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Administrative
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• No class next Tuesday, due to Siggraph deadline!

• Introduction to first programming exercise next 
Thursday

Siggraph Deadline 2013@ILM, Ewww!



After Siggraph Deadline @ILM
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Last Time
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Reconstruction

Geometry Processing

Capture Analysis

Manipulation

Rendering

Reproduction



Geometric Representations

5implicit surfaces / particles volumetric tetrahedrons

point based quad mesh triangle mesh



Geometric Representations

6implicit surfaces / particles volumetric tetrahedrons

point based quad mesh triangle mesh

Surface Representations



High Resolution
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Large scenes
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Outline
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• Parametric Approximations 

• Polygonal Meshes 

• Data Structures



Parametric Representation
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r

f : � � IR2 ⇥ IR3, S� = f(�)

f : [0, 2�]� IR2

f(t) =
�

r cos(t)
r sin(t)

⇥

Surface is the range of a function

2D example: A Circle



Parametric Representation
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f : � � IR2 ⇥ IR3, S� = f(�)

f : [0, 2�]� IR2

f(t) =
�

r cos(t)
r sin(t)

⇥

Surface is the range of a function

2D example: Island coast line

?
?



Piecewise Approximation
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f : � � IR2 ⇥ IR3, S� = f(�)

f : [0, 2�]� IR2

f(t) =
�

r cos(t)
r sin(t)

⇥

Surface is the range of a function

2D example: Island coast line

?
?



Polynomial Approximation
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f(t) =
p�

i=0

ci ti =
p�

i=0

c̃i �i(t)

f(ti) = g(ti) , 0 ⇥ t0 < · · · < tp ⇥ h

|f(t)� g(t)| ⇥ 1
(p + 1)!

max f (p+1)
p⇤

i=0

(t� ti) = O
�
h(p+1)

⇥

g(h) =
p⇤

i=0

1
i!

g(i)(0) hi + O
�
hp+1

⇥

Polynomials are computable functions

Taylor expansion up to degree

Error for approximation    by polynomial 

p

g f



Polynomial Approximation
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Improve approximation quality by!
• increasing   … higher order polynomials 
• decreasing    … shorter / more segments

Issues!
• smoothness of the target data (                           ) 
• smothness condition between segments

Approximation error is O(hp+1)

h

p

max

t
f (p+1)

(t)



Polygonal Meshes
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3 6 12 24

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is O(h2)

25% 6.5% 1.7% 0.4%



Polygonal Meshes
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Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is 
• Error inversely proportional to #faces

O(h2)



Polygonal Meshes
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Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is 
• Error inversely proportional to #faces 
• Arbitrary topology surfaces

O(h2)



Polygonal Meshes
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Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is 
• Error inversely proportional to #faces 
• Arbitrary topology surfaces 
• Piecewise smooth surfaces

O(h2)



Polygonal Meshes
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Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is 
• Error inversely proportional to #faces 
• Arbitrary topology surfaces 
• Piecewise smooth surfaces 
• Adaptive sampling

O(h2)



Polygonal Meshes
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Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is 
• Error inversely proportional to #faces 
• Arbitrary topology surfaces 
• Piecewise smooth surfaces 
• Adaptive sampling 
• Efficient GPU-based rendering/processing

O(h2)



Outline
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• Parametric Approximations 

• Polygonal Meshes 

• Data Structures



Graph Definitions
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A
B

C D
E

F

G
H

I

J K

• Graph {V,E}
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B

C D
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Graph Definitions

• Graph {V,E} 
• Vertices V = {A,B,C,…,K}
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Graph Definitions

• Graph {V,E} 
• Vertices V = {A,B,C,…,K} 
• Edges E = {(AB),(AE),(CD),…}



25

A
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C D
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Graph Definitions

• Graph {V,E} 
• Vertices V = {A,B,C,…,K} 
• Edges E = {(AB),(AE),(CD),…} 
• Faces F = {(ABE),(EBF),(EFIH),…}
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A
B

C D
E

F

G
H

I

J K

Graph Definitions

Vertex degree or valence:!
number of incident edges!

• deg(A) = 4 
• deg(E) = 5
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A
B

C D
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H
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J K

Connectivity

Connected:!
Path of edges connecting 
every two vertices



Connectivity
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A
B

C D
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Connected:!
Path of edges connecting 
every two vertices 
!

Subgraph:!
Graph {V’,E’} is a subgraph of graph 
{V,E} if V’ is a subset of V and E’ is a 
subset of E incident on V’.



Connectivity
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Connected:!
Path of edges connecting 
every two vertices 
!

Subgraph:!
Graph {V’,E’} is a subgraph of graph 
{V,E} if V’ is a subset of V and E’ is a 
subset of E incident on V’.



Connectivity
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Connected:!
Path of edges connecting 
every two vertices 
!

