Spring 2014

CSCI 599: Digital Geometry Processing

11.2 Space Deformation

Hoooray!

Last Time

Surface Deformations

- Displacement function defined on the ambient space $\mathbf{d}: \mathbb{R}^3 o \mathbb{R}^3$
- Evaluate the function on the points of the shape embedded in the space

$$\mathbf{x}' = \mathbf{x} + \mathbf{d}(\mathbf{x})$$

Twist warp Global and local deformation of solids [A. Barr, SIGGRAPH 84]

Freeform Deformation

- Control object
- User defines displacements d_i for each element of the control object
- Displacements are interpolated to the entire space using basis functions $B_i(\mathbf{x}): \mathbb{R}^3 o \mathbb{R}$

$$\mathbf{d}(\mathbf{x}) = \sum_{i=1}^{k} \mathbf{d}_i B_i(\mathbf{x})$$

 Basis functions should be smooth for aesthetic results

Freeform Deformation

[Sederberg & Parry 86]

- Control object = lattice
- Basis functions B_i(x) are trivariate tensor-product splines:

$$\mathbf{d}(x, y, z) = \sum_{i=0}^{l} \sum_{j=0}^{m} \sum_{k=0}^{n} \mathbf{d}_{ijk} N_i(x) N_j(y) N_k(z)$$

Freeform Deformation

[Sederberg & Parry 86]

- Aliasing artifacts
- Interpolate deformation constraints?
 - Only in least squares sense

Limitations of Lattices as Control Objects

- Difficult to manipulate
- The control object is not related to the shape of the edited object
- Parts of the shape in close Euclidean distance always deform similarly, even if geodesically far

- Control objects are arbitrary space curves
- Can place curves along meaningful features of the edited object

Wires

 Smooth deformations around the curve with decreasing influence

Handle Metaphor

• Wish list for the displacement function d(x):

- Interpolate prescribed constraints
- Smooth, intuitive deformation

Volumetric Energy Minimization

[RBF, Botsch & Kobbelt 05]

Minimize similar energies to surface case

$$\int_{\mathbb{R}^3} \|\mathbf{d}_{xx}\|^2 + \|\mathbf{d}_{xy}\|^2 + \ldots + \|\mathbf{d}_{zz}\|^2 \, dx \, dy \, dz \to \min$$

- But displacements function lives in 3D...
 - Need a volumetric space tessellation?

0

No, same functionality provided by RBFs!

Radial Basis Functions

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \varphi(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

- Triharmonic basis function $\varphi(r) = r^3$
 - C² boundary constraints
 - Highly smooth / fair interpolation

$$\int_{\mathbb{R}^3} \|\mathbf{d}_{xxx}\|^2 + \|\mathbf{d}_{xyy}\|^2 + \ldots + \|\mathbf{d}_{zzz}\|^2 \, dx \, dy \, dz \to \min$$

Radial Basis Functions

[RBF, Botsch & Kobbelt 05]

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \varphi(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

- RBF fitting
 - Interpolate displacement constraints
 - Solve linear system for w_i and p

Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \varphi(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

- RBF evaluation
 - Function d transforms points
 - Jacobian $\nabla \mathbf{d}$ transforms normals
 - Precompute basis functions
 - Evaluate on the GPU!

Local & Global Deformations

[RBF, Botsch & Kobbelt 05]

Local & Global Deformations

[RBF, Botsch & Kobbelt 05]

1M vertices movie

Space Deformation

• Handle arbitrary input

- Meshes (also non-manifold)
- Point sets
- Polygonal soups

 Complexity mainly depends on the control object, not the surface

- 3M triangles
- 10k components
- Not oriented
- Not manifold

Space Deformation

• Handle arbitrary input

- Meshes (also non-manifold)
- Point sets
- Polygonal soups

Easier to analyze: functions on Euclidean domain

 $\mathbf{F}(x,y,z) = (F(x,y,z), G(x,y,z), H(x,y,z))$

then the Jacobian is the determinant

Ja

$$c(\mathbf{F}) = \begin{vmatrix} \frac{\partial F}{\partial z} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial G}{\partial z} & \frac{\partial G}{\partial y} & \frac{\partial G}{\partial z} \\ \frac{\partial H}{\partial z} & \frac{\partial H}{\partial y} & \frac{\partial H}{\partial z} \end{vmatrix}$$

Volume preservation: |Jacobian| = 1

Space Deformation

- The deformation is only loosely aware of the shape that is being edited
- Small Euclidean distance \rightarrow similar deformation
- Local surface detail may be distorted

