CSCI 599: Digital Geometry Processing

Exercise 6. Remeshing

Incremental Remeshing

- Split long edges
- Collapse short edges
- Flip edges for optimal valences
- Shift vertices for tangential relaxation

Split

Split edges longer than

$$L_{max} = \frac{4}{3}L$$

• split_long_edges() in remesh.cc

Collapse

Collapse edges shorter than

$$L_{min} = \frac{4}{5}L$$

• collapse short edges() in remesh.cc

Edge Collapse

Flip

- Optimal valence
 - 6 for interior vertices
 - 4 for boundary vertices
- Minimize valence excess

$$\sum_{i=1}^{4} (\text{valence}(v_i) - \text{opt_valence}(v_i))^2$$

equalize_valences() in remesh.cc

Edge

Shift

Uniform Laplacian smoothing

$$\mathbf{c}_i = \frac{1}{\text{valence}(v_i)} \sum_{j \in N(v_i)} \mathbf{p}_j$$

- Restrict movement to tangent plane
- tangential_relaxation() in remesh.cc

Result

Adaptive Remeshing

- Compute maximal curvature by mean curvature and Gaussian curvature: $k_{max} = H + \sqrt{H^2 K}$
- Scale target edge length by inverse of max curvature
- Uniformly smooth target edge length
- Scale target edge length such that the mean equals to user specified target length
- calc_target_length() in remesh.cc

Result

Submission

- Deadline: Wednesday, April 8, 2015 11:59pm
- Upload a .zip compressed file named "Exercise6-YourName.zip" to Blackboard, same as before
- Include a "read.txt" file describing how you solve each exercise and the encountered problems

Contact

- email (include "CSCI_599" in title):
 olszewsk@usc.edu
- Highly recommended to post your questions on Blackboard

http://cs599.hao-li.com

Thanks!

