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Last Time

Linear Surface Deformation Techniques

 Shell-Based Deformation
 Multiresolution Deformation

o Differential Coordinates




Nonlinear Surface Deformation

-

 Nonlinear Optimization

 Shell-Based Deformation

* (Differential Coordinates)

-




Nonlinear Optimization

» Given a nonlinear deformation energy
E(d) = E(d4,...,d,)

find the displacement d(x) that minimizes E(d),
while satisfying the modeling constraints.

 Typically E(d) stays the same, but the modeling
constraints change each frame.



Gradient Descent

» Start with initial guess do

* |terate until convergence
— Find descent direction h = -VE(d)
— Find step size A
— Update d=d + Ah

* Properties
Easy to implement, guaranteed convergence
— Slow convergence



Newton’s Method

» Start with initial guess do

* |terate until convergence
— Find descent direction as H(d) h = -VE(d)
— Find step size A
— Update d =d + Ah

* Properties
Fast convergence if close to minimum
— Needs pos. def. H, needs 2"d derivatives for H



Nonlinear Least Squares

Given a nonlinear vector-valued error function

61((311, c . ,dn)
e(dl,...,dn) —
€m(d1, c . ,dn)

find the displacement d(x) that minimizes the
nonlinear least squares error

1 2
E(dl, o ,dn) — 5 He(dl, o 7dn)||



Ist order Tayler Approximation
1 2
E(dy,...,d,) = 5 le(dq,...,d,)]

Je(d™ )| = [le(d”) + Je(d"" —d")|7

Taylor Approx
le(d*)[|* = lle(d") + JeAd®||?

Ady,;, = argmin [|e]

Gauss-Newton

h = argmin ||e|?
AdF

L ih- ] od



Gauss-Newton Method

» Start with initial guess do

* |terate until convergence
— Find descent direction as (J(d)TJ(d)) h=-J(d)Te
— Find step size A
— Update d =d + Ah

* Properties

Fast convergence if close to minimum
Needs full-rank J(d), needs 1st derivatives for J(d)



Nonlinear Optimization

» Has to solve a linear system each frame
— Matrix changes in each iteration!
— Factorize matrix each time

* Numerically more complex
— No guaranteed convergence
— Might need several iterations
— Converges to closest local minimum

= Spend more time on fancy solvers...
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Nonlinear Surface Deformation

-

-

* Nonlinear Optimization
e Shell-Based Deformation

* (Differential Coordinates)
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Shell-Based Deformation

e Discrete Shells
[Grinspun et al, SCA 2003]

- Rigid Cells
[Botsch et al, SGP 20006]

» As-Rigid-As-Possible Modeling
[Sorkine & Alexa, SGP 2007]
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Discrete Shells

* Main idea
— Don't discretize continuous energy
— Define discrete energy instead
— Leads to simpler (still nonlinear) formulation

* Discrete energy
— How to measure stretching on meshes?
— How to measure bending on meshes?

13



Discrete Shell Energy

» Stretching:. Change of edge lengths

> Xij (leijl = €])°

€5 j ek

» Stretching: Change of triangle areas

ST ik (gl = [ i)

fijr€F

* Bending: Change of dihedral angles
S a0, 0y

€3 j ek
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Discrete Shell Energy
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Realistic Facial Animation

Linear model Nonlinear model




Discrete Energy Gradients

» Gradients of edge length

eijl = [Ix; — x4
Oleij| _  —e

0x; le]
6‘62']" e

517k



Discrete Energy Gradients

» Gradients of triangle area

1
Firl = 5 Il
a|fz'jk\ _ Iy X (X —Xj)
6X7; 2 Hl’llH
mfijk‘ _ X (x; — Xi)
29 2 [y ||
mfijk’ _ Iy X(Xj — X;)

OX}, 2 |Inq]||
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Discrete Energy Gradients

» Gradients of dihedral angle

sin 0 (ny X ng)Te
0 = atan — atan —
cos 6 n; ny - | e

00  (xk— Xj)Te —1n; (x; — Xj)Te —1;
ox; lell  fmy|? lell  |ny?
00 (% — Xk)Te —1n4 (x; — xl)Te —1no
ox; lell | lell [y
00 —14
i = el - ™
00 —1o

pd Pl v — e .
5 lef L

19



Discrete Shell Editing

Problems with large deformation
— Bad initial state causes numerical problems
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Shell-Based Deformation

e Discrete Shells
[Grinspun et al, SCA 2003]

» Rigid Cells
[Botsch et al, SGP 20006]

» As-Rigid-As-Possible Modeling
[Sorkine & Alexa, SGP 2007]
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Nonlinear Shape Deformation

* Nonlinear editing too instable?

