
CSCI 599: Digital Geometry Processing

Hao Li
http://cs599.hao-li.com

1

Spring 2015

1.2 Surface Representation !
& Data Structures

http://cs599.hao-li.com

Administrative

2

• No class next Tuesday, due to Siggraph deadline!

• Introduction to first programming exercise next
Thursday

Siggraph Deadline 2013@ILM, Ewww!

After Siggraph Deadline @ILM

3

Last Time

4

Reconstruction

Geometry Processing

Capture Analysis

Manipulation

Rendering

Reproduction

Geometric Representations

5implicit surfaces / particles volumetric tetrahedrons

point based quad mesh triangle mesh

Geometric Representations

6implicit surfaces / particles volumetric tetrahedrons

point based quad mesh triangle mesh

Surface Representations

High Resolution

7

Large scenes

8

Outline

9

• Parametric Approximations

• Polygonal Meshes

• Data Structures

Parametric Representation

10

r

f : � � IR2 ⇥ IR3, S� = f(�)

f : [0, 2�]� IR2

f(t) =
�

r cos(t)
r sin(t)

⇥

Surface is the range of a function

2D example: A Circle

Parametric Representation

11

f : � � IR2 ⇥ IR3, S� = f(�)

f : [0, 2�]� IR2

f(t) =
�

r cos(t)
r sin(t)

⇥

Surface is the range of a function

2D example: Island coast line

?
?

Piecewise Approximation

12

f : � � IR2 ⇥ IR3, S� = f(�)

f : [0, 2�]� IR2

f(t) =
�

r cos(t)
r sin(t)

⇥

Surface is the range of a function

2D example: Island coast line

?
?

Polynomial Approximation

13

f(t) =
p�

i=0

ci ti =
p�

i=0

c̃i �i(t)

f(ti) = g(ti) , 0 ⇥ t0 < · · · < tp ⇥ h

|f(t)� g(t)| ⇥ 1
(p + 1)!

max f (p+1)
p⇤

i=0

(t� ti) = O
�
h(p+1)

⇥

g(h) =
p⇤

i=0

1
i!

g(i)(0) hi + O
�
hp+1

⇥

Polynomials are computable functions

Taylor expansion up to degree

Error for approximation by polynomial

p

g f

Polynomial Approximation

14

Improve approximation quality by!
• increasing … higher order polynomials
• decreasing … shorter / more segments

Issues!
• smoothness of the target data ()
• smothness condition between segments

Approximation error is O(hp+1)

h

p

max

t
f (p+1)

(t)

Polygonal Meshes

15

3 6 12 24

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is O(h2)

25% 6.5% 1.7% 0.4%

Polygonal Meshes

16

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is
• Error inversely proportional to #faces

O(h2)

Polygonal Meshes

17

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is
• Error inversely proportional to #faces
• Arbitrary topology surfaces

O(h2)

Polygonal Meshes

18

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is
• Error inversely proportional to #faces
• Arbitrary topology surfaces
• Piecewise smooth surfaces

O(h2)

Polygonal Meshes

19

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is
• Error inversely proportional to #faces
• Arbitrary topology surfaces
• Piecewise smooth surfaces
• Adaptive sampling

O(h2)

Polygonal Meshes

20

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is
• Error inversely proportional to #faces
• Arbitrary topology surfaces
• Piecewise smooth surfaces
• Adaptive sampling
• Efficient GPU-based rendering/processing

O(h2)

Outline

21

• Parametric Approximations

• Polygonal Meshes

• Data Structures

Graph Definitions

22

A
B

C D
E

F

G
H

I

J K

• Graph {V,E}

23

A
B

C D
E

F

G
H

I

J K

Graph Definitions

• Graph {V,E}
• Vertices V = {A,B,C,…,K}

24

A
B

C D
E

F

G
H

I

J K

Graph Definitions

• Graph {V,E}
• Vertices V = {A,B,C,…,K}
• Edges E = {(AB),(AE),(CD),…}

25

A
B

C D
E

F

G
H

I

J K

Graph Definitions

• Graph {V,E}
• Vertices V = {A,B,C,…,K}
• Edges E = {(AB),(AE),(CD),…}
• Faces F = {(ABE),(EBF),(EFIH),…}

26

A
B

C D
E

F

G
H

I

J K

Graph Definitions

Vertex degree or valence:!
number of incident edges!

• deg(A) = 4
• deg(E) = 5

27

A
B

C D
E

F

G
H

I

J K

Connectivity

Connected:!
Path of edges connecting
every two vertices

Connectivity

28

A
B

C D
E

F

G
H

I

J K

Connected:!
Path of edges connecting
every two vertices
!

Subgraph:!
Graph {V’,E’} is a subgraph of graph
{V,E} if V’ is a subset of V and E’ is a
subset of E incident on V’.