Subgraph:!
Graph {V’,E’} is a subgraph of graph 
{V,E} if V’ is a subset of V and E’ is a 
subset of E incident on V’. 
!

Connected Components:!
Maximally connected subgraph



Connectivity

31
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Connected:!
Path of edges connecting 
every two vertices 
!

Subgraph:!
Graph {V’,E’} is a subgraph of graph 
{V,E} if V’ is a subset of V and E’ is a 
subset of E incident on V’. 
!

Connected Components:!
Maximally connected subgraph



Graph Embedding
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Embedding: Graph is embedded in    , if 
each vertex is assigned a position in    .

Embedding in Embedding in 

Rd

Rd

R2 R3



Graph Embedding
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Embedding: Graph is embedded in    , if 
each vertex is assigned a position in    .

Embedding in R3

Rd

Rd
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Planar Graph

Planar Graph !
Graph whose vertices and edges can be 
embedded in       such that its edges do 
not intersect

Planar Graph Plane Graph Straight Line !
Plane Graph

R2



Triangulation

35

A
B

C D
E
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G
H
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Triangulation:!
Straight line plane graph where every 
face is a triangle

Why?!
• simple homogenous data structure 
• efficient rendering 
• simplifies algorithms 
• by definition, triangle is planar 
• any polygon can be triangulated



Mesh
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• Mesh: straight-line graph 
embedded in 

•  Boundary edge: adjacent to 
exactly 1 face 

•  Regular edge: adjacent to 
exactly 2 faces 

•  Singular edge: adjacent to 
more than 2 faces 

•  Closed mesh: mesh with no 
boundary edges

R3



Polygon
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A geometric graph      
with                                         in      ,         
and  
is called a polygon 

!
!
!

!
A polygon is called 

• flat, if all edges are on a plane 
• closed, if 

Q = (V,E)
V = {p0,p1, . . . ,pn�1} Rd d � 2
E = {(p0,p1) . . . (pn�2,pn�1)}

p0 = pn�1



While digital artists call it Wireframe, …
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Polygonal Mesh
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A set     of finite number of closed polygons      if:!
• Intersection of inner polygonal areas is empty 
• Intersection of 2 polygons from     is either empty, a point      

or an edge         
• Every edge              belongs to at least one polygon 
• The set of all edges which belong only to one polygon are 

called edges of the polygonal mesh and are either empty or 
form a single closed polygon

M Qi

M
e 2 E

p 2 P

e 2 E



Polygonal Mesh Notation
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vi � R3

M = ({vi}, {ej}, { fk})

geometry



Polygonal Mesh Notation
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ei, fi � R3topology
vi � R3

M = ({vi}, {ej}, { fk})

geometry



Global Topology: Genus
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• Genus: Maximal number of closed simple cutting 
curves that do not disconnect the graph into multiple 
components. 

• Or half the maximal number of closed paths that do 
no disconnect the mesh 

• Informally, the number of holes or handles

Genus 0 Genus 1 Genus 2 Genus 3



Euler Poincaré Formula
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• For a closed polygonal mesh of genus    , the relation 
of the number    of vertices,    of edges, and    of faces 
is given by Euler’s formula:!

!
!
!

!
• The term                is called the Euler characteristic

g
V E F

V � E + F = 2(1� g)

2(1� g) �



Euler Poincaré Formula
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V � E + F = 2(1� g)

4� 6 + 4 = 2(1� 0)



Euler Poincaré Formula
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16� 32 + 16 = 2(1� 1)

V � E + F = 2(1� g)



Average Valence of Closed Triangle Mesh
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Theorem: Average vertex degree in a closed manifold 
triangle mesh is ~6

Proof: Each face has 3 edges and each edge is 
counted twice: 3F = 2E!
!
by Euler’s formula: V+F-E = V+2E/3-E = 2-2g!
Thus E = 3(V-2+2g)!
!
So average degree = 2E/V = 6(V-2+2g) ~6 for large V



Euler Consequences
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Triangle mesh statistics!
•   
•   
• Average valence = 6

Quad mesh statistics!
•   
•   
• Average valence = 4

F ⇡ 2V

E ⇡ 3V

F ⇡ V

E ⇡ 2V



Euler Characteristic
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Sphere Torus Moebius Strip Klein Bottle

� = 2 � = 0 � = 0 � = 0



How many pentagons?
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How many pentagons?
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Any closed surface of genus 0 consisting only of 
hexagons and pentagons and where every vertex 
has valence 3 must have exactly 12 pentagons



Two-Manifold Surfaces
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Local neighborhoods are disk-shaped!
!

!

Guarantees meaningful neighbor enumeration!
•  required by most algorithms 

!