» Physically plausible vs. physically correct

= Trade physical correctness for
— Computational efficiency
— Numerical robustness
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Elastically Connected Rigid Cells

« Qualitatively emulate thin-shell behavior

* Thin volumetric layer around center surface

» Extrude polygonal cell C; per mesh face

s
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Elastically Connected Rigid Cells

* Aim for robustness
— Prevent cells from degenerating
= Keep cells rigid
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Elastically Connected Rigid Cells

* Connect cells along their faces
— Nonlinear elastic energy
— Measures bending, stretching, twisting, ...
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Notion of Prism Elements
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Nonlinear Minimization

* Find rigid motion T; per cell C;
mm Z W; ; / HT f@—n — T, (fj_“'(u))HQ du

{i.5} 0,1]2

» Generalized global shape matching problem
— Robust geometric optimization

— Nonlinear Newton-type minimization
— Hierarchical multi-grid solver

adl



Newton-Type lteration

1. Linearization of rigid motions

RiX—|—ti

¢

X + (w; XxXX) + v, = A;X

2. Quadratic optimization of velocities

(oo, ) w / [ A (£ () = Ay (F7 ()| d

{i.5} [0,1]2

3. Project A; onto rigid motion manifold

= | ocal shape matching

B
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Robustness
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Character Posing
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Goblin Posing

* Intuitive large scale deformations

 \Whole session <5 min
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Shell-Based Deformation

e Discrete Shells
[Grinspun et al, SCA 2003]

- Rigid Cells
[Botsch et al, SGP 20006]

* As-Rigid-As-Possible Modeling
[Sorkine & Alexa, SGP 2007]
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Shell-Based Deformation

e Discrete Shells
[Grinspun et al, SCA 2003]

- Rigid Cells
[Botsch et al, SGP 20006]

* As-Rigid-As-Possible Modeling
[Sorkine & Alexa, SGP 2007]
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Surface Deformation

« Smooth large scale deformation

* Local as-rigid-as-possible behavior
— Preserves small-scale details
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Cell Deformation Energy

» Vertex neighborhoods should deform rigidly

Z H(p; - Pé) —R; (p; - Pz)H — 1IN
JEN(7)
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Cell Deformation Energy

o If p, p’ are known then R, is uniquely defined

* Shape matching problem
— Build covariance matrix S = PP'T

— SVD: S=UZWI!
— Extract rotation R, = UW'!
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Total Deformation Energy

e Sum over all vertex

mm Z Z 7, — R, (p; —pi)H2

1=1 jEeN (1)

* Treat p’ and R; as separate variables

 Allows for alternating optimization
— Fix p’, find R; : Local shape matching per cell

— Fix R;, find p’ : Solve Laplacian system
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As-Rigid-As-Possible Modeling

« Start from naive Laplacian editing as initial guess

initial guess 1 iteration

initial guess 1 iterations 4 iterations
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As-Rigid-As-Possilbe Modeling
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Shell-Based Deformation

e Discrete Shells
[Grinspun et al, SCA 2003]

- Rigid Cells
[Botsch et al, SGP 20006]

» As-Rigid-As-Possible Modeling
[Sorkine & Alexa, SGP 2007]
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Nonlinear Surface Deformation

-

-

 Limitations of Linear Methods
 Shell-Based Deformation

e (Differential Coordinates)
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Subspace Gradient Deformation

* Nonlinear Laplacian coordinates

» L east squares solution on coarse cage subspace

[Huang et al, SIGGRAPH 06] 42



Mesh Puppetry

« Skeletons and Laplacian coordinates

» Cascading optimization

[Shi et al, SIGGRAPH 07] .



Nonlinear Surface Deformation

-

-

 Limitations of Linear Methods
 Shell-Based Deformation

* (Differential Coordinates)
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Linear Approaches

[ Nonlinear Energy J

l Linearization

{ Quadratic Energy J

l Variational Calculus

[ Linear PDE J

l Discretization

{ Linear Equations J

45



Linear Approaches

* Resulting linear systems
— Shell-based A’d = 0
— Gradient-based Ap = V- -T(g)
A

— Laplacian-based A‘p =

* Properties
— Highly sparse
— Symmetric, positive definite (SPD)
— Solve for new RHS each frame!
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Linear SPD Solvers

Dense Cholesky factorization
— Cubic complexity

— High memory consumption (doesn’t exploit sparsity)

