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CSCI 599: Digital Geometry Processing

11.2 Space Deformation
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Surface Deformations



Space Deformation

Displacement function defined on the ambient
space 2 3
d: R°— R

Evaluate the function on the points of the
shape embedded in the space

Twist warp
Global and local deformation of solids

[A. Barr, SIGGRAPH 84]




Freeform Deformation

Control object

User defines displacements d. for each element
of the control object

Displacements are interpolated to the entire
space using basis functions B;(x) : R® — R

k

Basis functions should be
smooth for aesthetic results




[Sederberg & Parry 86]

Freeform Deformation

Control object = lattice
Basis functions B,

(x) are

trivariate tensor-product splines:
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Freeform Deformation

[Sederberg & Parry 86]

Aliasing artifacts

Interpolate deformation constraints?
Only in least squares sense




Limitations of Lattices as Control Objects

Difficult to manipulate

The control object is not
related to the shape of
the edited object

Parts of the shape in
close Euclidean distance
always deform similarly,
even if geodesically far




Wires

[Singh & Fiume 98]

» Control objects are arbitrary space curves

» Can place curves along meaningful features of
the edited object

» Smooth deformations around the curve with
decreasing influence




Handle Metaphor

[RBF, Botsch & Kobbelt 05]

» Wish list for the displacement function d(x) :
= Interpolate prescribed constraints
= Smooth, intuitive deformation

d:R? - RY
—
x — X + d(x)
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Volumetric Energy Minimization

[RBF, Botsch & Kobbelt 05]

Minimize similar energies to surface case
/ |dye||? + | dayll® + - - - + ||d.2||” dz dy dz — min
RB

But displacements function lives in 3D...

Need a volumetric space tessellation?
No, same functionality provided by RBFs!
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Radial Basis Functions

[RBF, Botsch & Kobbelt 05]

Represent deformation by RBFs

d(x) = > w; ¢ (le; = x]) + p(x

J
Triharmonic basis function ¢ () = r3

C’ boundary constraints
Highly smooth / fair interpolation

RS
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Radial Basis Functions

[RBF, Botsch & Kobbelt 05]

Represent deformation by RBFs

d(x) = > w; ¢(le; = x]) + p(x

J
RBF fitting

Interpolate displacement constraints
Solve linear system for w; and p
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Radial Basis Functions

[RBF, Botsch & Kobbelt 05]

Represent deformation by RBFs

d(x) = > w;¢(llc; —x[) + p(x)
J
RBF evaluation
Function d transforms points
Jacobian Vd transforms normals
Precompute basis functions

Evaluate on the GPU!
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Local & Global Deformations

[RBF, Botsch & Kobbelt 05]
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Local & Global Deformations

[RBF, Botsch & Kobbelt 05]

1M vertices
movie
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Space Deformation

Handle arbitrary input
Meshes (also non-manifold)
Point sets o
Polygonal soups ~ | 7 &

= 3M triangles
= 10k components
" Not oriented
" Not manifold

Complexity mainly depends
on the control object, not
the surface
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Space Deformation

» Handle arbitrary input
= Meshes (also non-manifold)
= Point sets
= Polygonal soups

. [ X N ]
F(z,y,2) = (F(z,y,2),G(2,y,2),H(z,y,2))
E . t l ° then the Jacobian is the determinant
- Easier to analyze: serminat.

IOz 3y 06z

functions on Euclidean domain = .- {2 5 2!
= Volume preservation: |Jacobian| = 1

| 0z dy 9z
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Space Deformation

» The deformation is only loosely aware of the
shape that is being edited

» Small Euclidean distance — similar deformation
» Local surface detail may be distorted
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Cage-Based Deformation

[Ju et al. 05]

» Cage = crude version of the input shape
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Cage-Based Deformation

[Ju et al. 05]

Each point x in space is represented w.r.t.
to the cage elements using coordinate

functions
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Cage-Based Deformation

[Ju et al. 05]

Each point x in space is represented w.r.t.
to the cage elements using coordinate
functions

k
X = Z w;(X) P
i=1
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Cage-Based Deformation

[Ju et al. 05]




Generalized Barycentric Coordinates

Lagrange property:  w;(p;) = J;;
k
Reproduction: VX, sz(x) p; =X
i=1

k
Partition of unity: VX, sz(x) =1
i=1
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Coordinate Functions

» Mean-value coordinates
[Floater 2003, Ju et al. 2005]

= Generalization of barycentric coordinates
= Closed-form solution for w, (x)
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Coordinate Functions

Mean-value coordinates
[Floater, Ju et al. 2005]

Not necessarily p051t1ve Ooh non- convex
domains it N
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Coordinate Functions

Harmonic coordinates (Joshi et al. 2007)
Harmonic functions /4.(x) for each cage vertex p,

Solve ALh=0

subject to: #; linear on the boundary s.t. #;(p)) = 9;

MVC
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Coordinate Functions

Harmonic coordinates (Joshi et al. 2007)
Harmonic functions % (x) for each cage vertex p,

Solve A /=0

subject to: 4, linear on the boundary s.t. 4;(p;) = 9;
Volumetric Laplace equation
Discretization, no closed-form :x




Coordinate Functions

» Harmonic coordinates (Joshi et al. 2007)
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Coordinate Functions

Green coordinates (Lipman et al. 2008)

Observation: previous vertex-based basis
functions always lead to affine-

invariance! - Oy,
. ) | \ .
R\ W |
}\ \ \r—f.l' A ’ , »
\ xx‘ 1 %% W
N My 3
k .
/ /
— E w; (X) P;
1—=1
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Coordinate Functions