Non-manifold Examples:

f(D✏[u, v]) = D�[f(u, v)]



Outline
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• Parametric Approximations 

• Polygonal Meshes 

• Data Structures



Mesh Data Structures
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• How to store geometry & connectivity? 
• compact storage and file formats 
• Efficient algorithms on meshes 

• Time-critical operations 
• All vertices/edges of a face 
• All incident vertices/edges/faces of a vertex



Data Structures
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What should be stored?!
• Geometry: 3D vertex coordinates 
• Connectivity: Vertex adjacency 
• Attributes: 

• normals, color, texture coordinates, etc. 
• Per Vertex, per face, per edge



Data Structures
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What should it support?!
• Rendering 
• Queries 

• What are the vertices of face #3? 
• Is vertex #6 adjacent to vertex #12? 
• Which faces are adjacent to face #7? 

• Modifications 
• Remove/add a vertex/face 
• Vertex split, edge collapse



Data Structures
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Different Data Structures:!
• Time to construct (preprocessing) 
• Time to answer a query 

• Random access to vertices/edges/faces 
• Fast mesh traversal 
• Fast Neighborhood query 

• Time to perform an operation 
• split/merge 

• Space complexity 
• Redundancy



Data Structures

57

Different Data Structures:!
• Different topological data storage 
• Most important ones are face and edge-based 

(since they encode connectivity) 
• Design decision ~ memory/speed trade-off



Face Set (STL)
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Triangles

x x x

x x x

... ... ...

x x x

Face:!
• 3 vertex positions

9*4 = 36 B/f (single precision)!
72 B/v (Euler Poincaré) 
!
No explicit connectivity 



Shared Vertex (OBJ,OFF)
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Vertices

x

...

x

Triangles

i

...

...

...

...

i

12 B/v + 12 B/f = 36B/v 
!
No explicit adjacency info

Indexed Face List:!
• Vertex: position 
• Face: Vertex Indices



Face-Based Connectivity
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64 B/v!
!
No edges: Special case 
handling for arbitrary 
polygons

Vertex:!
• position 
• 1 face 

!

Face:!
• 3 vertices 
• 3 face neighbors



Edges always have the same !
topological structure

61

Efficient handling of polygons with!
variable valence



(Winged) Edge-Based Connectivity
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Vertex:!
• position 
• 1 edge 

!

Edge:!
• 2 vertices 
• 2 faces 
• 4 edges 

!

Face:!
• 1 edges

120 B/v 
!
Edges have no orientation: 
special case handling for 
neighbors



Halfedge-Based Connectivity
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96 to 144 B/v!
!
Edges have orientation: No-
runtime overhead due to 
arbitrary faces

Vertex:!
• position 
• 1 halfedge 

!

Edge:!
• 1 vertex 
• 1 face 
• 1, 2, or 3 halfedges 

!

Face:!
• 1 halfedge



Arbitrary Faces during Modeling
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One-Ring Traversal
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1. Start at vertex



One-Ring Traversal
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1. Start at vertex 
2. Outgoing halfedge



One-Ring Traversal
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1. Start at vertex 
2. Outgoing halfedge 
3. Opposite halfedge



One-Ring Traversal
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1. Start at vertex 
2. Outgoing halfedge 
3. Opposite halfedge 
4. Next halfedge



One-Ring Traversal
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1. Start at vertex 
2. Outgoing halfedge 
3. Opposite halfedge 
4. Next halfedge 
5. Opposite



One-Ring Traversal
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1. Start at vertex 
2. Outgoing halfedge 
3. Opposite halfedge 
4. Next halfedge 
5. Opposite 
6. Next 
7. …



Halfedge datastructure Libraries
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CGAL!
• www.cgal.org 
• Computational Geometry 
• Free for non-commercial use 

!

OpenMesh!
• www.openmesh.org 
• Mesh processing 
• Free, LGPL license



Why Openmesh?
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Flexible / Lightweight!
• Random access to vertices/edges/faces 
• Arbitrary scalar types 
• Arrays or lists as underlying kernels 

!

Efficient in space and time!
• Dynamic memory management for array-based 

meshes (not in CGAL) 
• Extendable to specialized kernels for non-manifold 

meshes (not in CGAL) 

!

Easy to Use



Literature
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• Textbook: Chapter 
• http://www.openmesh.org 
• Kettner, Using generic programming for designing a data structure 

for polyhedral surfaces, Symp. on Comp. Geom., 1998 
• Campagna et al., Directed Edges - A Scalable Representation for 

Triangle Meshes, Journal of Graphics Tools 4(3), 1998 
• Botsch et al., OpenMesh - A generic and efficient polygon mesh data 

structure, OpenSG Symp. 2002



TODO
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Learn the terms  
and notations



Next Time
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• Explicit & Implicit Surfaces 

• Exercise 1: Getting Started with Mesh Processing



http://cs599.hao-li.com

Thanks!
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