Iterative conjugate gradients
— Quadratic complexity
— Need sophisticated preconditioning

Multigrid solvers
— Linear complexity
— But rather complicated to develop (and to use)

Sparse Cholesky factorization
— Linear complexity
— Easy to use
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Dense Cholesky Factorization

[Solve Ax = bj

1. Cholesky factorization A = LL*

2. Solve system y=L"'b,

x=L "1y
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A=LL"T

500x500 matrix
3500 non-zeros

Dense Cholesky Factorization

Cholesky Factorization

36k non-zeros

49



Sparse Cholesky Factorization

A=LL"T

500x500 matrix
3500 non-zeros

Reordering
—

PTAP

e

Ty

36k non-zeros TAKMRZET oS
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Sparse Cholesky Factorization

(SOIVe Ax = bj

~

1. Matrix re-ordering A = PTAP

~

2. Cholesky factorization A = LL”

3. Solve system y =L 'P’b, x=PL Ty

5]



Bi-Laplace System

3 Solutions (per frame costs)

18s
14s
9s
5S
0s gﬁﬁ
10K 20k 30k 40k 50k

Conjugate Gradients @ Multigrid & Sparse Cholesky
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Linear vs. Non-Linear
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Linear Approaches

{ Nonlinear Energy J

l Linearization <= causes artifacts

{ Quadratic Energy J

l Variational Calculus

{ Linear PDE J

l Discretization

{ Linear Equations J
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Linearizations / Simplifications

e Shell-based deformation

/ ko [T—T)° + &y T - )| dudo
Q2

N4

2 2 2 2 2
/Q o (all” + 1o *) + Ao (lunll” + 2 s |* + [[duo|” ) dude
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Linearizations / Simplifications

 Gradient-based editing
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Linearizations / Simplifications

* Laplacian surface editing

1 —T3 T
Rx ~ x+(rxx) = | r3 1 —r1 ]| x
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Linear vs. Non-Linear

’5

* Analyze existing methods
— Some work for translations

Nonlinear

Shell

Gradient

¥

N
Dhea

— Some work for rotations
— No method works for both »g
»

Laplace

58



Linear vs. Non-Linear

* Linear approaches
— Solve linear system each frame
— Small deformations
— Dense constraints

* Nonlinear approaches
— Solve nonlinear problem each frame
— Large deformations
— Sparse constraints
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Next Time

Spatial Deformation
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Projects



Geometry Processing Project

Goal

e Small research project

1 week for project proposal, deadline March 21
 choose between 3 options: A,B, or C

1 month for project, deadline April 21

group, size up to 2

contributes 30% to the final grade.

send to peilun.hsieh@usc.edu
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Scope
A) For the disciplined

* Deformation Project, we will provide a framework
* You will implement a surface-based linear deformation
algorithm (bending minimizing deformation).

B) For the creative [+10 points]

* |Imagine an interesting topic around geometry processing
or related to your PhD research or something you always
wanted to do, and write a proposal.

* |t it gets approved, you are good to go.

C) For the bad ass [+10 points]}

* Implement a Siggraph, SGP, SCA, or Eurographics Paper.

« Geometry processing related of course :-)
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Project Submission

Deliverables for A)
* Source Code, Binary, Data

* Text files describing the project, how to run it.

Deliverables for B) and C)

* Short Presentation will be held April 22 and 24th (length
TBD)

* Video / Figures

* Documentation (pdf, doc, txt file): 2 or more pages, short
paper style, be rigorous and organized, must include at
least abstract, methodology, and results.



Project Proposal

Structure Format
e Title e authors’ names/student IDs
* Motivation  1-2 pages
 Goal e .doc, .pdf, .txt
* Proposed Method * figures

e References

65



Deformation Framework for A)
* Inherit from MeshViewer with user interface:
e ‘p’:pick a handle
e ‘d’:drag a handle (last one with starting code)

e ‘m’:move the mesh

Deformation Viewer
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Deformation Framework for A)

add handle picking code to

DeformationViewer: :mouse ()

add deformation codes to

Defommast ionijliemes s ydeFeomm mnesin ()
add extra classes and files if needed

gmm is provided to solve linear systems
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Some ideas for B) or C)

registration: articulated / deformable motions...

shape matching: RANSAC, spin images, spherical

harmonics...

Smoothing: implicit surface fairing...
parameterization: harmonic/conformal mapping...
remeshing: anisotropic, quad mesh...

deformation: As-rigid-as-possible, gradient-based...
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