Connectivity

29

A
B

C D
E

F

G
H

I

J K

Connected:!
Path of edges connecting
every two vertices
!

Subgraph:!
Graph {V’,E’} is a subgraph of graph
{V,E} if V’ is a subset of V and E’ is a
subset of E incident on V’.

Connectivity

30

A
B

C D
E

F

G
H

I

J K

Connected:!
Path of edges connecting
every two vertices
!

Subgraph:!
Graph {V’,E’} is a subgraph of graph
{V,E} if V’ is a subset of V and E’ is a
subset of E incident on V’.
!

Connected Components:!
Maximally connected subgraph

Connectivity

31

A
B

C D
E

F

G
H

I

J K

Connected:!
Path of edges connecting
every two vertices
!

Subgraph:!
Graph {V’,E’} is a subgraph of graph
{V,E} if V’ is a subset of V and E’ is a
subset of E incident on V’.
!

Connected Components:!
Maximally connected subgraph

Graph Embedding

32

Embedding: Graph is embedded in , if
each vertex is assigned a position in .

Embedding in Embedding in

Rd

Rd

R2 R3

Graph Embedding

33

Embedding: Graph is embedded in , if
each vertex is assigned a position in .

Embedding in R3

Rd

Rd

34

Planar Graph

Planar Graph !
Graph whose vertices and edges can be
embedded in such that its edges do
not intersect

Planar Graph Plane Graph Straight Line !
Plane Graph

R2

Triangulation

35

A
B

C D
E

F

G
H

I

J K

Triangulation:!
Straight line plane graph where every
face is a triangle

Why?!
• simple homogenous data structure
• efficient rendering
• simplifies algorithms
• by definition, triangle is planar
• any polygon can be triangulated

Mesh

36

• Mesh: straight-line graph
embedded in

• Boundary edge: adjacent to
exactly 1 face

• Regular edge: adjacent to
exactly 2 faces

• Singular edge: adjacent to
more than 2 faces

• Closed mesh: mesh with no
boundary edges

R3

Polygon

37

A geometric graph
with in ,
and
is called a polygon

!
!
!

!
A polygon is called

• flat, if all edges are on a plane
• closed, if

Q = (V,E)
V = {p0,p1, . . . ,pn�1} Rd d � 2
E = {(p0,p1) . . . (pn�2,pn�1)}

p0 = pn�1

While digital artists call it Wireframe, …

38

Polygonal Mesh

39

A set of finite number of closed polygons if:!
• Intersection of inner polygonal areas is empty
• Intersection of 2 polygons from is either empty, a point

or an edge
• Every edge belongs to at least one polygon
• The set of all edges which belong only to one polygon are

called edges of the polygonal mesh and are either empty or
form a single closed polygon

M Qi

M
e 2 E

p 2 P

e 2 E

Polygonal Mesh Notation

40

vi � R3

M = ({vi}, {ej}, { fk})

geometry

Polygonal Mesh Notation

41

ei, fi � R3topology
vi � R3

M = ({vi}, {ej}, { fk})

geometry

Global Topology: Genus

42

• Genus: Maximal number of closed simple cutting
curves that do not disconnect the graph into multiple
components.

• Or half the maximal number of closed paths that do
no disconnect the mesh

• Informally, the number of holes or handles

Genus 0 Genus 1 Genus 2 Genus 3

Euler Poincaré Formula

43

• For a closed polygonal mesh of genus , the relation
of the number of vertices, of edges, and of faces
is given by Euler’s formula:!

!
!
!

!
• The term is called the Euler characteristic

g
V E F

V � E + F = 2(1� g)

2(1� g) �

Euler Poincaré Formula

44

V � E + F = 2(1� g)

4� 6 + 4 = 2(1� 0)

Euler Poincaré Formula

45

16� 32 + 16 = 2(1� 1)

V � E + F = 2(1� g)

Average Valence of Closed Triangle Mesh

46

Theorem: Average vertex degree in a closed manifold
triangle mesh is ~6

Proof: Each face has 3 edges and each edge is
counted twice: 3F = 2E!
!
by Euler’s formula: V+F-E = V+2E/3-E = 2-2g!
Thus E = 3(V-2+2g)!
!
So average degree = 2E/V = 6(V-2+2g) ~6 for large V

Euler Consequences

47

Triangle mesh statistics!
•
•
• Average valence = 6

Quad mesh statistics!
•
•
• Average valence = 4

F ⇡ 2V

E ⇡ 3V

F ⇡ V

E ⇡ 2V

Euler Characteristic

48

Sphere Torus Moebius Strip Klein Bottle

� = 2 � = 0 � = 0 � = 0

How many pentagons?