[Ju et al. 05]

- Cage = crude version of the input shape
- Polytope (not a lattice)

[Ju et al. 05]

 Each point x in space is represented w.r.t. to the cage elements using coordinate functions

$$\mathbf{x} = \sum_{i=1}^{k} w_i(\mathbf{x}) \mathbf{p}_i$$

[Ju et al. 05]

 Each point x in space is represented w.r.t. to the cage elements using coordinate functions

$$\mathbf{x} = \sum_{i=1}^{k} w_i(\mathbf{x}) \, \mathbf{p}_i$$

[Ju et al. 05]

$$\mathbf{x}' = \sum_{i=1}^k w_i(\mathbf{x}) \, \mathbf{p}'_i$$

Generalized Barycentric Coordinates

• Lagrange property: $w_i(\mathbf{p}_j) = \delta_{ij}$

• Partition of unity:

$$\forall \mathbf{x}, \ \sum_{i=1}^{k} w_i(\mathbf{x}) = 1$$

- Mean-value coordinates [Floater 2003, Ju et al. 2005]
 - Generalization of barycentric coordinates
 - Closed-form solution for $w_i(\mathbf{x})$

- Mean-value coordinates [Floater, Ju et al. 2005]
 - Not necessarily positive on non-convex domains

• Harmonic coordinates (<u>Joshi et al. 2007</u>)

• Harmonic functions $h_i(\mathbf{x})$ for each cage vertex \mathbf{p}_i

• Solve
$$\Delta h = 0$$

subject to: h_i linear on the boundary s.t. $h_i(\mathbf{p}_i) = \delta_{ii}$

- Harmonic coordinates (<u>Joshi et al. 2007</u>)
 - Harmonic functions $h_i(\mathbf{x})$ for each cage vertex \mathbf{p}_i

• Solve $\Delta h = 0$

subject to: h_i linear on the boundary s.t. $h_i(\mathbf{p}_j) = \delta_{ij}$

- Volumetric Laplace equation
- Discretization, no closed-form

• Harmonic coordinates (Joshi et al. 2007)

- Green coordinates (<u>Lipman et al. 2008</u>)
- Observation: previous vertex-based basis functions always lead to affineinvariance!

$$\mathbf{x}' = \sum_{i=1}^k w_i(\mathbf{x}) \, \mathbf{p}'_i$$

- Green coordinates (<u>Lipman et al. 2008</u>)
- Correction: Make the coordinates depend on the cage faces as well

- Green coordinates (<u>Lipman et al. 2008</u>)
- Closed-form solution
- Conformal in 2D, quasi-conformal in 3D

GC MVC

GC

- Green coordinates (<u>Lipman et al. 2008</u>)
- Closed-form solution
- Conformal in 2D, quasi-conformal in 3D

Alternative interpretation in 2D via holomorphic functions and extension to point handles : <u>Weber et al. Eurographics 2009</u>

Cage-Based Methods: Summary

Pros:

Nice control over volume

Squish/stretch

Cons:

 Hard to control details of embedded surface

Non-Linear Space Deformation

- Involve nonlinear optimization
- Enjoy the advantages of space warps
- Additionally, have shape-preserving properties

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

- Points or segments as control objects
- First developed in 2D and later extended to 3D by Zhu and Gortler (2007)

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

Attach an affine
 transformation to each point x
 $\in \mathbb{R}^3$:

$$A_{\mathbf{x}}(\mathbf{p}) = M_{\mathbf{x}}\mathbf{p} + \mathbf{t}_{\mathbf{x}}$$

The space warp:

$$\mathbf{x} \rightarrow \mathbf{A}_{\mathbf{x}}(\mathbf{x})$$

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

Handles p_i are displaced to q_i
The local transformation at x: A_x(p) = M_xp + t_x s.t.

$$\sum_{i=1}^{\infty} w_i(\mathbf{x}) \| \mathbf{A}_{\mathbf{x}}(\mathbf{p}_i) - \mathbf{q}_i \|^2 \rightarrow \min$$

• The weights depend on **x**: $w_i(\mathbf{x}) = ||\mathbf{p}_i - \mathbf{x}||^{-2\alpha}$

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

No additional restriction on $A_x(\cdot)$ – affine local transformations

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to similarity

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to similarity

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to rigid

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

• Restrict $A_x(\cdot)$ to rigid

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006] **Examples**

Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07]

