - Fast mesh traversal
 - Fast Neighborhood query
- Time to perform an operation
 - split/merge
- Space complexity
- Redundancy

Different Data Structures:

- Different topological data storage
- Most important ones are face and edge-based (since they encode connectivity)
- Design decision ~ memory/speed trade-off

Face Set (STL)

Face:

• 3 vertex positions

Triangles		
x	x	X
x	x	x
•••	• • •	• • •
x	x	x

9*4 = 36 B/f (single precision) 72 B/v (Euler Poincaré)

No explicit connectivity

Shared Vertex (OBJ, OFF)

Indexed Face List:

- Vertex: position
- Face: Vertex Indices

12 B/v + 12 B/f = 36B/v

No explicit adjacency info

Face-Based Connectivity

Vertex:

- position
- 1 face

Face:

- 3 vertices
- 3 face neighbors

64 B/v

No edges: Special case handling for arbitrary polygons

Edges always have the same topological structure

Efficient handling of polygons with variable valence

(Winged) Edge-Based Connectivity

Vertex:

- position
- 1 edge

Edge:

- 2 vertices
- 2 faces
- 4 edges

Face:

1 edges

120 B/v

Edges have no orientation: special case handling for neighbors

Halfedge-Based Connectivity

Vertex:

- position
- 1 halfedge

Edge:

- 1 vertex
- 1 face
- 1, 2, or 3 halfedges

Face:

• 1 halfedge

96 to 144 B/v

Edges have orientation: Noruntime overhead due to arbitrary faces

Arbitrary Faces during Modeling

1. Start at vertex

Start at vertex
Outgoing halfedge

Start at vertex
Outgoing halfedge
Opposite halfedge

Start at vertex
Outgoing halfedge
Opposite halfedge
Next halfedge

Start at vertex
Outgoing halfedge
Opposite halfedge
Next halfedge
Opposite

Start at vertex
Outgoing halfedge
Opposite halfedge
Next halfedge
Opposite
Next
Next

Halfedge datastructure Libraries

CGAL

- www.cgal.org
- Computational Geometry
- Free for non-commercial use

OpenMesh

- www.openmesh.org
- Mesh processing
- Free, LGPL license

Why Openmesh?

Flexible / Lightweight

- Random access to vertices/edges/faces
- Arbitrary scalar types
- Arrays or lists as underlying kernels

Efficient in space and time

- Dynamic memory management for array-based meshes (not in CGAL)
- Extendable to specialized kernels for non-manifold meshes (not in CGAL)

Easy to Use
Literature

- Textbook: Chapter
- http://www.openmesh.org
- Kettner, Using generic programming for designing a data structure for polyhedral surfaces, Symp. on Comp. Geom., 1998
- Campagna et al., Directed Edges A Scalable Representation for Triangle Meshes, Journal of Graphics Tools 4(3), 1998
- Botsch et al., OpenMesh A generic and efficient polygon mesh data structure, OpenSG Symp. 2002

■ 🖛 News	Main Page Modules Namespaces Classes Files Related Pages
	Class List Class Hierarchy Class Members
What is OpenMesh Features	All Functions Variables Typedefs Enumerator
The data structure	a b c d e f g h i k l m n e p q r s t u v w ~
Documention	Here is a list of all documented class members with links to the class documentation for each member:
Overview	-a-
= 🔤 Download	
Systems	 add(): OpenMesh::Subdivider::Adaptive::Composite i < m > add_binary(): OpenMesh::Decimater::DecimaterT< MeshT >
History	 add_face() : OpenMesh::TriMeshT< Kernel > , OpenMesh::PolyMeshT< Kernel >
	 add_priority(): OpenMesh::Decimater::DecimaterT< MeshT >

73

TODO

Learn the **terms** and **notations**

74

Next Time

- Explicit & Implicit Surfaces
- **Exercise 1**: Getting Started with Mesh Processing

http://cs599.hao-li.com

Thanks!