49

How many pentagons?

50

Any closed surface of genus 0 consisting only of
hexagons and pentagons and where every vertex
has valence 3 must have exactly 12 pentagons

Two-Manifold Surfaces

51

Local neighborhoods are disk-shaped!
!

!

Guarantees meaningful neighbor enumeration!
• required by most algorithms

!

Non-manifold Examples:

f(D✏[u, v]) = D�[f(u, v)]

Outline

52

• Parametric Approximations

• Polygonal Meshes

• Data Structures

Mesh Data Structures

53

• How to store geometry & connectivity?
• compact storage and file formats
• Efficient algorithms on meshes

• Time-critical operations
• All vertices/edges of a face
• All incident vertices/edges/faces of a vertex

Data Structures

54

What should be stored?!
• Geometry: 3D vertex coordinates
• Connectivity: Vertex adjacency
• Attributes:

• normals, color, texture coordinates, etc.
• Per Vertex, per face, per edge

Data Structures

55

What should it support?!
• Rendering
• Queries

• What are the vertices of face #3?
• Is vertex #6 adjacent to vertex #12?
• Which faces are adjacent to face #7?

• Modifications
• Remove/add a vertex/face
• Vertex split, edge collapse

Data Structures

56

Different Data Structures:!
• Time to construct (preprocessing)
• Time to answer a query

• Random access to vertices/edges/faces
• Fast mesh traversal
• Fast Neighborhood query

• Time to perform an operation
• split/merge

• Space complexity
• Redundancy

Data Structures

57

Different Data Structures:!
• Different topological data storage
• Most important ones are face and edge-based

(since they encode connectivity)
• Design decision ~ memory/speed trade-off

Face Set (STL)

58

Triangles

x x x

x x x

...

x x x

Face:!
• 3 vertex positions

9*4 = 36 B/f (single precision)!
72 B/v (Euler Poincaré)
!
No explicit connectivity

Shared Vertex (OBJ,OFF)

59

Vertices

x

...

x

Triangles

i

...

...

...

...

i

12 B/v + 12 B/f = 36B/v
!
No explicit adjacency info

Indexed Face List:!
• Vertex: position
• Face: Vertex Indices

Face-Based Connectivity

60

64 B/v!
!
No edges: Special case
handling for arbitrary
polygons

Vertex:!
• position
• 1 face

!

Face:!
• 3 vertices
• 3 face neighbors

Edges always have the same !
topological structure

61

Efficient handling of polygons with!
variable valence

(Winged) Edge-Based Connectivity

62

Vertex:!
• position
• 1 edge

!

Edge:!
• 2 vertices
• 2 faces
• 4 edges

!

Face:!
• 1 edges

120 B/v
!
Edges have no orientation:
special case handling for
neighbors

Halfedge-Based Connectivity

63

96 to 144 B/v!
!
Edges have orientation: No-
runtime overhead due to
arbitrary faces

Vertex:!
• position
• 1 halfedge

!

Edge:!
• 1 vertex
• 1 face
• 1, 2, or 3 halfedges

!

Face:!
• 1 halfedge

Arbitrary Faces during Modeling

64

One-Ring Traversal

65

1. Start at vertex

One-Ring Traversal

66

1. Start at vertex
2. Outgoing halfedge

One-Ring Traversal

67

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge

One-Ring Traversal

68

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge

One-Ring Traversal

69

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
5. Opposite

One-Ring Traversal

70

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
5. Opposite
6. Next
7. …

Halfedge datastructure Libraries

71

CGAL!
• www.cgal.org
• Computational Geometry
• Free for non-commercial use

!

OpenMesh!
• www.openmesh.org
• Mesh processing
• Free, LGPL license

Why Openmesh?

72

Flexible / Lightweight!
• Random access to vertices/edges/faces
• Arbitrary scalar types
• Arrays or lists as underlying kernels

!

Efficient in space and time!
• Dynamic memory management for array-based

meshes (not in CGAL)
• Extendable to specialized kernels for non-manifold

meshes (not in CGAL)

!

Easy to Use

Literature

73

• Textbook: Chapter
• http://www.openmesh.org
• Kettner, Using generic programming for designing a data structure

for polyhedral surfaces, Symp. on Comp. Geom., 1998
• Campagna et al., Directed Edges - A Scalable Representation for

Triangle Meshes, Journal of Graphics Tools 4(3), 1998
• Botsch et al., OpenMesh - A generic and efficient polygon mesh data

structure, OpenSG Symp. 2002

TODO

74

Learn the terms
and notations

Next Time

75

• Explicit & Implicit Surfaces

• Exercise 1: Getting Started with Mesh Processing

http://cs599.hao-li.com

Thanks!

76

http://cs599.hao-li.com