- No linear expression for similarity in 3D
- Instead, can solve for the minimizing rotation

$$\underset{\mathrm{R}\in\mathrm{SO}(3)}{\operatorname{arg\,min}} \sum_{i=1}^{k} w_i(\mathbf{x}) \| \mathbf{R}\mathbf{p}_i - \mathbf{q}_i \|^2$$

by polar decomposition of the 3×3 covariance matrix

Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07]

Zhu and Gortler also replace the Euclidean distance in the weights by "distance within the shape"

Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07]

More results

Embedded Deformation [Sumner et al. 07]

- Surface handles as interface
- Underlying graph to represent the deformation; nodes store rigid transformations
- Decoupling of handles from def.
 representation

Deformation Graph

Optimization Procedure

Embedded Deformation [Sumner et al. 07]

Begin with an embedded object.

Nodes selected via uniform sampling; located at $\; {\bf g}_{j} \;$ One rigid transformation for each node: R_{j} , $\; {\bf t}_{j} \;$

Each node deforms nearby space.

Edges connect nodes of overlapping influence.

Embedded Deformation [Sumner et al. 07]

Begin with an embedded object.

Nodes selected via uniform sampling; located at \mathbf{g}_j One rigid transformation for each node: \mathbf{R}_j , \mathbf{t}_j

Each node deforms nearby space.

Edges connect nodes of overlapping influence.

Embedded Deformation [Sumner et al. 07]

Influence of nearby transformations is blended.

$$\mathbf{x}' = \sum_{j=1}^{m} w_j(\mathbf{x}) \left[\frac{\mathbf{R}_j(\mathbf{x} - \mathbf{g}_j) + \mathbf{g}_j + \mathbf{t}_j}{\mathbf{R}_j(\mathbf{x} - \mathbf{g}_j) + \mathbf{g}_j + \mathbf{t}_j} \right]$$
$$w_j(\mathbf{x}) = (1 - \|\mathbf{x} - \mathbf{g}_j\| / d_{\max})^2$$

Embedded Deformation [Sumner et al. 07]

Select & drag vertices of embedded object.

Optimization finds deformation parameters $R_{j}\mbox{ , } t_{j}.$

Embedded Deformation [Sumner et al. 07]

ľ

Embedded Deformation [Sumner et al. 07]

$$\begin{array}{l} \min_{\mathbf{R}_{1},\mathbf{t}_{1},\ldots,\mathbf{R}_{m},\mathbf{t}_{m}} & w_{\mathrm{rot}}\mathbf{E}_{\mathrm{rot}} + w_{\mathrm{reg}}\mathbf{E}_{\mathrm{reg}} + w_{\mathrm{con}}\mathbf{E}_{\mathrm{con}} \\
\mathbf{E}_{\mathrm{reg}} = \sum_{j=1}^{m} \sum_{k \in \mathbb{N}(j)} \alpha_{jk} \left\| \mathbf{R}_{j} (\mathbf{g}_{k} - \mathbf{g}_{j}) + \mathbf{g}_{j} + \mathbf{t}_{j} - (\mathbf{g}_{k} + \mathbf{t}_{k}) \right\|_{2}^{2} \\
& \text{where node } j \text{ thinks} & \text{where node } k \\
& \text{node } k \text{ should go} & \text{actually goes} \\
& \text{Neighboring nodes should} \\
& \text{agree on where they transform} \\
& \text{each other.} \\
\end{array}$$

P

٠

Embedded Deformation [Sumner et al. 07]

$$\begin{split} \min_{\mathbf{R}_{1},\mathbf{t}_{1},\ldots,\mathbf{R}_{m},\mathbf{t}_{m}} & w_{\mathrm{rot}}\mathbf{E}_{\mathrm{rot}} + w_{\mathrm{reg}}\mathbf{E}_{\mathrm{reg}} + w_{\mathrm{con}}\mathbf{E}_{\mathrm{con}} \\ & \mathbf{E}_{\mathrm{con}} = \sum_{l=1}^{p} \left\| \widetilde{\mathbf{v}}_{\mathrm{index}(l)} - \mathbf{q}_{l} \right\|_{2}^{2} \\ & \text{Handle vertices should go} \\ & \text{where the user puts them.} \end{split}$$

Results on Polygon Soups

Results on Giant Mesh

Detail Preservation

Discussion

- Decoupling of deformation complexity and model complexity
- Nonlinear energy optimization results comparable to surface-based approaches

Next Time

Dynamic Geometry Processing

http://cs599.hao-li.com

Thanks!