Green coordinates (Lipman et al. 2008)

Correction: Make the coordinates depend
on the cage faces as well
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Coordinate Functions

Green coordinates (Lipman et al. 2008)
Closed-form solution
Conformal in 2D, quasi-conformal in 3D

GC MVC GC
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Coordinate Functions

Green coordinates (Lipman et al. 2008)
Closed-form solution
Conformal in 2D, quasi-conformal in 3D

Alternative interpretation in 2D via holomorphic functions
and extension to point handles : Weber et al. Eurographics 2009
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Cage-Based Methods: Summary

Pros:

Nice control over volume
Squish/stretch

Cons:

Hard to control details of embedded
surface
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Non-Linear Space Deformation

" |nvolve nonlinear optimization
" Enjoy the advantages of space warps
" Additionally, have shape-preserving
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al

ints or segments as control objects

" Po
= F

irst developed in 2D and later extended to 3D

by Zhu and Gortler (2007)




As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Attach an affine

transformation to each point x
ER’:

A(p)=Mp tt

" The space warp:
X = A(X)




As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

" Handles p; are displaced to q,
" The local transformation at x:
Ayp)=M,p *t, st

2 W, (X) Ax (pi) —(;

l

2 .
— mMin

" The weights depend on x:

w, (x) = |Ip, — x|~
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

* No additional restriction on A (-) — affine
local transformations
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A,(+) to similarity

40



As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A (+) to similarity

[ a b)

41



As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A (+) to rigid
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Restrict A, (+) to rigid

[ a b)
=0 a,

Solve for M_ like
similarity and then

normalize b




As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) approach [Schaefer et al. 2006]

= Examples
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07]

" No linear expression for similarity in 3D
" |nstead, can solve for the minimizing rotation

2

k
arg min E w,(x)|Rp, —q,

RESO(3) “4f

by polar decomposition of the 3x3 covariance
matrix
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07]

" Zhu and Gortler also replace the Euclidean
distance in the weights by “distance within

the shape” .
w; (x) = d(p;, X)

A1) ‘f
3
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As-Rigid-As-Possible Deformation

Moving-Least-Squares (MLS) extension to 3D [Zhu & Gortler 07]

" More results
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As-Rigid-As-Possible Deformation

Embedded Deformation [Sumner et al. 07]

= Surface handles as interface

® Underlying graph to represent the
deformation; nodes store rigid transformations

" Decoupling of handles from def.

Deformation Graph Optimization Procedure
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Deformation Graph

Embedded Deformation [Sumner et al. 07]
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Deformation Graph

Embedded Deformation [Sumner et al. 07]
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Deformation Graph

Embedded Deformation [Sumner et al. 07]

Begin with an embedded object.
Nodes selected via uniform sampling; located at gj

One rigid transformation for each node. Rj , tj

Each node deforms nearby space.

Edges connect nodes of overlapping
influence.
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Deformation Graph

Embedded Deformation [Sumner et al. 07]

Begin with an embedded object.
Nodes selected via uniform sampling; located at gj

One rigid transformation for each node. Rj , tj

Each node deforms nearby space.

Edges connect nodes of overlapping
influence.
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Deformation Graph

Embedded Deformation [Sumner et al. 07]

(x)[R (x - g])+g] +t,
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Optimization

Embedded Deformation [Sumner et al. 07]

Select & drag vertices of embedded
object.
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Optimization

Embedded Deformation [Sumner et al. 07]

Select & drag vertices of embedded
object.

Optimization finds
deformation parameters Rj s tj'
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Optimization
Embedded Deformation [Sumner et al. 07]

R min WrotErot T WregE + WconEcon
15t15-- Rt

Graph Rotation Regularization Constraint
parameters term term term

Select & drag vertices of embedded
object.

Optimization finds

deformation parameters Rj , tj.
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Optimization
Embedded Deformation [Sumner et al. 07]

R min Wrot Erot T Wre gE + WconEcon
1 ,tl 9o .,Rm ,tm

Rot(R) = (¢, °c2)2 + (¢, 'c3)2 + (¢, '03)2 +

(¢, ¢, =1)" +(c, ¢, =1)" +(c; ¢y = 1)°

3

Rot(R )

‘ rot
For detail preservation,

features should rotate and
not scale or skew.

.__’A
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Optimization
Embedded Deformation [Sumner et al. 07]

min wrot E rot + Wre gE + wcon E con

Ereg - i EaijRj (gk _gj) 8, +tj _(gk +tk)Hz

J=1 KEN(J)

where node j thinks where node k
node k should go actually goes

Neighboring nodes should
agree on where they transform
each other.

58



Optimization
Embedded Deformation [Sumner et al. 07]

min Wrot Erot + WregE + WconEcon

R, .t,...R,, t,,
Zoi 2
= 2 Hvindex(l) - ‘th

Handle vertices should go
where the user puts them.
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Optimization

Embedded Deformation [Sumner et al. 07]

R tmlg WrotErot + W E g T WconEcon
154190 m,tm

reg - re
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Results on Polygon Soups

Embedded Deformation [Sumner et al. 07]
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Results on Giant Mesh

Embedded Deformation [Sumner et al. 07]
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Detail Preservation

Embedded Deformation [Sumner et al. 07]
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Discussion
Embedded Deformation [Sumner et al. 07]

" Decoupling of deformation complexity and
model complexity

" Nonlinear energy optimization — results
comparable to surface-based approaches
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Next Time

Dynamic Geometry Processing
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http://cs599.hao-li.com
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