CSCI 599: Digital Geometry Processing Spring 2015

Hao Li

http://cs599.hao-li.com

USC Graphics

Geometric Capture [Lab]

http://www.hao-li.com

The Team

Instructor

- Hao Li, <u>hao.li@usc.edu</u>
 - Office: SAL 244
 - Office hours: Tuesday 2-3PM

Assistants

- Kyle Olszewski, olszewsk@usc.edu
- Pei-Lun Hsieh, peilun.hsieh@usc.edu

About Me

Industrial Light & Magic

Science, Engineering, & Art

USCViterbi

School of Engineering

USC School of Cinematic Arts

USCGames

High Tech & Capital of Entertainment

Disney DreamWorks ACILVISION Google Activision

Introduction

Target Audience

- PhD students, MSc students, Advanced undergraduates
- **Computer Science**, Computer Engineering, Mathematics, Physics, Game Program, Biomedicine, Bioengineering, etc.
- Computer Graphics, Computer Vision, Robotics, Machine Learning, Signal and Image Processing, Medical Imaging

Prerequisites

- C/C++ Programming
- Linear Algebra
- Numerical Optimization
- CSCI 420 Recommended

Administrative

When and where?

- Tuesday, Thursday, 11:00 am 12:20 pm
- KAP 158 (Kaprialian Hall)

Credits

• 3 Units

Website

• <u>http://cs599.hao-li.com/</u>

Exercises

Programming assignments

- based on OpenMesh (tutorial will be given Thursday next week)
- cover some core stages of the geometry processing pipeline
- C/C++ framework including 3D UI will be provided

Integral part of the lecture

• important for achieving course objectives

Grading

Exercises

- Best 5 out of 6 exercises contribute to 70% of the final grade
- Each exercise counts 20 points
- Late submissions: every 5 minute removes 1 point in each exercise

Project

- Scope 2 months/person, Groups up to 2
- Implement a research paper around digital human capture but not limited to it
- Final presentation, code/documentation, contributes 30% of the final grade

Academic Integrity

- Do not copy any parts of the assignments from anyone
- Do not look at other student's code
- Collaboration only for the project
- USC Office of Student Judicial Affairs and Community Standards (Hell) will be notified

Course Objectives

- **Define** and **relate** the basic concept, tools, and algorithms in geometric modeling and digital geometry processing
- Critically analyze and assess current research on surface representations and geometric modeling and apply the proposed methods in your own work
- Design and implement individual components of geometric modeling system

Recommended Textbook

Botsch, Kobbelt, Pauly, Alliez, Levy: Polygon Mesh Processing, AK Peters, 2010

Acknowledgement

Course material taught at:

- EPFL, Mark Pauly (My PhD Advisor)
- Bielefeld University, Mario Botsch
- INRIA, Pierre Alliez, Bruno Levy
- RWTH Aarchen, Leif Kobbelt

An **Example**

Computer Graphics

Performance Capture

The Vision

Facial Perfomance Capture

Geometry Capture

Realtime Facial Performance Capture

Capturing Geometry

Static 3D Capture

Dynamic 3D Capture

Commercial 3D Capture

Artec Group

Full Body Capture

3D scanner

3D acquisition

Multi-View Stereo

Lee Perry-Smith, Infinite Realities + Agisoft

Capturing Cities

Google Earth

Geometry γεωμετρία

geo = earth

metria = measure

Geometry γεωμετρία

microscope

ultrasound

MRI scanner

x-ray diffractometer

Geometry

γεωμετρία

stereo camera

radio telescope

time-of-flight scanner

Overview

Geometric Modeling

• Techniques and algorithms for representing and processing geometric objects

We will focus on *triangle meshes*

- main questions:
 - **why** are triangles suitable representations for geometry processing?
 - what are the central processing algorithms?
 - **how** can they implemented efficiently?

Cardiology

Evolutionary Biology

Cancer Treatment

Digitized Future

For Everyone

For Everyone

For Everyone

Scanning@Home

Living Room Entertainment

In Tablet

In Laptops

In Laptops

In Smartphones

From Capture to Fabrication

3D printing

Realtime Future

Why Realtime?

VFX/Game Production

Robotics

Virtual Avatars

AR/Virtual Mirror

Realtime Game Engines

Realtime Facial Animation

Virtual Reality **Reloaded**

Oculus VR 2012 / Crytek 2014

Personalized Future

3D Self-Portraits

Omote3D Shashin Kan

3D Self-Portraits

Omote3D Shashin Kan

3D Self-Portraits

Omote3D Shashin Kan
3D Self-Portraits

Omote3D Shashin Kan

3D Selfies

3D Selfies

Personalized Games

USC/ICT

10X Speed UCapture/Process Time : 4 1

Personalized Applications

MPI IS, Embodee

entertainment

fitness

digital garment

Fashion Industry

Summary

Geometry Processing

Classic Graphics

Modern Graphics/Vision

The Future: Big Data / Robotics

Next Time

- Parametric Approximations
- Polygon Meshes
- Data Structures

http://cs599.hao-li.com

Demos!

